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Editorial
his issue of TOS Forum is a dedi-
cated publication of the Proceed-
ings of the 10" World Confer-
ence on Sampling and Blending,
WCSB10. The editorial process started in
February—March 2020 when it was realised
that the global COVID-19 pandemic would
likely also impact on the small community
of professionals interested in sampling—
although most hoped for a brief disrup-
tive period only. The virus sadly had other
ideas, and the chain of the regular bi-annual
WCSB conference schedule was broken
for the first time. However, now it is finally
time to meet again in-person with only a
minimum of streaming contributions and
attendees.

The prospects for adequate sponsor-
ing of a world conference were largely
unknown after three years of inactivity, but
the WCSB10 organisational and scientific
committees decided to plan for success—
and the publication of these proceedings
is a testimony to the validity of that deci-
sion. However, it was felt that economic
prudence was in any event called for with
respect to the costs involved. Which is why
the editorial responsibilities and the ensuing
publication tasks for WCSB10 build directly
on the earlier WCSB7 Proceedings’ mini-
malist strategy based on a very small but
effective production setup, in fact today
consisting of an editorial staff of two (in
Copenhagen), and the IM Publications team
(in Chichester).

The Editorial staff acknowledges and
extends a very big thank you to:

The reviewers: Francis Pitard, Richard
Minnitt, Pentti Minkkinen, Stéphane Bro-
chot, Dominique Frangois-Bongargon,
Claudia Paoletti, Simon Dominy, Ralph
Holmes, Martin Lischka, Aldwin Vogel,
Trevor Bruce, Oscar Dominguez, Karin Eng-
strém, Dr Li Huachang, Quentin Dehaine,
Roger Brewer, Bert Pauels. The reviewers’

work is the invaluable backbone of any con-
ference, guaranteeing scientific standard
and integrity.

The Publisher: IMP Open is thanked for
its highly effective and forthcoming collabo-
ration, which is the main reason behind the
impeccable professional, pleasing appear-
ance of this publication: Thank you very
much, lan and Katie!

The sponsors: The WCSB10 Proceed-
ings are kindly supported by forward-look-
ing organisations, companies and individu-
als, all acknowledged by their logos in this
publication. The scientific work of the IPGSA
could not take place were it not also from
this generous support—which is gratefully
acknowledged.

After the conference is over, the WCSB10
Proceedings will be the lasting physical doc-
umentation available to posterity. Publish-
ing traditions have come a long way since
WCSB7 (2015), where the proceedings
appeared both as a conventional printed
issue, as an accompanying USB stick, as
well as being freely available on the Internet
as an Open Access publication. The latter
has shown to be the most important dis-
semination option in the broader historical
view, so much so that this is now the only
documentation format offered. With all the
above, the Editors and the Publisher are
satisfied with the way the present contribu-
tions are available to the interested reader.

Producing this publication in the spring of
2022, in part ruled by the declining COVID-
19 pandemic and its tail-end resurgences,
has not been an easy job. However, it
has been a tremendously rewarding task,
because of the privilege of performing this
scientific public service for the International
Pierre Gy Sampling Association (IPGSA), it
has also been our pleasure.

Kim H. Esbensen,

Editor WCSB10 Proceedings
Anne J. Cole,

Co-editor, WCSB10 Proceedings

TOS forum is currently available free-of-charge. Visit www.impopen.com/tos-forum for details.

This issue comprises
the Proceedings of the
10" World Conference
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Blending, held from
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The complex futility of the Liberation Factor

F. F. Pitard®
Francis Pitard Sampling Consultants, LLC, 14800 Tejon Street, Broomfield, Colorado, 80023, USA (E-mail: fpsc@aol.com)

Prior to 1957 Dr. Pierre Gy knew two objectives needed to be addressed to optimize the sample mass
with respect to well defined Data Quality Objectives; these two objectives were: First, determine the
appropriate sample mass to represent all fragments size fractions present in the lot to be sampled, being
perfectly aware that the size fraction most difficult to sample was the size fraction made of the largest
fragments. The logic was that the content of the constituent of interest changes from one size fraction
to the next. Second, determine the appropriate sample mass to represent the largest particles of a given
constituent of interest in a specific state of comminution. Basically, someone had to make the calculation
twice and select the worst outcome as the necessary sample mass.

To overcome this difficulty and provide a valid formula for both cases, Dr. Pierre Gy created his famous
formula accounting for the size of the largest fragments and taking care of the size of the largest particles
of the mineral of interest by introducing the concept of the liberation factor for a given state of commi-
nution. This was at the time a huge academic achievement. However, it is well known that over the years
this formula and the determination of the liberation factor led to arguments, controversy, and vast mis-
use from sampling practitioners. That new revolutionary approach that was suggested by Dr. Pierre Gy
turns out to be too complicated for sampling practitioners to resolve their sampling problems effectively,
and not be the target of unfair criticism.

This paper suggests a wise return to the old strategy making the calculations twice and determine what
is the worst scenario to determine the necessary sample mass. The approach is simple, with no neces-
sary determination of a liberation factor, and unlikely to lead to errors due to the inherent complexity of
Dr. Pierre Gy’s famous formula.

Introduction

The complete formula suggested by Dr. Pierre Gy is summarized under the following well known form:

1 1
Spsp = YT IH, [1]
S L

Ms is the mas of a sample to be collected. M. is the mass of the Lot where the sample is collected from. /H. is the Intrinsic
Heterogeneity of the Lot to be sampled. It is demonstrated that /Hy is the product of five factors:

IH, = fgctd? 2]

fis a fragment shape factor. g is a particle size distribution factor taking into account that all fragments are not necessarily
the same size as the coarsest fragment. ¢ is a mineralogical factor taking into account the density of the constituent of interest
and its expected average content in the Lot. £ a liberation factor taking into account that the constituent of interest is not free
from the gangue for a given state of comminution. d at third power is the size of the coarsest fragments defined as the opening
of a screen retaining no more than 5% of the material to be sampled.

The approximate estimation of the liberation factor ¢ is mathematically derived under the following, final form:

K — amax _aL

aL is the expected content of the constituent of interest. amaxis the expected maximum content of the constituent of interest
among the coarsest fragments in the top size fraction of the material to be sampled.

It should be clearly understood that equation [3] is the only valid equation to properly estimate what the value of the liberation
factor is. Any other empirical formula such as the one shown in equation [4] is not a valid form to include in equations [1] and

2].

(3]

l=|— [4]

In equation [4] d¢is the size below which at least 95% of the material must be crushed to liberate at least 85% of the mineral
of interest: it is defined as the liberation size. The value of ris to be estimated by performing empirical experiments.
Because equation [4] is strictly empirical, it would be a great mistake to introduce it in equations [1] and [2]. The reason is
simple: it would completely destroy the capability of equations [1] and [2] to account properly for the coarse size fraction in
any collected sample, which would lead to an unacceptable flaw.

doi: https://doi.org/10.1255/tosf.128 Published under a Creative Commons BY Licence
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Learning to live with three Cardinal Rules

The following Cardinal Rules are a necessity to estimate the appropriate mass of samples to satisfy any given Data Quality
Objective; therefore, they are not negotiable.

Cardinal Rule #1 in Sampling

Biases in sampling are the worse misfortune that may take place, and they were the driving force to establish the many rules
of sampling correctness, so theoretical developments of equi-probable sampling made by Gy and Matheron could apply in
practice. This led to the many advances to minimize Increment Delimitation Error, Increment Extraction Error, Increment
Preparation Errors and Increment Weighting Error which are the biggest contribution of Gy’s theory by far according to his
own words. Is this sufficient to prevent sampling biases? The answer is no. For example, it is well known that the content of
a constituent of interest may drastically change from one size fraction to another. Then, plain logic would suggest the fol-
lowing Cardinal Rule in sampling should never be broken: a sample mass that is too small to well represent all size
fractions cannot provide a sample representative of anything else; this has huge implications for any kind of Heteroge-
neity Test.

Successive stages of sampling and sub-sampling may each require compliance with a pre-established limit that highly de-
pends on the practitioner’s objectives'. The most difficult size fraction to properly represent in the sample is obviously the
one containing the largest fragments. This strongly suggests the following Gy’s formula to calculate the variance of the
Fundamental Sampling Error to be used to make sure a given size fraction is well represented in collected samples:

1 1 1
S12~"SE = M_S_M_L fp a_Lc_z dl%“Lc"'gd;Lx'aLx [5]

dric is the size fraction of interest, a;  is the expected proportion of the size fraction of interest in the lot L, p is the

density of the fragments to be sampled, dy;, is each size fraction other than the one of interest, a;, is the expected pro-
portion of each size fraction other than the one of interest.

This formula can often be simplified for many applications:

o If M, >10Mg

o If a’FLC is not much different from d defined as the size opening of a screen that would retain 5% of the material
by weight.

o If a; .  issmall then

2 =fp 1 2d3

FSE FLe [6]

s L%

andif d,,. =d , sowe can make sure the most difficult size fraction is well represented in the sample, with a,, = 0.05
by definition, we obtain:

2 _18'f',0'd3

7
FSE M, [7]

This convenient formula provides a filter to make sure the exponent x for d is not abused when used in a formula like the
following one:

1 1
2 x
S =|——|K" d
OFEL M, M, ]

K=f-g-c-(d) and x=3-r

K and x are the key factors to quantify in various experiments. If x < 3, clearly it is not an issue when the values for d are
below 1 cm, however it can indeed become an issue for large values of d such as for sampling runoff mine material or even
blasthole piles.

Example of application: If a runoff mine material has a value of 10 cm for d and a 1-ton sample is required to represent the
coarsest fragments with an uncertainty of 15% (1s), it would be unfortunate to recommend a much smaller mass on the
basis that x is much smaller than 3. Obviously, the value used for K has a big influence on the outcome of this discussion;
indeed, if K is very high it is likely that there is no problem; the point is: be very cautious about this issue.
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Cardinal Rule #2 in Sampling

The size du of the grains of the constituent of interest, liberated or not, must play an important role in the necessary sample
mass. du can also be a cluster equivalent when several of those grains are very close to one another within a core sample
or within a large fragment. Gy corrected for this problem in an elegant way, not always well understood by practitioners, with
his liberation factor. In other words, in his original formula with x = 3, both concepts d and duv were preserved; be aware it is
no longer the case with empirical formula [8].

Often, especially for trace constituents, it is difficult and impractical to determine the liberation factor with sufficient accuracy,
and this makes some formulas vulnerable. Enormous literature has been written on this subject, the best one by Francois-
Bongargon?3. However, it is not a must to use the conventional, favorite approach suggested by Gy’s general and well-
known formula. The following suggestion is pragmatic, accurate, and falls in line with Ingamells’ approach; it is summarized
in the three following statements:

eUse Gy’s suggested approach for liberated gold when du, which is das in formula [9], becomes the dominant factor;
it can be generalized to many other components of interest:

2 _ 1 _ 1 fAu'gAu'pAu d3
Au
Mg M, a

SEse =
(9]
oVerify that the sample mass suggested by the generalized version of equation [8] is compatible with the mass

necessary to represent all size fractions in the lot by using equation [7].
oThe largest required sample mass for a pre-selected precision, obtained by equation [7] (i.e., using d) and equation

[9] (i.e., using dAu ) necessarily takes priority on deciding what the sample mass in the sampling protocol should
be.
Generalization of equation [9] by defining new notations: fM the shape factor of the constituent of interest, &,, the
particle size distribution factor of the constituent of interest, ©,, the density of the constituent of interest, dM the
maximum size of the constituent of interest particle, liberated or not, or cluster of such particles contained in a single fragment

of the surrounding matrix; dM is defined as the size of a screen that would retain no more than 5% by weight of all the
particles of the constituent of interest.

Thus, we obtain the very useful simplified formula:

_ 3 Pu
IH, = fy -8y dips = [10]
a
Useful sampling nomographs can be calculated with the following formula:

1 _ 1 fM'gM'pM'dj/l
Mg M, a

2
Spsg = [11]

The great advantage of this approach is its accuracy and the easiness to collect the relevant and necessary information
through microscopic observations, and it should somewhat reconcile Gy, Ingamells, and Frangois-Bongargon. In the event
reconciliation is not possible it should be a clear indication some heterogeneity properties of the constituent of interest are
still unknown and further investigation is needed. This debate naturally leads to Cardinal Rule #3.

Another advantage of equation [11] is for subsampling finely ground material, as some constituents such as soft ones like
gold, molybdenite, galena and many more do not comminute well. Very hard minerals like chromite may show the same
problem. For example, a sample pulverized to 99% minus 106 microns may still contain a 300-micron gold particle making
all other formulas weak and perhaps misleading.

As Pierre Gy said many times, especially when criticizing the work of Richard (1908), when deciding what the exponent of
d should be, and therefore the constant x, there is a confusion between FSE, QFE1, and even the Analytical Error AE poorly
defined by non-chemists and TOS experts. This confusion has been responsible for over a century for total chaos and
remains an issue today. Problems are:

1. For very fine material the variance of FSE rapidly becomes a negligible factor unless unrecognized delayed com-
minution takes place for the constituent of interest.

2. The segregation error can be huge as the constituent of interest is liberated and possibly of a very different density
than the rest of the material.

3. Taking the optimistic assumption that analytical increments are taken perfectly at random (an absolute requisite
for Gy’s definition of GSE), which is rarely the case at the balance room of a laboratory, the variance of GSE can
become small indeed and not larger than the variance of FSE; however, it takes work, and an analytical chemist is
not willing to spend the necessary time to perform the task correctly. As a result, the segregation error, which is no
longer GSE but some unknown entity depending on operators, may become vastly underestimated because it no
longer obeys rules of sampling correctness set by the TOS.

4. The variance of the Analytical Error AE cannot be estimated by performing replicate assays that include the last
FSE and last GSE or some other entities depending on operators. Let’'s assume the chemist takes a 30-g analytical
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subsample for fire assay; the taking of that sample has nothing to do with the Analytical Error which includes fusion,
cupellation, acid digestion of a bead, contamination, losses, spectrometer calibration or use of a precision balance,
additive and proportional interferences, etc... In other words, it is very hard, if not impossible in some cases to
appreciate what the variance of AE really is. Furthermore, AE is extremely operator dependent. There is no such
thing as a bad analytical method, there are only incompetent analysts who apply it for the wrong conditions.

5. There is no such thing as a segregation free analysis when taking replicate samples in a given size fraction as
particles segregate even if they are all the same size. They will most certainly segregate because of density, shape,
electrostatic property differences, etc...

All this was clearly familiar to Visman, Ingamells and Gy through verbal conversations, and many others who were wise
enough to admit that what they measured with replicate samples or replicate assays may have nothing to do with the vari-
ance of FSE. When segregation is mentioned, it is not necessarily referring to the Grouping and Segregation Error GSE but
instead to the short-term Quality Fluctuation Error QFE+ combined with some elusive and residual components of IDE, IEE,
IPE, and the Analytical Error AE. The subtle difference depends on what the operator may do. So, this strongly suggests
variance sources should be called by their respective name instead of calibrating x in equation [8] to compensate for things
that are not clearly defined or understood.

An example is appropriate: an operator shakes a laboratory pulp to collect a tiny analytical sample, then makes the assump-
tion there is no longer any significant segregation in the pulp, and finally takes one or two tiny increments with no respect to
the TOS. The resulting variance, after guessing what the analytical variance should be and removing it, is found to be large.
The operator put the blame on a large variance of FSE when it is clear that he was introducing a massive segregation
variance because of the way he collected the increments. He was introducing a variance that has nothing to do with FSE,
nor GSE, because all the subtle principles clearly defined in TOS were completely ignored, therefore prohibit the segregation
variance to be a random one as it should be.

Cardinal Rule #3 in Sampling

The following integrated, iterative approach to estimate the variance of FSE, or FSE + GSE, should be made a cardinal rule
in sampling. lteration is the word of wisdom in sampling. The following steps are not necessarily suggested in chronological
order. Rather, each step can be taken simultaneously which ultimately will provide confidence that no stone has been left
unturned.

The mandatory calibration of K and x

The calibration of constants K and x in equation 8 as suggested by Frangois-Bongarcon is a mandatory step
that is non-negotiable; please notice notations in that formula very carefully. Indeed, the use of the notation
QFE, is valid only if the operator has collected many increments in full compliance with sampling correctness,
which is a very optimistic assumption as experience proves. If not in full compliance, then the resulting vari-
ance is anyone’s guess because there is no longer any theoretical development possible as demonstrated by
Gy and Matheron. Such calibration allows us to minimize the variance of the Fundamental Sampling Error and
also measures the leftover effect of the Grouping and Segregation Error depending on the equipment used to
split samples at the sample preparation room and at the laboratory, and on the operator’s training which can

be a huge factor. For the details of such procedure the reader is referred to Frangois-Bongargon’s publications
2,3

The geologist to the rescue

It is necessary to better log the properties of the constituent of interest in each geological unit. For each core sample within
substantial mineralization the following information should be carefully logged, taking the example of gold:

Where is the gold?

What are the associations of gold?

How much gold is finely disseminated within sulfides, such as pyrite or other minerals?

How much gold is coarse and perhaps nearby other minerals?

Are gold and pyrite or other mineral occurrences associated with narrow or large quartz veins? If so, are there
several quartz events?

¢ Study size distribution of gold particles. A good histogram is needed for each geological unit. After observing

several thousand samples within mineralization it should be possible to roughly estimate the size dM above
which only 5% of the gold can report.

e Equally important, study the size distribution of gold particle clusters; in other words when you see one gold
particle (measure it), how many more gold particles are in the immediate vicinities? e.g., 10 or more within
100 cm3? After observing several thousand samples within mineralization it should be possible to roughly
estimate the size dz‘vz above which only 5% of the gold can report as cluster equivalents.

e Etc...

The mineralogist to the rescue

Suarez and Carrasco* demonstrated in an unambiguous way that careful mineralogical studies can provide valuable infor-
mation to model the variability of the liberation factor as a function of comminution stage. It is very unfortunate that such
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study does not generate more interest. The same study suggests that the maximum content model suggested many years
ago by Gy is a very reliable model that was used all the time in a mineral processing research laboratory (Minemet); see Gy
56 and Pitard'.

Representing the coarsest fragments

The selected sample or subsample mass must fairly represent the coarsest fragments. This task is easily done by using
formula [5] or [7].

Representing the coarsest particles of the constituent of interest

The selected sample or subsample mass must fairly represent the largest particles of a given constituent of interest. This
task is done by using formula [11]. This is critically important for constituents showing delayed comminution. Usually, soft
minerals such as gold, galena, molybdenite and very hard minerals such as chromite can show such problem. As a good
example, the coarse gold case shown by Pitard and Lyman? clearly shows that a Heterogeneity Test performed by using
conventional 30-g fire assays would most likely have led to very misleading conclusions; the test is not the problem, but the
completely inappropriate 30-g subsample is the issue, in other words the operators would have used the wrong tools.

A logical flow sheet to perform Heterogeneity Tests

Figure 1 summarizes the necessary steps to perform a reliable Heterogeneity Test for various constituents of interest during
exploration and grade control; the approach can easily be extended to other materials in other industries. The reconciliation
box has a very important mission in cases where conclusions are grossly different: a logical explanation must be found that
may lead to important decisions concerning the selection of fully optimized sampling and subsampling protocols.

Selection of a constituent of interest
within a single geological unit

Calculate constants Calculate necessary sample mass
K and x to calibrate the Gy's to properly represent largest size
formula fractions
to calculate the variance of
QFE,
\/
Reconcile Information from geologists

and mineralogists
I v
Calculate necessary sample mass to

properly represent largest particles or
clusters of constituent of interest

Figure 1. Logical Heterogeneity Test flow sheet

Calculating the necessary sample weight Ms instead of the variance of FSE

To prevent any misunderstanding about possible Poisson processes introduced by using insufficient sample weight Ms, and
create any issue about the validity of Gy’s formulas, anyone can turn the formulas around and calculate the necessary
sample weight that is required to prevent the introduction of a Poisson process, and remain in a domain for which the
formulas are perfectly applicable. It is also a good practice to calculate the necessary sample weight in accordance with
appropriate DQO guidelines’.

Conclusion

When the world is full of sampling experts, we tend to accumulate too many unnecessary difficulties to make everyone
relatively happy. This is the mission of WCSB, but the time has come to reflect and simplify the life of people struggling
every day to optimize their sampling and subsampling protocols. Therefore, it is of the utmost importance for WCSB to
provide a simple road map and this paper is a first attempt to come to a few appropriate recommendations:
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Set Data Quality Objective in a logical way, with the approval of upper management.

1.  Make sure the selected sample mass fairly represents all size fractions, and especially the coarsest size fraction
that requires large sample mass.

2. Know the characteristics of the constituent of interest, and make sure the select sample mass fairly represents the
coarsest grains of the constituent of interest.

3. Select the largest necessary sample mass from point 2 and 3, as the appropriate sample mass for a given stage
of comminution.

4. Try to reconcile this approach with estimation of constant K and x estimated from other conventional approaches
23

It is likely that it will be impossible to reconcile when sampling material contain fragments larger than 1 cm, and the larger
they are the more the divergence will take place.

It is also likely that it will be impossible to reconcile when sampling material containing large particles of the constituent of
interest if that constituent is affected by delayed comminution. For example, a material containing molybdenite may be
pulverized to 95% minus 106 microns and still contain two or three molybdenite particles larger than 500 microns.

At this stage the user trying to optimize a sampling protocol should be able to take a logical decision based on plain logic.
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Liberation factor for 'closely sieved' material
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Closely sieved (a.k.a. calibrated) material, i.e. material obtained as retained between two screens, is
commonly sampled. One example is some iron ores, when drill-hole samples are screened at multiple
sizes and the size fractions are sampled in an attempt at predicting iron ore products that could be
generated. Another, growing example is the heterogeneity testing method in which instead of crush-
ing parts of a lot at different sizes to generate experimental series of samples, a single coarse crush-
ing is used, then size fractions are obtained by screening and experimental series are generated from
each one. Questions automatically then arise: How do we control the sampling variance when sam-
pling calibrated material? And how can we use calibrated material in heterogeneity testing? Under
deeper examination, the issue amounts to finding a model for the liberation factor of the calibrated
material. A method was used to find a reasonable form for that model, to be customised, as in the
general case of unsieved, crushed material, using heterogeneity testing.

Introduction
In the case of uncalibrated material, Gy established a numerical model (formula) to control the relative variance of the fun-
damental sampling error, as follows:

Rel.Var. = ¢/ fgdes® (1/Ms - 1/ML) (1)

in which the term fgdoes® intends to represent the mass-weighted average fragment volume in the lot. It includes the cho-
sen, nominal, 95% passing size des, a shape factor f that transforms the cube of that size into a volume, and the granulo-
metric factor g, which pretends to transform the nominal volume fdes® into that mass-weighted average volume.

For calibrated material, i.e. sieved between two screens of sizes d-min and d-max (coined 'closely sieved material' by
Gy to reflect the use of two successive screenings), he went further: he demonstrated (quite rigorously) an alternative
granulometric factor g'(r) as a function of the ratio r=d-max/d-min ', to be substituted to constant g in formula (1) in such a
case, applying it to d-max3 instead of des®. This nicely solved the problem of the term fgdos® in (1) but not the entire formu-
la. Indeed, for that material, (1) would now write:

Rel.Var. = c/' fg'd-max3® (1/Ms - 1/ML) (2)

as the liberation factor /' clearly differs from that of the uncalibrated material of origin. To understand this, suffice it to think

of two lots of the same material, crushed to two different coarse sizes, then both subjected to the same [d-min, d-max] pair
of screens. This results in the same calibrated material in both cases, with the same liberation factor, although the two
lots of origin indeed had different liberation factors following crushing.

It is important to realise that the ‘volume’ term, fgdes® in (1) or fg'd-max®in (2), address an issue that is independent from
that of the liberation degree.

As a result, two questions arise:

e How do we control the sampling variance when sampling calibrated material?

e How can we use calibrated material in heterogeneity testing?

Both amount to the problem of finding a reasonable and inferable model for 7'.

Heterogeneity testing

Recent developments have demonstrated that the method of the sieves was very effective for heterogeneity testing and is
now slowly replacing the other method ('sample tree'). To implement it in practice, a lot of very coarsely crushed material
is sieved into a number of size fractions and each size fractions is split (usually with a riffle splitter) to generate a series of
samples. The primary sampling relative variance in each series, divided by cfg'(1/Ms - 1/ML) is then equated to [¢' d-max?]

in equation (2) to calibrate a model for /'.
In the case of uncalibrated material, by comparison, the modified variance is equated to ¢des® and a model is used for ¢,
e.g. /=(d,/des)*>?Pha so that the quantity to calibrate in d, and alpha really is:
(d,/dgs)3-4Pha dgs® (3)
This expression, when plotted on a log-log scale for nominal sizes dgs at or above d, gives a straight line of slope alpha
and intercept log(d,3@Pha),

In the heterogeneity test using sieves, one is often lead to mixing sample series taken from calibrated material and

doi: https://doi.org/10.1255/tosf.129 Published under a Creative Commons BY-??77?7 Licence
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sample series from uncalibrated material (usually the finest series, consisting of the under-size of the smallest screen, as
well as a series of pulverized material). Since the test consists in the calibration of the parameters influencing the libera-
tion factor, those two types of series - which are deemed to correspond to different liberation factor models - cannot be
posted on the same calibration graph without some proper modifications to account for it formally. These modifications
would, at the same time, automatically suggest the form of a reasonable model for the liberation factor ¢' of closely sieved

material.

Model of liberation factor for calibrated material

On the calibration log-log graph (i.e. modified relative variance vs. fragment size), the points for calibrated material series
would have to be posted for their respective d-max sizes. The first step therefore consists of rewriting formula (1) for un-
calibrated material (now regarded as a special case of calibrated material, only with a small value of g'(r) corresponding to
a very large value of ratio r), to make g' and d-max appear. Remembering the introduction of g' *:

gdes® = g'(r) d-max® (4)
we get:

Rel.Var. = ¢/' fg'd-max3 (1/Ms - 1/ML)

with ¢' = ¢ as the liberation factor has not changed. So to elicit the desirable analytical form of a compatible model for /',

all we need to do is transform our model ¢’ = ¢ = (d,/des)?2Pha using (4) to express it as a function of g' and d-max only:
¢ =[(g/g")"® d, / d-max]3arha (5)

In this expression, of course, dos has become irrelevant and has disappeared and g is equal to 0.25, while g'(r), for any
given lot of closely sieved material, is given by the following equations’:

r = d-max/d-min
R = 3 LN(r)/ LN(2)
g'=(1.5-12%"+1/28%1) /R

Equation (5) is the propagation to ¢' of our classical model for 7.

The problems

But equation (5) show a serious methodology problem for heterogeneity testing: while the quantity to calibrate (3) when
using only uncalibrated material depends only on dgs for each experimental point, the formula to be calibrated after proper
modification of the primary variance (i.e.: [ (g/g')"® d, / d-max]*-@*ha d-max?®) depends not only on d-max, but also on ratio r

through g'. This normally preclude such an exercise, as every point on the calibration graph, having a different g', will cor-
respond to a different formula. Unless of course in (3), we ensure a constant value of @' for all series, i.e. using screen
with sizes in geometric progression. But even then, the question arises whether the model-fitting graph could rigorously
accommodate both uncalibrated and calibrated material.

The practice
Formulas (2) and (5) are all we need to reasonably control the variance of the FSE in calibrated material. In order to effec-
tively do so, remains to perform heterogeneity testing to experimentally infer the parameters d, and alpha in (5).

The proper use of calibrated material to this end prescribes the screens used should have sizes in geometric progres-
sion. This does not have to be very strictly done. The important is to make sure the d-max sizes used will be uniformly
distributed in good approximation along the logarithmic X axis, which anyway would be highly desirable for a good infer-
ence of the linear model fitted to the corresponding experimental points. The screen sizes will then automatically be in an
approximate and good enough geometric progression.

When this is done, the factor (g/g')"® in (5) will vary little, usually between 0.75 and 0.95 with an average close to 0.85.
These small variations from series to series will only increase a little the general and normally expected scattering of the
experimental data, while the fitted line will reflect the average value of that not rigorously constant factor. Of course the
more accurate the geometric progression, the better. The model fitted to the graph above liberation size will be a straight
line of slope alpha and intercept log[ (g/g')"® d,]3#P"@ at d-max = 1 unit.

In the older, sample-tree method, uncalibrated material was sampled at different des comminution nominal sizes. The
line fitted above liberation size to the points reflected the model ¢=(d,/des)32P"2, The fitting line had an intercept worth

log[d 2@"P"] at dos = 1 unit, different from that of calibrated material by an additive term (1 - alpha/3)log(g/g').

When adding experimental points from uncalibrated material sampling to a fitting graph showing points from calibrated
material, these can be posted at their des sizes, after dividing the variance by g and other terms. The posting and fitting
being interactive, it is not difficult then to multiply the posted variance by a factor equal to (g/g')'-2?"#3 to ensure compati-
bility with the calibrated material. The value of g/g' is for the calibrated portion of the data, and this correction is important:
If this step is omitted, on average, there will be an error factor in the order of magnitude of 23% on the variances posted
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for the uncalibrated material, which may or may not be a problem for the final fitting result.

Indeed, these errors, and, more generally, the normal experimental data scattering in these calculations, are generally
quite dampened by a good handling of a few outliers anyway. This handling is originally necessary to eliminate or lessen,
as much as possible, impossible order relations between experimental variances: indeed, the 'real' curve to which a line is
fitted is supposed to be a non-decreasing function of fragment size.

Conclusion
Based on the usual liberation factor model for uncalibrated material, we have established a formal model of liberation fac-
tor that can be used for controlling the sampling variance in "closely sieved" material (i.e. calibrated), which constitutes a
huge step ahead of Gy's legacy about the g'(r) alternate factor. Let us recall that in this expression, 'closely sieved materi-
al' is a reference to the terminology in Gy's study of the g' granulometric factor, but the two screens can actually be of
largely different sizes without negative effects on the accuracy of the results.

This study also provided a rigorous methodology to use calibrated material (i.e. successive size fractions) for heteroge-
neity testing, and for the addition of uncalibrated material on the same model-fitting graph, even though these operations
are quite safe and forgiving.
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Currently, there are high expectations in the mining industry, across the Supply Chain, on how sensors and
new technology providing real time data can support and optimise business decisions. In addition, sophisti-
cated statistical algorithms, such as machine learning or conditional simulations, are more and more ex-
plored/used to address topics as uncertainty and “optimisations” in the plans, at different horizons, to “max-
imise the value of the business”.

Despite the future of data collection is heading in the direction where sensors will be providing real time
information, this is still in the development stage. The main challenge of the current status for sensors, new
technology or statistical analysis, is that they are mostly based on the assumption that the data used during
calibrations or data processing, is correct or representative.

This paper elaborates in more detail (with examples) on how the Theory of Sampling and the implementation
of Quality Programs (QAQC & QM), across the supply chain, represent key enablers in the research, applica-
tions, selections and implementation of technology providing real time data, as well as the quality quantifica-
tion of the information used as input for data processing: what a sampling protocol represents, how main and
deleterious elements are distributed in the lot to be sampled, grade per grain size distribution profile, what
can impact sample collection process, how gaps during sample collection shall be monitored, sources of bias,
sources of variability and how this information can be used to quantify the current quality performance that
will need to be improved with the technology. This paper also elaborates on the current expectations of mi-
nor/trace element data (normally on ppm levels), specifically in the understanding and challenges these types
of data represent. The final objective of this analysis is to highlight the potential impacts during a capital
process where new technological projects can be wrongly excluded from consideration due to errors in the
baseline used for comparison, as well as the potential impact on reconciliation and marketing results due to
technology or statistical analysis using biased datasets.

Introduction

Currently, there are high expectations in the mining industry, across the Supply Chain, on how sensors and new technology provid-
ing real time data can support and optimise business decisions. In addition, sophisticated statistical algorithms, such as machine
learning or conditional simulations, are more and more explored/used to address topics as uncertainty and “optimisations” in the
plans, at different horizons, to “maximise the value of the business”.

Despite the future of data collection is heading in the direction where sensors will be providing real time information, this is still in
the development stage. The main challenge of the current status for sensors, new technology or statistical analysis, is that they are
mostly based on the assumption that the data used during calibrations or data processing, is correct and representative, which
provides two streams of different perspective for development: 1) Have the quality of the current samples/data being quantified?
Are the main sources of errors and biases being identified, understood, and considered within the baseline the new technology is
going to be measured against? What is the current quality performance (bias and precision) of the process that is going to be
potentially replaced by new technology? And 2) On sensors and new technology, what controls are used to measure the perfor-
mance in terms of quality? Are all the sources of bias and variability considered and their impact quantified? Is the implementation
of a Quality Program (QAQC) to monitor/measure the quality of the instruments considered? (Figure 1)

doi: https://doi.org/10.1255/tosf.130 Published under a Creative Commons BY-NC-ND Licence
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Figure 1. Scheme showing the considerations to be addressed where testing new technology versus physical samples.

Despite there is potential for a future where the collection, preparation and analysis of physical samples can be replaced by sensors
and sophisticated data processing, the reality is that even in that future, the Theory of Sampling will remain relevant because it will
provide the guidelines and parameters to be considered within the baseline equation to measure sensors and technology optimisa-
tions, and compare quality performance against; and also, how Quality Programs will need to be considered and adjusted to ensure
sensors and new technology are delivering a representative measurement. Today, this is not always considered, and the risk for
good technological tools being rejected because of subjective high expectations of the current situation, or important investment
decisions on technology where maybe is not need it, is very high.

The mining industry is facing big challenges on the consistent reduction of production grades, more complex geological environ-
ment, tighter environmental requirements, and the increasing economic value and attention for minor elements at part per million
(ppm) levels. In addition, we have the increasing desire in the mining industry for new technology to give us the answered we are
searching for, but is the industry aware that all the sampling protocols have been optimised for the main elements require in pro-
duction and minor elements or trace elements not? Are we considering the huge uncertainty related to ppm results? Is the industry
clear that a ppm result is a number that an analytical methodology was able to determine, but that number is not necessarily
representative to the amount found it in the ground?...

> Geoscience / Planning > > Production/Operation > > Processing > > Port & Marketing >
\ o
h N - -

Drillholes Blastholes Site Sample Stations Port Sample Stations

7

Figure 2. Sources of samples across the mining supply chain.

This paper elaborates (with some examples) on how the Theory of Sampling and the implementation of Quality Programs (QAQC
& QM) across the supply chain (Figure 2), represent key enablers in:

» The research, applications, selection, and implementation of technology providing real time data.

» The quality quantification of the information used as input for data processing, specifically, considerations on: what a
sampling protocol represents, how main and deleterious elements are distributed in the lot to be sampled, grade per grain
size distribution profile, what can impact sample collection process, how gaps during sample collection shall be monitored,
sources of bias, sources of variability and how this information can be used to quantify the current quality performance
that will need to be improved with the technology.

» The technical expectations for minor/trace element databases, specifically in the understanding and restrictions these
types of data represent.

The final objective of this analysis is to highlight the potential impacts during a capital process where new technological projects
can be wrongly excluded from consideration due to errors in the baseline used for comparison, as well as the potential impact on
reconciliation and marketing results due to technology or statistical analysis using biased datasets.

Do not forget the basics: Grade per particle size distribution, the Lot DNA versus Sample DNA
The most basic concept on Theory of Sampling is that a “sample is part of a lot”, and for a sample to be called “representative”, it

needs to include all the components of the lot, in the same proportions. Any deviation of this principle will generate deviations in the
sample collected.
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Currently, the characterisation of mining resources is performed, in general, at Head Grade level, where just a “number” is used to
represent a sampling interval in a drillhole, or a production area in grade control, or an individual block in a block model, or thousands
of tonnes production on a conveyor belt, or a full shipment of final product. This is where the concept of “Lot DNA and Sample DNA”
becomes relevant. Lot DNA refers, on a sampling perspective, to the study and characterisation of the grade distribution (main and
minor elements) across the particle size distribution (Figure 3), with the objective of understanding the proportions in the lot that
needs to be preserved in the sample collected (sample DNA). By having characterised the particle size distribution profile, it is going
to be easier to understand the impact in the Head Grade for issues during sample collection affecting preferential particle sizes (fine
or coarse fractions), especially sources of underestimation or overestimation of the main production elements, but also for minor

elements and trace elements.

Head Grade

Fine Coarse
<«<—— Grain size distribution —

Figure 3. Example Fe grade per size distribution in an Iron Ore sample. In this example, Fe is located in the coarse part of the
sample, so preferential sampling of this particle size will overestimate the Fe in the Head Grade of this sample. Note: It is also
suggested to include mineralogy in the grain distribution profile, especially for geometallurgical purposes.

The importance of the understanding and consideration of the DNA will be relevant in the capacity of new technology to measure
the full DNA and not just parts of it, especially when related with particular grain sizes in the lot, that will impact the representative-
ness (and a highly potential bias) of the measurement. Currently, it is valuable to get a real time measurement, but it is more relevant
to get a representative measurement in order to optimise further decisions and final financial outcomes...

The context behind Sampling Protocols vs business expectations

In regard to Sampling Protocols, and how they can influence new technological results, it is necessary to consider and highlight the
strategy established when heterogeneity studies were performed to optimise the Sampling Protocol and the Fundamental Error of
the main elements required in the supply chain, where 1) in minor elements, it is expected to have a bigger Fundamental Error
because they are not normally prioritised in the strategy, and 2) it is expected to have even more error in trace elements (Figure
4).

5

Example Fundamental Error ( Oz ') of Sampling Protocols on different elements in a copper mine
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Figure 4. Example on how the Fundamental Error on Sampling Protocols varies per elements and their prioritisation strategy.

This is important to be highlighted, because the error and uncertainty associated with an “assay number” stored in a database will
vary depending on the importance of the element for the business when the sampling protocol was designed. For example, in a
copper mine, sampling protocols are expected to be optimised for copper (with a lower error), but not necessarily for minor elements
or trace elements. This situation raises several points that needs to be considered when new technology is trying to be applied at
minor or trace elements concentrations:

» Because the sampling protocol used to collect and prepare the samples was not designed for minor or trace elements, it
needs to be highlighted that the assay result in the database it is expected to have a big uncertainty and questionable
representativeness against the lot. In other words, if we have 150 ppm of a trace element, due to the sampling protocol, it
is expected to have a big variability in the measurement at 95% confidence, it means, it can be150 ppm + 50 ppm, or
+100ppm, etc, the expected standard deviation it is expected to be very important.

» Another point is related to the representativeness of these 150ppm against the original lot. Because of what has been
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explained on the sampling protocol, this “assay result” has a highly questionable representativeness against the original
lot. It is very unlikely that the exact 150 ppm are going to be found in the lot sampled.

>  Before utilising physical samples as a reference for minor or trace elements, it is important to consider the QAQC program
was used on the analytical process (ICP). Were Certified Reference Material (CRM) used and evaluated for those minor
or trace elements? Has the CRM been certified by ICP?

All these points are highly suggested to be considered when new technology is trying to be applied on minor or trace elements
concentrations. Results are very likely to be imprecise, but not necessarily due to issues in the sensor itself. Maybe the main source
of variability is coming from the sample used in the calibration, and this variability in the absent of an understanding on the re-
strictions on the physical samples data, can lead to wrong decisions about the performance of the technology. This is the value of
a quantified and understood quality, and restrictions of the baseline representing current situation to be potentially replaced.

Note: This is important as well on the high expectations or uses, business is trying to give to ICP data to potentially evaluate,
reprocess, and recover Rare Earth, or for thresholds on ppm level defined by environmental requirements. The question is whether
industry is prepared to meet the expected low variability at ppm levels?

Sources of variability and bias to be considered when trialling new technology

When trialling new technological applications across the supply chain, it is important to consider and have quantified all the potential
sources of error and bias (Dominguez, 2019)*. Normally these sources are not considered by providers and developers, and they
just rely in the number o result provided by the instrument, not quantifying or challenging the representativeness of the measure-

ment.

Example sources of variability

Sample grain size heterogeneity is going to play a key role when trialling new sensors or technology: the coarse and heterogeneous
the material to be measured is, the larger the expected variability will be (Figure 5), and this is important to be considered because
technological applications on conveyor belts, for example, can be dismissed because of wrong expectations of a lower variability in
the results. In addition, if the full sampling process is not understood (collection, preparation, and analysis), providers can be prom-
ising better precisions against just the analytical part, but not considering the sample heterogeneity during sample collection in their
equation, where ~80% of error is introduced.
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Heterogeneous Grain size distribution Homogeneous

...The greater the sample grain size heterogeneity is,
the greater results’ variability is expected....

Figure 5. Example on expected variability versus sample grain size heterogeneity.

Example sources of bias

Sample segregation, when is not consider during sampling, has the potential of representing an important source of bias in the
measurement of new technologies, if they are not able to cover the full stream of sample that is required to be measured. For
example, in conveyor belts, if sensors performing surface measurements will only be able to cover just few microns in the sample,
and if the sample is including preferential particle sizes, the measurements are going to be biased and finally will not be representa-
tive...this is another reason why it is important to have characterised the DNA of the sample, in order to know the strengths and
weakness of the technology trialled.
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understood when trailing new technology
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Figure 6. Example of segregation as a source of bias when new technology measurements are superficial and are applied on
segregated lots.

The importance of the quality quantification of the current physical samples when is compared against new technology.

An important milestone that needs to be considered, while trialling new technological applications, is the quality quantification of the
current sampling state — the physical samples — that is going to be used as a baseline comparison and are expected to be replaced
by technology. It is important to have quantified the performance in terms of bias and precision (variability), because in the absence
of this quantification, subjective quality expectations can lead to wrong decisions for deploying or rejecting technology.

In all the sampling points in the supply chain, it is important to have quantified the performance on sample collection, sample
preparation and sample analysis, in order to have objective information to be used in the comparison and better manage potential
people’s subjective expectations on quality: “| want to have zero error...” and also, to have a better understanding of the inputs are
going to be used for the calibration of the new technology.

This quantification request will have two potential impacts: 1) The current quality performance that will need to be beaten by new
technology, and 2) The quality of the information is going to be used to calibrate the new technology.

Example on sensors applied on conveyor belts

As a first step, it is required to have quantified the current performance of the Sample Station: have bias and precision tests been
performed? Have these parameters been quantified? Has the lot DNA been characterised? In the absent of this information, the
baseline to be used as comparison, is going to be unknown and will directly impact the technical decision on proceed or not with
the new technology.

In addition, in the absent of a quantified performance, technology using “dynamic calibrations”, it means, technology calibrations
based on the physical sample collected from the sample stations, has the increased risk of been calibrated with unknown quality
data, and even worse, when factors are applied on sensors or technology to mimic samples with unknown quality.

Figure 7 shows a production report where physical samples collected from a conveyor belt and online analyser data are compared
on daily basis. Report is showing a consistent difference between both sources of information. Which one is correct? In the absence
of the quality quantification of the sample station, the quality of the physical samples is unknown, and also in this example, because
these samples were used in “dynamic calibrations” of online analysers, the quality of this technology is also unknown. But if the
quality of the physical samples has been quantified (bias and precision test performed), then is more likely an issue in the calibration
of the online analyser.
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Daily production report: Physical Samples versus Online Analyser
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Figure 7. Daily production report showing data from Physical samples versus Online Analysers. Report is showing a consistent
difference between both sources of information. Which one is correct?

Unfortunately, the current assumption in the industry is normally to say that the sensor is having calibrations issues, but this is just
an assumption. What happen if the samples are biased?

In terms of the quality performance of new technology, it is highly desired to apply a “static calibration”, which refers to the use of
an independent reference material to measure the performance and isolate the pure performance of the technology, as a simile of
the Certified Reference Material (CRM) that are used during sample analysis in laboratories to independently measure the accuracy
of the analysis.

Returning to Figure 7, if a static calibration has been performed in the Online Analyser, we have an independent tool supporting
the performance of the sensor, so now, is more likely that the physical samples are having a negative bias. Having a more long-
term view of these sensors, they represent a robust tool that can be used as a Quality Control, to monitor the information provided
by physical samples.

Unfortunately, these independent measurements are not very often considered, and providers rely in the samples provided by
companies and are just assumed as representative.

Blasthole samples considered as reference for technology calibrations

When new technology is trying to be trial on blastholes, as has been repeatable mentioned, it is very important to have quantified
the current performance of the manual blasthole sampling and to have identified all the potential sources of gaps on sample collec-
tion, preparation, and analysis, in order to have robust baseline to compare new technology against.

Figure 8 shows an example in blastholes on why it is important the understanding, on a sampling perspective, of the sources of
gaps impacting the quality of the manual sampling is going to be used as a baseline and inputs for calibration. In this example, a)
DNA is indicating the high-grade material is located in the fine fractions, b) field inspection is showing serious gaps during sample
collection, with a preferential trend towards the collection of fine fractions, c) comparison between grade control model, based on
blastholes, showing a consistent overestimation of the grade against the long-term model. This information needs to be considered,
because the new technology is going to be calibrated and compared against inputs with serious sampling issues.
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Figure 8. Example of the importance for having a good understanding of the sources of sampling gaps impacting the quality of
the physical samples are going to be used as a baseline and calibration for new technology.

Similar considerations need to be taken in account when new technology is planned to be applied on drilling methodologies as
Reverse Circulation (RC) or Diamond (DDH). Parameters such as Sample DNA, recovery, sample weight and the results of the
QAQC program during sample collection, preparation, and analysis, that are going to allow an objective quality comparison with the
new technology (Chi et al, 2017)2.

Quality Programs — QAQC - are also required on new technology

Having the context now on the big importance sampling and QAQC considerations have to define an objective baseline to compare
and calibrate new technological applications, it also important now to consider what is going to be the QAQC program and Quality
Management — QM — (Dominguez, 2021)3 the new technology needs to implement, which are the restrictions of the sensors, and
which are the parameters that need to be monitored.

For example, hyperspectral technology has been applied in greenfield exploration, drillholes, mine face scanning and also trailed
in conveyor belt to determine the mineralogical composition of the lot. The key parameters that shall be monitored under a Quality
Program are the wavelength and reflectance (Mittrup et al, 2017)", in order to have consistent measurements of the spectra (Figure
9). Deviations in this monitoring have shown differences in the measurements between the day and the night due to temperature
variations. Also, it is important to consider in the evaluation what kind of maintenance program will need to be implemented and
how they are going to impact the process (in conveyor belts, for example). Finally, it is also important to know and understand the
restrictions of the different methodologies: if they are a superficial measurement or if they are a volumetric measurement, because
if the measurement is just few microns deep in the sample, all the theory of sampling will have an impact in the interpretation
obtained.
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Figure 9. Example of QAQC Program applied on hyperspectral data.
Uncontrolled advanced statistics: high risk for quality

Something to be highlighted as well, in this industry desire of having real time data to perform real time decisions, is the risk of using
advanced statistics, as machine learning or simulations, to mathematically close gaps in the mining supply chain through modifying
factors, but no giving the business the chance to address and fix the root cause of the gaps determined in the samples/inputs
affected.. This false sense of “optimisation” has the potential of hide consistent inefficiencies or gaps in the inputs (samples or
technology) used in the supply chain. So, it is important to highlight the risk of using an uncontrolled advance statistic: instead, is
better to have a quality quantified sampling performance based on a robust Quality Program.

Conclusions

Currently, there are high expectations in the mining industry, and across the Supply Chain, on how sensors and new technology
providing real time data, can support and optimise business decisions. In addition, sophisticated statistical algorithms, such as
machine learning or conditional simulations, are more and more explored/used to address topics as uncertainty and “optimisations”
in the plans, at different horizons, to “maximise the value of the business”.

Despite the future of data collection is heading in the direction where sensors will be providing real time information, this paper
highlights the current technical challenges to be considered in the current stage, where the main opportunity of the current status
for sensors, new technology or statistical analysis, is that they are based on just the assumption that the samples/data used during
calibrations or data processing, is correct or representative.

This paper highlighted the importance of the Theory of Sampling and Quality Programs (QAQC & QM), as an enabler for an informed
technical assessment to be considered, before a new technology or data analysis is deployed, to:

v" Quantify the quality of the current sampling methodology to be replaced.
Understand the uncertainty behind the assay results stored in a database, especially for minor and trace elements.
Support the definition of the baseline comparison between the physical sample and the new technology.
Define a Quality Program (QAQC & QM) to be implemented in the new technology.
Highlight risks and manage expectations for uncontrolled advanced statistical analysis.

AN NI NN

Through some examples, this paper aimed to contribute to the understanding and suggestions on what parameters on sampling
and QAQC could be considered in the assessment of new technology to technically support business desicions.
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In order to minimise the sampling error and sampling bias associated with the sampling of metal bear-
ing ores it is essential that the heterogeneity characteristics of the ores be fully appreciated. Hetero-
geneity tests were carried out on the significantly different manganiferous ores produced at Wessels
and Mamatwan mines near Hotazel, South Africa, for the purpose of establishing an optimal sampling
protocol for the ores. The method referred to as the Segregation Free Analysis (SFA) was used for the
determination of the parameters K and Alpha by construction of calibration curves. The method in-
volves crushing a sufficient amount of ore so that after passing it through a set of fifteen nested
screens there is sufficient material to then be split into 32 samples of mass 2-5 kg, using a riffle split-
ter, and analysing each of the samples. Thus, for fifteen nested screens there are fifteen series each
consisting of 32 samples, making a total of 480 samples for analysis. Of the eighteen elements that
were analysed in each sample only %Mn304, %FeO, %K20, %P, and %S0: were calibrated, the first two
being the main paying elements and the last three being deleterious elements for the smelting pro-
cesses in which the ores are used. Calibration curves indicate that for the coarse fraction, above 1 cm,
manganese ores have alpha values close to 3, whereas those less than 1 cm in diameter have alpha
values closer to 1. Reasons for this behaviour are uncertain but it could be related to the behaviour of
the crystal structure in the very pure ores as the ores are progressively crushed and screened to finer
size fractions. Separate nomograms were therefore prepared for the coarse and fine fractions. Net
conclusions indicate that both Wessels and Mamatwan ores are relatively easy to sample and that
simple two or three stage processing will suffice when preparing the final 2 g aliquot at 75 microns.
Apart from minor modifications in the sample preparation protocols, there is no evidence to suggest
that the Wessels and Mamatwan ores require different sample preparation protocols, or that they
should be assayed differently. The calibration curves for manganese ore are compared with the cali-
bration curves for gold bearing ores which generally have alpha values close to 1. The difference in
alpha between the gold ores and bulk commodities is considered to be related to the primary distribu-
tion of the metals in nature, lognormal for gold and normal for manganese.

Introduction
Someone has said “your decisions are only as good as your samples”. The importance of this statement and effective
reach is only understood once we appreciate the way in which sample data is used and applied in the mining industry,
principally in the way trading in bulk commodities and base- or precious-metals is undertaken.’234 The principle function
of a sample is to fully represent the characteristics of the lot from which it is extracted. The Theory of Sampling (TS) is a
systematic multistage analytical framework, a set of unifying principles to guide the processes and stages at which sam-
ples are taken. At every stage, whether the lot is moving or stationary, TS provides principles, practices, procedures, and
designs for sampling equipment, to eliminate sampling bias and minimise the sampling error (precision). TS also allows to
analyse and assess the potential for individual items of sampling error and bias. The TS framework is built on evaluating
common problems and features encountered in sampling different lots of different sizes in different sample settings and
consists of six governing principles and four sampling unit operations that are applied in a systematic fashion to all pro-
cesses, procedures, and equipment. TS is therefore a framework to guarantee accuracy and precision as well as correct-
ness and representivity in the sample materials, from lot to aliquot.>87
There is no inherent feature or characteristic in sample materials that allows us to classify it as representative or not —
there are no red or green flags. The only way to ensure representivity is to document the history of processes and proce-
dures used to produce the aliquot. If the process delivering the sample aliquots for analysis is correct, the sample will be
representative; alternatively, if the process is incorrect, the sample can never be representative. One might ask “What are
the criteria for representivity?”. This depends on the sampling method, the physical extraction process, and the extent to
which the constitutional and distributional heterogeneities of the particulate matter are accounted for.8910
In the process of selecting and recovering particulate samples the TS identifies Correct Sampling Errors (CSE), and Incor-
rect Sampling Errors (ISE). CSEs include the Grouping and Segregation Error (GSE) and the Fundamental Sampling Error
(FSE), that contribute to total sampling error. These sampling errors arise because of the constitutional and distributional
heterogeneity of the materials being sampled. Failure to understand or control sampling variances due to the particle size,
shape, density, mineral composition, and target analyte content of particulate materials will result in contributions of FSE
from these sources. FSE, the within fragment variability in grade, volume and density is a function of particle size (dn),
sample mass (Ms), and the nature of the material being sampled (K) according to Equation 1, which Gy?>3* compiled.

o _Kd,

FSE MS

According to Equation 1, the FSE can be minimised by reducing the fragment size by comminution or by increasing the
sample mass. The coefficient K is the product of the mineralogical constant c, the shape factor f, the granulometry factor

[Equation 1]

doi: https://doi.org/10.1255/tosf.131 Published under a Creative Commons BY-NC-ND Licence
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g, and the liberation factor /. The principle inducements for GSE are an input of vibrational energy and gravity which act

together to cause grouping and segregation of materials either by size or density, in a lot of perfectly dry materials, but the
presence of moisture or sticky-ores strongly over-rides this distributional heterogeneity. The only way to reduce the Distri-
butional Heterogeneity (GSE) is by incremental sampling and mixing. Collectively CSEs can never be eliminated, but they
can be minimised by creating an optimal sampling protocol.”-10:11

Incorrect Sampling Errors (ISE), include Increment Delimitation Error (IDE), Increment Extraction Error (IEE), Increment
Preparation Error (IPE), and the Weighting Errors (WE) which are responsible for sampling bias using poorly designed,
incorrectly engineered, and badly installed sample delimitation and extraction equipment. Where particles do not have a
uniform, non-zero probability of being delimited and extracted, ISEs are to be expected. Where these sampling errors and
sampling biases are controlled, where an optimal sampling protocol has been applied, and a documented history of the
sampling process is available, an aliquot, immediately prior to its presentation to the analytical process, is very likely to be
fully representative of the lot from which it is derived, because it is the product of a correct, representative multistage sam-
pling process.®”

The aim of this paper is to present the results of heterogeneity testing of manganese ores from two mines in the Hotazel
region of South Africa and to compare the sampling parameters for these bulk commodities with those for precious metals.

Review of heterogeneity tests

The first step in creating the optimal sampling protocol is the performance of a heterogeneity test which provides an under-
standing of the Fundamental Sampling Error (FSE). The aim of the heterogeneity test is principally to establish how the
variance amongst a series of samples changes as the size of the fragments in the sample changes as the material is re-
duced through different stages of comminution and mass reduction on its way to the aliquot that is presented for assay.
Sampling parameters K and Alpha are estimated on a size-by-size analysis of the variance of the target analyte in different
size fractions of particulate materials, allowing the FSE to be calculated and controlled to acceptable levels. The heteroge-
neity characteristics of each material to be sampled, namely the parameters K and Alpha, are determined by compiling a
calibration curve which models the way in which the variances of the target analyte change for different sized particles.
Once the parameters K and alpha have been established it is then a simple task to compile the sampling nomogram which
is a blue-print for the sampling protocol that defines the relationship between the variance of the Fundamental Sampling
Error (FSE) and the sample mass.'213.14

While there are several studies that have undertaken to determine the parameters for base and precious metals'?14.1516.17,
the determination of sampling parameters for K and Alpha for bulk commodities, such as iron ore, manganese ores, vana-
dium ores, chromite ores are not widely publicised. The reasons for the lack of reported heterogeneity tests for bulk com-
modities is probably due to the relatively forgiving sampling characteristics of these ores compared to the complexities
associated with precious and base metal ores. The target analyte, Fe or Mn, in bulk materials for example is contained in
the minerals haematite or braunite-pyrolusite-bixbyite constituting the ore, and there is no effective liberation factor. Where
the target analyte is contained as minute grains of mineral or metal, distinct and separate from the host, the liberation fac-
tor is an extremely important contributor to the constitutional heterogeneity.

There is a wide spectrum of different approaches for performing Heterogeneity Tests.*567:8 For this particular exercise the
so-called Segregation Free Analysis (SFA) method described in detail by Minnitt'>'31415is used. The SFA method is a
simple extension of the Duplicate Series Analysis (DSA) method proposed by Bongargon'®16.17, the main difference being
that the SFA method separates the crushed materials for the heterogeneity test into different size classes.

Heterogeneity tests for bulk commodities

As part of a review of the sampling facilities and procedures at the Wessels and Mamatwan mines near Hotazel, South
Africa, it was suggested that Heterogeneity Tests be carried out on the manganiferous ores produced at the mines. The
manganese bearing ores produced at the mines are sufficiently different to warrant that the Heterogeneity Tests be carried
out on both ore types. Of the several methods for performing Heterogeneity Tests, the Segregation Free Analysis (SFA)
method was used for determining the parameters K and Alpha by construction of calibration curves for the differing ore
types produced at Wessels and Mamatwan mines. Approximately 180 kg of high-grade, run-of-mine manganese ore from
the Wessels and Mamatwan mines was crushed and screened through 15 individual screens ranging in size from 37.5
mm to 0.05 mm; it is essential that the largest fragment sizes are accurately represented in the heterogeneity test.

Finer materials were passed through the nested screens (Figure 1a) using a mechanical shaker (Figure 1b), and the frag-
ments on top of each screen were selected for a given size fraction. After crushing the ore to appropriate sizes, the mate-
rial was screened through 15 screens for Wessels ores and 14 screens for Mamatwan ores. The material retained on top
of each screen size was then passed through a riffle splitter to give 32 samples for each size fraction.

N

o = () i
Figure 1: (a) Nested screens for separating ores into correct size fractions, and (b) the mechanical sieve shaker
The distribution of the mass for each of the screened size fractions is shown in Figures 2a and 2b for the Wessels and
Mamatwan mines, respectively.
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Figure 2: (a) Average sample mass for each of 15 size fractions of Wessels ores, and (b) average sample mass for each
of 14 size fractions of Mamatwan ores

Ideally one would want the distribution of the mass of fragment sizes to be somewhat flatter than shown in Figures 2a and
2b, as there is too much material in the higher size fractions and to little material in the lower size fractions to get an ac-
ceptable sample mass when the size fractions are split into the 32 sample fractions. In order to achieve this some of the
excess material in the larger size fractions was crushed and again passed through the screens to distribute the material to
smaller size fractions.

Once the Mamatwan and Wessels ores had been divided into 14 and 15 series of samples, respectively, each of the se-
ries was then split into 32 individual samples. The series containing larger fragment sizes had fewer fragments per sam-
ple, whereas the smaller fragment sizes contained numerous fragments. Each sample was intended for an experimental
point in the calibration curves used to determine the values of K and Alpha (a) for use in Gy’s Formula for determination of
the Fundamental Sampling Error and construction of the sampling nomogram for the Wessels and Mamatwan ore-types.

Sample preparation protocol for Wessels and Mamatwan ores

The sample preparation protocol for the heterogeneity test for the Wessels and Mamatwan ores was identical. For the
larger fragments, the preparation protocol is shown in a series of photographs in Figure 2. The main assumption of the
Heterogeneity Test is that there should be no auto-correlation between samples collected to perform the test. Fragments
making up each sample are individually selected at random to remove any distributional heterogeneity and minimise the
contribution from the grouping and segregation error. In order to achieve this, large fragments (>31.5 mm) were laid out on
a table one fragment deep (Figure 3a) so that each and any fragment was accessible for selection. The fragments were
collected at random as 4 people (Figure 3b) moved around the table and collected a specified number of fragments to pro-
duce an appropriate sample mass (Figure 3c and 3d).

(c) (d)
Figure 3: (a) Coarse ore fragments laid on table, (b) the sampling team in preparation for selecting coarse ore fragments
at random, (c) as the team moves around the table, they select a given number of fragments at random to achieve the
correct sample mass, and (d) the team moves around the table collecting fragments at random
Finer grained manganese ores were split into the 32 samples using riffle splitters with vane widths in keeping with the
sizes of the material fragments being sampled, an 8-vane splitter for fractions greater than 10 mm (Figure 4a) and a 20-
vane splitter for fractions less than 10 mm (Figure 4b).
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(a)
Figure 4: (a) Riffle splitter for coarse materials, >10 mm, and (b) riffle splitter for fine materials, <10 mm
Following the splitting process, the samples are bagged (Figure 5a), weighed (Figure 5b), and prepared for dispatch to the
analyticallabratories (Figure 5c).

(a) (©)

Figure 5: (a) Bagged samples, (b) all samples are weighed, and (c) Samples are packed ready for transport to the labora-
tory for analysis

An example of the closely screenggnman anese ore materials between 2.00 mm and 3.35 mm is shown in Figure 6.

S,
. .

Figure 6: Closely screened manganese ore materials betwee 2-. m and 3.35 mm, with an average dn = 2.659 mm
The average nominal top-size of a fraction retained between screens of 1.266 cm and 0.63 cm is calculated as follows:

Top screen (cm Bottom screen (cm)
1.266 0.63
3 3
d — i/ dupper screen size + dlower screen size
N 2 [Equation 2]

3 3
s w — 11396 =1.0445 cm

Using Equation 2, the average nominal top-size for the material shown in Figure 6 is calculated as 2.659 mm.

Heterogeneity test for manganese ores

An estimate of the sampling parameters K and alpha («) for an ore type allows one to calculate the FSE and provide an
indication of the minimum sample mass for a given fragment size according to Equation 1. With these sampling parameters
it is then possible to calculate the sampling nomogram for these specific ores. Equation [1] is rearranged in the following
manner to give Equation [3] which represents a straight-line equation relating the standardised variance and the top size of
the fragments in the fifteen series of data analysed.6.17:18

h1(0'1§ xM¢)=alnd, +In(K) [Equation 3]

By calculating the standardised variance and the top-size of fragments in loge terms each set of fifteen analyses should
plot along a straight line of the form y = mx + c.

Analytical results for each of the 32 samples in each of the series submitted for analysis were received for the elements
%Mn304, %FeO, %K20, %P, and %S0O2. The %Mn304 results for 32 samples across all fragments sizes are shown in Ap-
pendix 1. The total mass of sample materials received at the Mamatwan and Wessels assay laboratories for fusion and
pressed pellet analysis are listed in Table 1.
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Table 1: Total mass received at Wessels and Mamatwan assay laboratories for fusion and pressed pellet analysis

Laboratory Total mass of sample received Mass for fusion analysis 2’::55 for pressed pellet analy-
Wessels 100g 29 30g
Mamatwan 200g 29 30g

Modeling process

The modeling process is a stepwise inspection of the lists of analytical data used in the calculation of the variances to be
used in the calibration process. An example of statistics calculated for %Mn3O4 from Series 2 (W2), for a fragment size of
3.4755 cm (Appendix 1), is shown in Table 2, while an example of the calculations and description of items named in the
calculation table, is presented in Table 3. The modeling process requires that each assay value be considered individually
and that the effects of removing suspicious values on the calibration curve should be examined. The modeling process is
not simply a matter of populating a template with the sample calculations, but rather a matter of examining each set of
data and examining whether or not a specific value belongs in the data set and how its inclusion or removal will affect the
calibration curve. This process was carried out for each list of assay data for each of the calibration curves. In some
cases, the decision to exclude certain data is always somewhat controversial. It should however be remembered that the
process aims to establish a viable and acceptable model based on the data.

Table 2: Example of statistics calculated for %MnzO4 from Series 2 (W2), for fragment size 3.4755 cm,

Statistics for for %Mn304 w2
Mean 65.5161
Variance 38.0878
Std Dev 6.1715
Relative standard deviation 0.0942
Top screen (cm) 3.4755
Bottom screen (cm) 2.8616
Size (cm) 3.4755
Average Mass (g) 566.5000

The basic statistics shown in Table 1 are then analysed and prepared for plotting on the calibration curve according to the
routine shown in Table 2.

Table 3: Example of calculations and description of items named in the calculation table for %Mn30O4, example from Series
2 (W2), for fragment size 3.4755 cm (Appendix 1)

Item Value Explanation
——— - = -
dpss (cm) 3.47546 Zr:gnr?;r(;t top-size is a value determined for the largest 5% of fragments in
Measured Multi-stage rsd 0.09420 The relative standard deviation (rsd = Std dev/mean) for the multiple

stages of handling that a sample has been subject to, prior to fire assay.

The square of the Measured Multistage relative standard deviation, to give

Measured Multi-stage Var 0.00887 the Measured Multistage variance.

This is a standard variance calculated from the precision usually quoted
Less Analytical Var 0.00887 by an analytical laboratory; the generally inflated value from commercial
laboratories is in the order of 9%.

The Measured Multistage variance less the Analytical variance is multi-
Standardised Var 0.58130 plied by the mean to return the value to a standardised multistage vari-
ance, rather than a relative variance.

This is the mass of the sample, prior to preparation steps involving crush-

Mass (g) 566.50000 ing and splitting in the assay laboratory.

S2*Ms 329 30438 ;I]'qr;z;s the Fundamental sampling variance multiplied by the sample

In(s2*Ms) 5.79698 This is the LN value for the Fundamental sampling variance multiplied by
the sample mass

In(dmax) 1.24573 | This is the LN value for the fragment size

Note that the last two values are plotted on the abscissa (x-axis) and ordinate (y-axis) of the calibration curve

Analysis of the calibration experiments carried out for the elements for %Mn304, %FeO, %Al203, %Ca0, %K:20, %P, and
%S0z was undertaken with the values for In(s2*Ms) and In(dmax) for each element being listed in Table 4. Calibration
curves for each of these elements were compiled from the analytical results for each of these elements in Figures 7 to
11.

Table 4: Compilation of values for In(s>*Ms) and In(dmax) for each element %Mn304, %FeO, %K20, %P and %SO: for
Mamatwan (top row) and Wessels (bottom row) mines
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Mamatwan | %Mn;0, Mamatwan | %FeO Mamatwan | %K,0 Mamatwan %P Mamatwan | %S0,
Size fraction | In[dmae | In(s**M.) | | Size fraction | In(dya) | In(s*ma) | | Size fraction | In(dpe) | In(s**1a.) | | Size fraction | In(dyad | In(s**M.) | | Size fraction | IN(dpa) | In{s**na.)
1 1.39 4.62 1 1.329 3.68 1 1.39 0.58 1 1.329 -3.10 1 1.39 2.03
2 1.25 4.31 2 1.25 3.44 2 1.25 -1.53 2 1.25 -2.40 2 1.25 1.38
3 1.05 3.69 3 1.05 2.88 3 1.05 0.54 3 1.05 -2.44 3 1.05 2.97
4 0.81 2.88 4 0.81 2.04 4 0.81 -1.98 4 0.81 -3.07 4 0.81 1.56
3 0.57 2.54 3 0.57 1.42 3 0.57 -1.52 3 0.57 -3.48 5 0.57 1.78
6 0.39 2.11 6 0.39 1.59 6 0.39 -3.49 6 0.39 -4.32 6 0.39 1.01
7 0.21 0.97 7 0.21 1.42 7 0.21 -0.59 7 0.21 -3.98 7 0.21 1.17
g 0.04 0.72 8 0.04 0.44 8 0.04 -1.02 8 0.04 -4.12 8 0.04 -0.41
9 -0.18 0.01 9 -0.18 -0.96 9 -0.18 -4.52 9 -0.18 -4.77 9 -0.18 -0.87
10 -0.53 -0.62 10 -0.53 -1.54 10 -0.53 -4.39 10 -0.53 -5.66 10 -0.53 -1.57
11 -0.88 -1.49 11 -0.88 -2.63 11 -0.88 -4.73 11 -0.88 -5.30 11 -0.88 -1.51
12 -1.26 -3.02 12 -1.26 -4.11 12 -1.26 -1.64 12 -1.26 -6.45 12 -1.26 -2.63
13 -1.80 -3.07 13 -1.80 -4.78 13 -1.80 -2.35 13 -1.80 -6.10 13 -1.80 -2.05
14 -2.49 -2.91 14 -2.49 -4.33 14 -2.49 -1.75 14 -2.49 -5.58 14 -2.49 -2.60
Wessels | %Mn;0, Wessels %FeO Wessels %k, 0 Wessels %P Wessels %50,
Size fraction | In{dpa) | In(s**M,) | | Size fraction | In(dmay | In(s**M) | | Size fraction| In(dms) | In{s**M.] | | Size fraction | In(dya | In(s**Mc) | | Size fraction | In(dma) | In{s**M)
1 1.39 6.45 1 1.39 6.98 1 1.39 5.87 1 1.39 0.87 1 1.39 6.04
2 1.25 5.80 2 1.25 5.86 2 1.25 4.59 2 1.25 1.34 2 1.25 5.27
3 1.05 4.95 3 1.05 5.68 3 1.05 3.35 3 1.05 -0.25 3 1.05 5.07
4 0.81 4.37 4 0.81 4.91 4 0.81 3.77 4 0.81 -0.70 4 0.81 4.38
5 0.57 3.685 5 0.57 4.66 3 0.57 3.03 5 0.57 -0.66 5 0.57 3.46
6 0.39 3.16 6 0.39 3.77 6 0.39 1.66 6 0.39 -1.88 6 0.39 2.16
7 0.21 2.29 7 0.21 3.38 7 0.21 1.323 7 0.21 -2.49 7 0.21 2.28
8 0.04 2.29 8 0.04 3.04 8 0.04 0.44 8 0.04 -2.24 8 0.04 1.88
9 -0.18 1.99 9 -0.18 2.38 9 -0.18 0.66 9 -0.18 -3.11 9 -0.18 0.69
10 -0.54 0.49 10 -0.54 0.84 10 -0.54 -0.19 10 -0.54 -3.34 10 -0.54 0.66
11 -0.91 0.04 11 -0.91 0.81 11 -0.91 0.76 11 -0.91 -3.71 11 -0.91 0.53
12 -1.26 -0.67 12 -1.26 -0.09 12 -1.26 1.10 12 -1.26 -4.01 12 -1.26 0.13
13 -1.80 -1.48 13 -1.80 -1.10 13 -1.80 0.32 13 -1.80 -5.01 13 -1.80 -0.98
14 -2.49 -2.31 14 -2.49 -1.41 14 -2.49 -2.13 14 -2.49 -4.90 14 -2.49 -1.99
15 -3.00 -2.22 15 -3.00 -0.04 15 -3.00 -1.41 15 -3.00 -4.56 15 -3.00 -0.58

Compilation of the calibration curves

Calibration curves for the elements %Mn3z04, %FeO, %K20, %P, and %S0O2 for Mamatwan and Wessels as listed in Table
4, are shown in Figures 7 to 11; calibration curves for Mamatwan ores are shown in red, while those for the Wessels data
are shown in yellow. In view of the obvious inflection in the calibration curves at an approximate fragment size of 0.9 cm,
the curves have been split into calibration points with fragments greater than 0.9 cm, and those whose fragment size is
less than 0.9 cm. As a result, for each element shown in Figures 7 to 11, three modelling curves are shown, (a) a model
using all the data (upper panel), (b) a model using only fragments larger than 0.9 cm, and (c) a model using only frag-
ments less than 0.9 cm. The calibration curves modelled in the upper panels of each figure used all the available data.
The data was split at the inflection points in the curve, above and below the point where the fragment size is about 0.9 cm.
Models for fragment sizes >0.9 cm shown in the lower LHS panel (b), generally have steeper slopes, while models for
fragment sizes <0.9 cm shown in the lower RHS panels (c), have much flatter slopes. The straight-line equations for the
Wessels data are shown in the upper LHS of the calibration curves, while those for the Mamatwan data are shown in the
lower RHS of the calibration curves in Figures 7 to 11.
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Figure 7: Calibration curves for %Mn3sO4 for Wessels (orange points) and Mamatwan (red points) ore-types: (a) unadjusted
model in upper panel, (b) adjusted models for fragments >0.9 cm in lower LHS panel, and (c) adjusted models for frag-
ments <0.9 cm in lower RHS panel. Linear trendlines-upper LHS for Wessels ores, lower RHS for Mamatwan ores

Calibration curves: FeO
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Figure 8: Calibration curves for %FeO for Wessels (orange points) and Mamatwan (red points) ore-types: (a) unadjusted
model in upper panel, (b) adjusted models for fragments >0.9 cm in lower LHS panel, and (c) adjusted models for frag-
ments <0.9 cm in lower RHS panel. Linear trendlines-upper LHS for Wessels ores, lower RHS for Mamatwan ores

Calibration curves: KO

@ Mamatwan Q© Wessels
8.00 8.00 3.00
600 | ¥=15935x+1.9241 ® 600  Y=3.2555x+0.7511 ° 6.00
R?=0.7693 ® R2=0.9263 -
2,00 ® a00 o @ a0 | Y=0.9098x+1.1752
o9 e © R’ =0.4324
-5 2.00 (5] 2.00 2.00
= ® 0 "0g° o® %o
& 000 © ° O. ee 0.00 OO. ee 0.00 © ° ©
R ) [
c
= .00 6 o ® (] 2.00 /.ﬁ -2.00 ®
e “y= -
-4.00 y=1.9074x-2.6712 , 4 y = -1.4073x - 4.9057
®® ®,_g5024x-1.9660 O @  Re-03833 ' ° R’ = 0.6716
6.00 R?=0.1616 -6.00 -6.00
-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 -2.00 -1.00 0.00 1.00 2.00 -3.00 -2.00 -1.00 0.00 1.00 2.00
Ln(dmax) Ln(dmax) Ln{dmax)
(a) (b) (c)

Figure 9: Calibration curves for %K20 for Wessels (orange points) and Mamatwan (red points) ore-types: (a) unadjusted
model in upper panel, (b) adjusted models for fragments >0.9 cm in lower LHS panel, and (c) adjusted models for frag-
ments <0.9 cm in lower RHS panel. Linear trendlines-upper LHS for Wessels ores, lower RHS for Mamatwan ores
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Figure 10: Calibration curves for %P for Wessels (orange points) and Mamatwan (red points) ore-types: (a) unadjusted
model in upper panel, (b) adjusted models for fragments >0.9 cm in lower LHS panel, and (c) adjusted models for frag-
ments <0.9 cm in lower RHS panel. Linear trendlines-upper LHS for Wessels ores, lower RHS for Mamatwan ores

Calibration curves: SO;
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Figure 11: Calibration curves for %SOz for Wessels (orange points) and Mamatwan (red points) ore-types: (a) unadjusted
model in upper panel, (b) adjusted models for fragments >0.9 cm in lower LHS panel, and (c) adjusted models for frag-
ments <0.9 cm in lower RHS panel. Linear trendlines-upper LHS for Wessels ores, lower RHS for Mamatwan ores

Values for the slope Alpha (a.), intercept K, and the R? values taken from trendlines through the calibration points are sum-
marised in Table 5. For each of the elements analysed the R? value is considerably improved for all the curves showing
only the coarser fragment sizes. Another feature is that Alpha (o), the average slope for all elements, in the coarser
grained materials for Mamatwan and Wessels, increases from 1.57 to 2.11 and from 1.95 to 2.98, respectively. In a similar
way the average slope for all elements in the finer grained materials for Mamatwan and Wessels, decreases from 1.57 to
0.84 and from 1.95 to 1.17, respectively. This indicates that the rate of change in variance is more marked for coarser ma-
terials than for the finer.

It is also notable that the average intercept (K) for all elements (except %P) in the coarser grained materials for Mamatwan
and Wessels, decreases from 1.30 to 1.07 and from 12.71 to 8.03, respectively. In a similar way the average intercept (K)
for all elements in the finer grained materials for Mamatwan and Wessels, decreases from 1.30 to 0.29 and from 12.71 to
4.05, respectively. Decreases in the average intercept (K) means that there is less likelihood that the sample nomogram
will breach the 10% Safety Line.

Table 5: Summary of calibration parameters for the slope Alpha (o), the intercept on the Y-axis K, and the R? for all availa-
ble data, for fragment sizes >0.9 cm and <0.9 cm derived from the calibration curves shown in Figures 7 to 11 for the ele-
ments %Mn3z04, %FeO, %K20, %P, and %SO2 from the Mamatwan and Wessels mines



28

Callibration Of K And Alpha For Bulk Commodities

Using all data Fragment sizes >0.9 cm | Fragment sizes <0.9 cm
%Mn 0, |Mamatwan|Wessels|Mamatwan| Wessels | Mamatwan| Wessels
Alpha 22867 2.2454 2545 259081 2.0346 14701
Ink 0.9995 2.4605 0.6241 2.1034 0.2209 12732
K 2.7169 11.7107 1.B66E 8.1%40 1.2472 3.5723
R2 0.9349 0.0681 0.0869 0.9349 0.B4B7 0.9924
Using all data Fragment sizes =0.9 cm | Fragment sizes <0.9 cm
%Fel Mamatwan|Wessels]Mamatwan| Wessels | Mamatwan| Wessels
Alpha 24558 22517 25786 27036 25458 13142
Ink 0.1514 3.0789 0.1937 2.B636 -1.0791 16535
K 1.1635 21,7345 12137 17.5245 -0.4383 52252
R2 0.9445 0.9639 0.9275 0.9785 0.9681 09217
Using all data Fragment sizes >0.9 cm | Fragment sizes <0.9 cm
He, 0 Mamatwan|WesselsjMamatwan| Wessels | Mamatwan| Wessels
Alpha 0.5924 1.5835 19074 3.2555 -1 4075 0.9098
Ink -1.9669 15241 -2.6712 0.7511 -4 9057 11752
K 0.1399 6.8450 0.0692 2.1193 0.0074 3.2388
R2 0.1616 0.7695 0.3833 0.9263 0.6716 0.4324
Using all data Fragment sizes >0.9 cm | Fragment sizes <0.9 cm
HaP Mamatwan|Wessels|Mamatwan| Wessels | Mamatwan| Wessels
Alpha 1.0313 1.6398 1.53531 27224 0.5383 0.BB77
Ink -4.2327 -1.9716 -4 3457 -2 6852 -5.2401 -2 9487
K 0.0145 0.1392 0.0130 0.0682 0.0053 0.0524
R2 0.B058 (0.8054 0.686 09118 0.2378 0.9047
Using all data Fragment sizes >0.9 cm | Fragment sizes <0.9 cm
%50, Mamatwan|Wessels|Mamatwan| Wessels | Mamatwan| Wessels
Alpha 14878 2.005 1.7468 3.2856 0.672 12701
Ink 0.1726 2.3553 0.1102 14585 -1.0715 14275
K 11884 105413 1.1165 429495 0.3425 4. 1683
R2 0.8459 0.9241 0.6525 09751 0.6919 0.B693

Calibration curves indicate that for %Mn304 and for %FeO the coarse fraction, above 0.9 cm, manganese ores have alpha
values close to 3, whereas those less than 0.9 cm in diameter have alpha values closer to 1. Indications from the calibra-
tion curves shown in Figures 7 to 11 for elements under consideration are that Alpha (o) and K values are substantially
changed indicating that the sampling nomogram for coarser grained materials (>0.9 cm) will be different from that for finer
grained materials (<0.9 cm). Generally, the Wessels ores with an average K coefficient of 12.71, is about 9 times larger
than that for Mamatwan ores (1.30), which will also significantly affect nomograms for the two ore types. A visual inspec-
tion of the calibration curves indicates a considerable improvement in the R? value for all the curves once the adjustments
have been made to the data in the very smallest grain sizes, usually the 0.17 cm and 0.08 cm fractions.

Compilation of the sampling nomograms

The values for K and Alpha derived from the modelled calibration curves for the elements %Mn304, %FeO, %K20, %P,
and %SO are listed in Table 5. The intercept on the Y-axis in the calibration curves is transformed into the Intercept K
using the exponent function; all calculations are carried out to four decimal places and rounded down to two. These data
are used to compile the nomograms for cross-stream sampling of the ores, for the different elements considered for the
Wessels and Mamatwan ores. Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the
elements %Mn304, %FeO, %K20, %P, and %SO:2 are shown in Figures 12 to 16, (a and d) using all available data, (b and
e) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained fragments < 0.90 cm. An example of the nomo-
gram calculation using K, Alpha (a), lot mass, and fragments size, values which are substituted into Equation 1, is shown
for the sample preparation nomogram and the improved nomogram in Table 6.

Table 6: An example of the sample nomogram and improved nomogram calculation for %Mn30O4 in Mamatwan ores

Mamatwan HaMny Oy
Slope, Alpha= 2.24
Intercept, K= 0.93 2.54
Sample Preparation Nomogram: %MnyOy

Mass (g) Fragment size [cm) Precision
240000 7.00 0.00827
24000.0 1.0000 0.00011

5000 1.0000 0.00508

500.0 0.0075 0.00000|

20 0.0075 0.00002
Improved Sample Nomogram: %Mnz0,

Mass (g) Fragment size (cm) Precision
24000.0 2.00 0.00050)
24000.0 0.5000 0.00002

5000 0.5000 0.00108
5000 0.0500 0.00001
20 0.0500 0.00155
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Of the eighteen elements that were analysed in each sample calibration curves were only compiled for the elements

%Mn30a, %FeO, %K20, %P, and %SO, the first two being the main elements and the last three being the deleterious

elements. These elements probably have reasonably stringent specification limits from an operational view point..
Sample preparation protocol Mamatwan: Mnz;0,
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Figure 12: Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the element %Mn304
(a and d) using all available data, (b and €) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained frag-
ments < 0.90 cm
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Figure 13: Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the element %FeO (a
and d) using all available data, (b and e) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained fragments
<0.90 cm
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Sample preparation protocol Mamatwan: K,O
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Figure 14: Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the element %K20 (a
and d) using all available data, (b and e) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained fragments
<0.90 cm
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Figure 15: Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the element %P (a
and d) using all available data, (b and e) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained fragments
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<0.90 cm
Sample preparation protocol Mamatwan: SO,
. Ll i 0, H i 0,
4 Sample preparation nomomgram ~{ Improved sample nomomgram Safety line 10% Design line 32%
1.00000 1.00000 1.00000
010000 0.10000 0.10000
— 0.01000 0:01000 0.01000 .\
gz ! '
p @ 0.00100
S 0.00100 ® 0.00100
g [e] 0.00010 o}
& 000010 0.00010
0.00001 © =
0.00001 0.00000 { 0.00001
0.00000 L 0.00000 0.00000
1.0 10.0 100.0 1000.0 10000.0 100000.0 1.0 10.0 100.0 1000.0 10000.0 10000 1.0 10.0 100.0 1000.0 10000.0 100000.0
Sample mass (g) Sample mass (g) Sample mass (g)
(a) (b) (c)
Sample preparation protocol Wessels: SO,
. . : o I o
é Sample preparation nomomgram ~4 Improved sample nomomgram Safety line 10% Design line 32%
1.00000 1.00000 1.00000
0.10000 0.10000 2 0.10000
0.01000 .\ L. O 0.01000 0.01000 \ 2 [2)
__ooowo @ \N 0.00100 000100 = © \I\§
3 0.00010 0.00010 0.00010
c
g 0.00001 o 0.00001 0.00001 0
é 0.00000 0.00000 0.00000
e o
0.00000 0.00000 0.00000
0.00000 0.00000 0.00000
0.00000 0.00000 (o] 0.00000
0.00000 0.00000 0.00000

1.0 10.0 100.0 1000.0  10000.0  100000.0 1.0 10.0 100.0 10000  10000.0  100000.0 1.0 10.0 100.0 1000.0  10000.0  100000.0
Sample mass (g) Sample mass (g) Sample mass (g)

(d) (e) (f)

Figure 16: Sampling nomograms for Mamatwan (upper panel) and Wessels (lower panel) ores for the element %SO:2 (a
and d) using all available data, (b and e) for coarse grained fragments > 0.90 cm, and (c and f) for fine-grained fragments
<0.90 cm

The sampling nomograms provide definitive steps for ensuring that the preparation of the sample, from lot to aliquot takes
place in a way that does not violate the exacting principles of TS. Each nomogram shows what the stages of crushing and
mass reduction will contribute to the overall precision of the FSE. Any step of the process in which the nomogram
breaches the Safety Line (10% precision) or the Design Line (32% precision), should be changed to ensure that the nomo-
gram remains consistently below these lines. In most cases the nomograms for the elements %Mn304, %FeO, %K20, %P,
and %SO0: are well behaved for the coarser grained materials, namely those larger than 0.9 cm. By this it is meant that the
overall trajectory of the nomogram for coarser grained materials is downwards to the left, whereas the trajectory for the
nomograms of finer grained materials, below 0.9 cm, is upwards and to the left, meaning they are likely to require more
careful attention when designing the sampling protocol. The nomogram for K20 in fine grained Mamatwan ores is mean-
ingless because the Alpha value derived from the calibration curve shown in Figure 9c is negative at -1.4073. Thus, the
nomogram cannot be created for these ores.

Discussion and conclusions

In all the calibration curves, which should have plotted as straight lines, each element was found to have a distinctly flatter
curve, in some cases even negative slopes, for materials in the finer size fractions, than for the coarser size fractions. The
exact reasons for this behaviour are uncertain, but a number of reasons is suggested. The first and easiest suggestion is
that it may be due to a preparation protocol in the laboratory that differed for the coarse and finer grained materials before
the samples were analysed. However, one of the authors visited the laboratory to inspect the preparation protocol and has
ensured that this was not the case. A second suggestion is that the distinct inflection in the calibration curves may be re-
lated to the behaviour of the crystal structure in the very pure ores as the ores are progressively milled to finer size frac-
tions. It is possible that the component minerals, braunite, bixbyite, and psilomelane, all have different size characteristics
with the dominant crystal size in the ores being about 0.9 cm. Above 0.9 cm the ores will be dominantly one ore type or
another, but when the materials are crushed below 0.9 cm that the crystal structure is such that the different minerals are
mixed and the behaviour of the variance for the 32 analyses is different to that for materials coarser than 0.9 cm. In all the
elements analysed the Wessels ores have higher K coefficients than the Mamatwan ores; the alpha values for ores from
the two mining operations are not dissimilar.

Net conclusions indicate that both Wessels and Mamatwan ores are relatively easy to sample and that simple two or three
stage processing will suffice when preparing the final 2 g aliquot at 75 microns. Apart from minor modifications in the sam-
ple preparation protocols, there is no evidence to suggest that the Wessels and Mamatwan ores require different sample
preparation protocols, or that they should be assayed differently. The calibration curves for manganese ore are compared
with the calibration curves for gold bearing ores which generally have alpha values close to 1. The difference in alpha be-
tween the gold ores and bulk commaodities is considered to be related to the primary distribution of the metals in nature,
lognormal for gold and normal for manganese.
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Appendix 1: %Mn304 in 32 samples across the sample series at 15 different fragment sizes; other elements

analysed include %FeO, %AI203, %Ca0, %K20, %P, and %SOz which are not reported here.

33

%MnsOa wi | w2 | w3 | wa | ws | we | w7z | ws wo | wio | wit | wi2 | wi3 | wis | wis
Frag size
om) 400 | 348 | 286 | 224 | 1.76 | 147 | 123 | 104 | 083 | 058 | 040 | 028 | 017 | 0.08 | 0.05
w1/1 37.05 | 68.41 | 76.28 | 61.05 | 61.22 | 65.27 | 63.05 | 6530 | 64.05 | 64.36 | 65.28 | 64.67 | 64.13 | 64.04 | 62.79
w1/2 7472 | 6538 | 66.03 | 61.57 | 64.69 | 63.94 | 63.53 | 62.96 | 63.98 | 64.17 | 6452 | 64.26 | 6459 | 64.25 | 62.44
W1/3 7278 | 67.04 | 7158 | 62.43 | 62.97 | 64.26 | 6276 | 63.43 | 63.14 | 64.19 | 64.95 | 6500 | 6430 | 64.14 | 62.46
W1/4 76.14 | 70.65 | 72.22 | 6357 | 66.37 | 63.70 | 64.50 | 64.36 | 64.17 | 64.95 | 6454 | 64.95 | 65.03 | 64.10 | 62.79
W1/5 59.52 | 74.30 | 66.05 | 61.65 | 63.22 | 65.96 | 66.60 | 64.44 | 65.70 | 65.21 | 6438 | 64.81 | 64.31 | 64.66 | 62.45
W1/6 68.92 | 57.18 | 63.49 | 7032 | 63.83 | 63.54 | 65.97 | 65.07 | 65.46 | 64.67 | 64.05 | 63.99 | 64.03 | 64.24 | 62.34
wi1/7 5821 | 69.35 | 68.88 | 67.15 | 64.36 | 62.71 | 62.95 | 61.42 | 6544 | 63.31 | 64.09 | 64.83 | 64.27 | 63.85 | 62.75
w1/8 63.03 | 62.22 | 71.01 | 61.60 | 63.56 | 63.17 | 66.85 | 67.38 | 63.23 | 63.74 | 63.82 | 64.05 | 64.25 | 63.83 | 62.92
W1/9 5872 | 6597 | 64.11 | 64.94 | 67.47 | 65.10 | 63.86 | 65.76 | 64.90 | 65.46 | 64.20 | 64.73 | 64.18 | 63.44 | 62.70
W1/10 69.16 | 60.31 | 56.89 | 63.21 | 64.90 | 64.99 | 6479 | 65.25 | 65.33 | 64.74 | 64.67 | 64.55 | 64.09 | 63.72 | 62.72
w1/11 6335 | 73.71 | 65.70 | 65.18 | 65.97 | 66.18 | 65.68 | 66.75 | 66.85 | 64.74 | 64.49 | 6437 | 64.66 | 64.08 | 62.55
w1/12 63.05 | 45.43 | 60.52 | 60.61 | 62.89 | 64.58 | 6554 | 64.55 | 64.63 | 65.10 | 64.75 | 64.46 | 64.22 | 64.21 | 62.59
W1/13 67.11 | 67.27 | 69.83 | 70.30 | 67.53 | 63.72 | 66.13 | 63.80 | 64.61 | 65.29 | 64.38 | 64.85 | 63.64 | 64.11 | 62.30
W1/14 64.14 | 63.13 | 68.45 | 62.54 | 69.01 | 70.23 | 63.46 | 62.42 | 63.85 | 64.77 | 64.23 | 64.65 | 63.95 | 63.82 | 62.41
W1/15 7247 | 6137 | 71.08 | 62.21 | 65.75 | 67.43 | 64.55 | 62.93 | 63.94 | 64.61 | 63.50 | 64.49 | 64.09 | 63.84 | 62.22
W1/16 63.14 | 64.54 | 70.67 | 64.08 | 65.55 | 65.38 | 67.69 | 64.65 | 64.82 | 63.67 | 64.66 | 6530 | 63.96 | 63.88 | 62.28
W1/17 73.98 | 69.98 | 61.75 | 63.34 | 66.16 | 63.90 | 64.25 | 64.96 | 6332 | 64.25 | 64.65 | 64.58 | 64.54 | 63.95 | 62.36
w1/18 71.84 | 65.33 | 71.04 | 6579 | 63.16 | 63.98 | 6433 | 6534 | 64.93 | 64.34 | 64.46 | 64.85 | 64.02 | 64.05 | 62.54
W1/19 67.68 | 69.92 | 70.35 | 65.26 | 61.36 | 65.41 | 63.82 | 64.32 | 62.74 | 64.37 | 64.54 | 64.27 | 64.23 | 63.95 | 62.41
W1/20 68.19 | 72.20 | 66.21 | 69.28 | 64.13 | 64.09 | 64.60 | 66.19 | 64.61 | 64.22 | 6448 | 6485 | 64.16 | 63.92 | 62.42
w1/21 5112 | 73.05 | 67.32 | 65.88 | 62.46 | 67.20 | 64.86 | 64.10 | 64.26 | 64.65 | 6537 | 64.42 | 64.51 | 63.66 | 62.97
wW1/22 7092 | 7158 | 67.24 | 69.06 | 63.28 | 64.68 | 64.65 | 62.76 | 64.06 | 63.63 | 64.20 | 6430 | 64.58 | 64.13 | 62.37
w1/23 63.71 | 60.64 | 66.62 | 65.40 | 62.20 | 64.67 | 66.05 | 6540 | 65.10 | 64.65 | 6450 | 64.90 | 64.25 | 63.94 | 62.52
W1/24 5412 | 59.97 | 60.22 | 61.19 | 64.62 | 63.54 | 64.28 | 62.63 | 64.25 | 64.40 | 64.85 | 65.25 | 6455 | 63.74 | 62.76
W1/25 7239 | 66.75 | 71.92 | 7057 | 61.13 | 61.35 | 64.00 | 63.69 | 62.31 | 64.21 | 65.11 | 64.87 | 64.23 | 64.25 | 62.30
W1/26 69.30 | 64.60 | 62.44 | 65.70 | 63.55 | 63.96 | 64.68 | 64.35 | 65.84 | 64.09 | 6407 | 64.83 | 6436 | 64.16 | 62.50
W1/27 7156 | 64.47 | 64.53 | 67.39 | 64.43 | 6573 | 66.43 | 62.88 | 65.84 | 64.65 | 64.91 | 64.90 | 64.26 | 64.09 | 62.07
w1/28 5053 | 71.44 | 64.73 | 58.02 | 6032 | 67.27 | 65.03 | 64.43 | 6234 | 64.63 | 6554 | 65.04 | 6435 | 63.85 | 62.48
W1/29 7118 | 69.16 | 67.51 | 63.15 | 64.10 | 66.80 | 63.71 | 64.99 | 64.22 | 64.56 | 64.90 | 64.55 | 63.92 | 63.80 | 62.65
W1/30 7230 | 60.16 | 64.39 | 65.85 | 59.81 | 65.26 | 66.00 | 64.56 | 65.42 | 63.57 | 64.15 | 64.14 | 64.61 | 63.89 | 62.33
w1/31 68.98 | 66.95 | 68.41 | 63.95 | 66.09 | 67.03 | 63.28 | 64.96 | 62.12 | 64.90 | 64.06 | 64.30 | 65.06 | 63.84 | 62.42
W1/32 66.10 | 54.03 | 67.53 | 64.59 | 64.10 | 68.44 | 65.17 | 65.26 | 63.62 | 63.85 | 65.52 | 64.91 | 64.72 | 64.48 | 62.27
A‘I(:;:Sge 585.25 | 566.5 | 554.5 | 532.5 | 545.5 | 471.25 | 421 | 378.25 | 371.25 | 393.5 | 294.25 | 307.75 | 156.75 | 116 | 163.5
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The most basic concept of sampling theory is that “a sample is part of a lot”, where the sample collected
needs to be representative to the lot sampled. On sample stations, the lot to be sampled is represented
by the material transported by the conveyor belt, while the sample is collected and further subsampled
via cutters until the final sample collection point.

Current normal practices to evaluate the operation of sample stations that support processing, metal-
lurgical balance, reconciliation, and final port shipments are typically based on visual inspections: Ma-
terial build-up on cutters, sample spillage, reflux while sampling, pegging on sizing screens, worn cutter
lips are all observations that indicate issues. Being subjective observations, these do not allow the
quantification of the sample’s representivity, and the risks for mining businesses due to a positive or
negative bias being incorporated during sample collection stage.

Bias Tests are mentioned in several International Standards across commodities (ISO3082 for Iron, ISO
13909-8 for Coal and 1ISO12743 for Copper, Lead, Zinc and Nickel, for example) to compare the sample
obtained against the material it is supposed to represent at the control point. The current methodology
and strategy used in the industry requires the interruption of the regular production process multiple
times in a row for extended periods of time, to manually extract the material from the conveyor belt (also
including manual handling and safety considerations). For this reason, bias tests are not very popular
in industry (“we lose a lot of money and time having to interrupt our process many times”) - and are
therefore usually performed only very reluctantly, or not at all, exposing mining companies to higher
production and financial risks than necessary, hence it is simply assumed that the processes involved
are not affected by bias.

This paper is presenting a proactive approach to perform a Bias Test, developed at Hay Point Port Coal,
a Rolling Bias concept has been developed, switching the current reactive, time consuming and manual
process task, to a more proactive and frequent methodology that allows for trending analysis of the
sample station. Quarterly planned maintenance stops are used to perform the bias test, where a vacuum
system developed and tested by ALS Laboratory and BHP Coal, performs the collection of the material
from the conveyor belt drastically reducing the time required to perform the task manually, but more
importantly reducing the exposure of people to safety and manual handling risks. This approach ena-
bles Hay Point Port to have quarterly performance data of the sample station, converting this process
to a more objective, proactive, and sustainable approach where data, every quarter, has been monitored
since 2019.

Introduction

Bias tests are performed to assess and quantify potential levels of bias present on sample stations, normally located on
processing plants and ports. In this process, a belt is stopped and a representative reference sample is collected from the
material on the belt (the lot). The belt is restarted, and next to the reference just collected, a normal sample going all
through the sample station (primary cutter, secondary cutter, etc), is obtained by the sample plant. Both samples are ana-
lysed to determine if there is bias in the sample plant. A number of paired samples are required to achieve a statistically
valid indication of bias. It is important to note that the method used to collect the representative reference sample must be
in itself unbiased in order that this sample is suitable for use as a reference sample.

Bias tests are mentioned within ISO requirements in different commodities (ISO3082 for Iron, ISO 13909-8 for Coal and
1ISO12743 for Copper, Lead, Zinc and Nickel, for example), but current industry strategy is to perform it just once every
several years, if at all after initial commissioning.

In this setting, when bias tests are performed, it is a reactive response as a part of an investigation into a significant deviation
in observed results. A reactive approach to understanding bias in a sample plant is poor practice and increases the risk that
key quality parameters will drift outside of required specifications. This will ultimately lead to higher production and financial
risks.

doi: https://doi.org/10.1255/tosf.132 Published under a Creative Commons BY-NC Licence
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As a consequence of this reactive strategy and the interruptions in operations, bias tests unfortunately are not normally
performed as a part of a routine schedule. To provide some control on the sampling operations, sample plants are typically
monitored by visual inspections and the online monitoring of basic parameters. These subjective inspections often provide
a “false sense of confidence” to operations that the sampling processes bias are working within specifications, even though
they may have already failed in the quality quantification. In addition, where differences arise on reconciliation results, the
quality of sample stations data (in the absent of bias test) can be considered as unknown, impacting directly the timeframe
of investigation and making the impacts of the production deviations bigger.

A proactive rolling bias testing process can be continuously implemented to reduce the immediate impact on operations,
this process allows for a small subset of samples, normally around 2-4, to be collected at each sampling time and be added
to a data set up to the required number of samples to achieve statistical significance. Statistical significance varies with the
material being tested, being primarily dependent on the homogeneity of the material.

Methodology — reactive vs proactive rolling bias tests

As per ISO requirements in different commodities, a stopped-belt sampling bias test is the accepted method to obtain a
reference sample (from the lot) against which other sampling procedures may be compared (e.g. ISO3082). The frequency
at which samples are collected in a rolling bias test is determined based of the requirements of the site and the perceived
risk level. Rolling Bias testing would normally be completed on a quarterly or half yearly schedule. However, this process
can be completed at a much higher frequency and more proactively if monitoring at such a level is deemed necessary.
Conversely, extending a rolling bias sample program out beyond half yearly sampling intervals will significantly reduce the
usefulness of this practice.

Changing the current industry reactive approach for a more proactive approach, samples are continuously collected to
allow a robust statistical analysis, but importantly shifting the current investigation framework, normally performed at the
start, by providing the opportunity to perform more trend analysis over period of times. In this way bias testing can be
completed regularly and with minimal disruption to maintain assurance that the sample plants are objectively free from bias.
It is important to note that before conducting any form of bias testing a thorough compliance audit of the sampling system is
completed and any issues of concern are rectified. Otherwise, any significant error in the operation of the plant will almost
certainly cause bias which will result in the bias testing being a waste of time and resources.

ALS’s Mackay Coal Laboratory and BMA'’s Hay Point Coal Terminal have been collaborating for several years to develop
the current rolling bias test process used at the terminal. This has resulted in a number of innovations that have been
developed to ensure that the process is able to be completed with minimal disruption to the throughput of the terminal. The
three major innovations are:

e The implementation of a rolling bias test program that minimises disruption to throughput at the terminal and where
all the stakeholders in the supply chain are informed and aligned.

e A dedicated bias test mode was developed for the sample plants to automate the collection of the routine sample
and ensure that the routine sample cut is all that comes through the plant until it is returned to normal operation.
This also means the plant is operating in a “normal” way. Without this mode sample plants need to be operated
in “manual” so that the primary cut can be triggered, and the system will process the sample, this leads to unusual
operation in some plants as systems that sense and react are often disabled or ignored in manual operation.

e Avacuum system has been developed to replace normal manual methodology, allowing for rapid sample collection.
This system allows for significant volumes of sample to be collected in a short period of time and minimises the
health and safety risks associated with manual handling. Finally, the vacuum system eliminates the need for
samplers to be on the belt itself.

Methodology — manual methodology versus vacuum system

Current manual methodology

Normally when collecting stop belt samples, the belt is stopped, and the system is isolated. Then a sample frame is
driven into the material to the surface of the belt and the sample is shovelled and swept out of the frame. A sampling frame
is utilised to ensure that only the material in the selected section of belt is collected and no additional material from the edges
of the cut can fall into the sample being collected. This sample is then taken to the sample collection drums in buckets.
Once this is completed the sample frame is removed and the system is de-isolated. This process requires significant quan-
tities of labour and time, all the while exposing the people involved to significant manual handling risks. Also, depending
on various factors at the site, this process can require a significant number of people to complete the sampling safely and
efficiently.
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Figure 1. Traditionl Stopped belt sampling.

Vacuum system

One of the key processes used to reduce the impact to the operation during the sampling for bias testing is the use of the
vacuum system, where the reference sample is collected by using a validated vacuum system replacing the current manual
task which drastically minimises the stoppage time. The stoppage time will vary across sites largely due to variances in
time it takes to isolate and deisolate the systems. At Hay Point Coal terminal, the stoppage time requires 10-20 mins per
reference sample with the majority of that time consumed with isolation and deisolation processes.  This also only requires
a maximum of 2 people for sample collection. The reference sample (full grain size distribution) is rapidly vacuumed off the
belt and deposited directly into the drum through an annulus on the top of the drum.

Part of the development process for the use of the vacuum system was to run a series of tests comparing the results of
traditional sampling with the results achieved using the vacuum system. This test work provided confidence that the vac-
uum system itself was collecting representative samples. During this process there was also a series of comparison sam-
ples taken utilising a sampling frame and without a sampling frame, this series of tests established no significant variance
between the two practices and the process was determined to be acceptable to move forward without the use of a sampling
frame. By using the vacuum system and not having samplers on the belt there is minimal disturbance to the sides of the
of the sample cut. For this approach to be used on different commaodities/sites similar test work to determine the suitability
of the vacuum system and sample collection without a sampling frame would be recommended to be completed.
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Figure 2. Vacuum trial size distribution comparison plot.
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Figure 3. Belt sampling using the vacuum syétem.

The basic process for sampling using the vacuum system is as follows:

Upon arrival, and having completed all access requirements for site, the vacuum is moved down to the belt to be
sampled and the area is reviewed for safe access and any potential issues. The sample plant is also reviewed
for safe access and any issues.

If a previous Job Safety and Environmental Analysis (JSEA) / Workplace Risk Assessment and Control (WRAC)
exists this document is reviewed by the persons conducting the work and any changes required due to changed
conditions/processes are documented and implemented. If there is not an existing document this process will
be completed.

The vacuum is moved into position for the sample collection or as close as can be achieved prior to isolation.
After confirming with control, or other responsible party, the belt will be stopped, usually by means of the pull
cord, to achieve an immediate stop. This is organised in such a way that the loading on the belt is appropriate
when it is stopped.

The sampling personnel then isolate the belt and complete any other isolations that may be required.

The vacuum is then positioned into its operational position.

The operator positions the hose and vacuum head at the point of the manual cut, and the vacuum is started
collecting an area of 3 times the nominal top size, as per ISO requirements as a minimum The sample collected
needs to comply with Theory of Sampling (TOS) requirements by including the full material in the conveyor belt
(full grain size distribution) and not having preferential trends. This sample collected is considered under ISO as
the reference, in other words, as representative to the lot to be sampled by the sample station.

The operator then vacuums the sample, leaving the belt clean, and the sample is collected into a clean 205| drum
located on the ground below the vacuum system.

The vacuum equipment, and vacuum if required, are moved from the belt area and the belt is de-isolated and
returned to operation.

The sample plant is set up/prepared so that the sample from the matching Primary cut is the only sample collected
at the sample collection point while the belt sample collection is taking place.

If the sample plant is not set up with a Bias Test Mode, the cut position on the belt will be marked and the primary
cutter will be manually triggered to try to achieve a cut as close as possible to the manual cut. If Bias test mode
exists, the plant will be placed into this mode while the belt is stopped.

The plant is then allowed to process the sample as normal and the final sample is collected from the nominated
point (usually the final sample collection point but this can vary due to operational, access and safety require-
ments).

Usually at least a second sample is collected. However, at the beginning of the program usually four samples
are targeted to build the dataset rapidly. The second and subsequent samples are obtained by repeating the
sampling processes as many times as required.

The collected samples are returned to the laboratory for the analysis of the predetermined critical parameters and
a basic review of the completed data set is undertaken to indicate if bias is likely to be present.

Once there a sufficient number of data points are obtained a more robust statistical analysis of the results this is
completed. This provides greater confidence in the determination of any bias.

Advantages for a proactive rolling bias test approach

There are several advantages to performing a rolling bias test as compared to a standard bias test. Downtime and
interruptions to production are minimised due to the limited number of samples that are collected each time sample collection
is scheduled. This practice also helps to ensure ongoing monitoring (trend analysis) of potential bias as samples are being
regularly collected and analysis of results is completed as soon as possible after collection. This ensures that if bias begins
to present itself in the data set it can be actioned before it becomes a significant deviation and presents commercial issues.
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The more traditional approach of campaign sampling and only conducting bias testing when deemed absolutely necessary
cannot identify issues until well after they have arisen and usually not until after the bias present has caused commercial
issues.

For example, and as a context, Holmes (2021) quantified in US$23 M the potential value loss for just a 0.1% Fe bias in
an iron ore mine exporting in a year 250 Mt...so any minor source of bias is having a big impact for businesses.

Sampling Reference Non-Reference Reference Non-reference Difference
Date Sample Mass Sample Mass Increment (Ri) | increment (Ai)
(kg) (kg) Ash (%) Ash (%) (Di = Ai - Ri) (%)

24/05/2019 147.28 2.309 11.15 11.20 0.05
24/05/2019 138.48 2.468 11.23 11.83 0.60
24/05/2019 149.06 2.437 10.57 10.52 -0.05
23/08/2019 162.22 3.678 10.15 10.37 0.22
23/08/2019 162.78 2.234 9.89 9.89 0.00
23/08/2019 146.32 2.868 9.72 9.30 -0.42
17/10/2019 133.50 3.304 8.58 8.59 0.01
17/10/2019 87.56 3.598 8.98 8.59 -0.39
17/10/2019 142.52 3.811 8.88 9.29 0.41
17/10/2019 155.84 4.012 8.78 8.48 -0.30
19/12/2019 134.02 2.642 10.02 9.93 -0.09
19/12/2019 138.46 2.160 10.92 10.73 -0.19
19/12/2019 140.25 2.280 10.82 10.92 0.10
6/03/2020 123.32 2.484 7.90 8.31 0.41
6/03/2020 169.74 1.318 9.03 9.02 -0.01
6/03/2020 176.40 2.395 8.61 8.72 0.11
21/05/2020 165.22 3.390 9.50 9.20 -0.30
21/05/2020 169.58 3.396 9.20 9.10 -0.10
21/05/2020 153.42 3.606 9.32 9.11 -0.21
19/08/2020 135.62 2.247 9.60 10.09 0.49
19/08/2020 157.90 2.138 9.20 8.99 -0.21
19/08/2020 112.20 3.590 10.99 10.60 -0.39
19/08/2020 145.94 2.404 9.49 9.59 0.10
27/10/2020 177.12 3.200 9.90 9.80 -0.10
11/03/2021 172.40 2.578 8.78 8.88 0.10
11/03/2021 181.04 3.154 8.60 8.74 0.14
9/09/2021 159.36 2.478 8.97 9.52 0.55
9/09/2021 173.50 2.894 9.26 9.34 0.08
10/12/2021 162.80 2.160 8.92 8.80 -0.12
10/12/2021 167.88 1.962 8.72 8.80 0.08
30 Rolling Mean 9.52 9.54 0.02
Rolling Standard Deviation 0.27

Figure 4. Example results.
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Figure 5. Example results plot.
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Conclusion

Even though the requirement for Bias Tests are included in ISO Standards for several commodities, normally they are not
performed due to the impact to production due to the downtime required to manually collect reference samples from con-
veyor belts that need to be stopped frequently.

Current industry approach for Bias Tests is reactive and subjective, because they are performed when issues have been
already impacted production results, and because current subjective inspections cannot quantify the quality of the samples
collected.

Rolling bias testing presented in this paper is a low cost, pragmatic and time effective process to manage bias in sample
plants. Changing the strategy toward a more frequent sampling plan and by utilising the vacuum collection process serves
to further drive down time taken for sample collection and costs involved with sampling. It balances the need to regularly
monitor bias in the sample plant with the need to maintain throughput/production. The process is applicable to most bulk
solids including coal, iron ore, mineral concentrates and can be completed with minimal disruption to site. Processes de-
veloped in collaboration between ALS and BHP are easily used, are readily transferable and, while there will be a certain
limited amount of set up work required for each site, this process can be implemented rapidly and improved upon over time
as site needs are better understood and local processes developed.

Overall rolling bias testing utilising the vacuum system:

o Significantly reduces manual handling and risks associated with mounting belts,
o Significantly reduces downtime,

e Can be planned and loaded into site maintenance systems,

e Provides proactive quality assurance/review of the sampling system, and

e Is suitable for most bulk solids.
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In the Theory of Sampling the Grouping and Segregation Error (GSE) is expressed relative to the Fun-
damental Sampling Error (FSE) by GSE = Y-Z-FSE. Unfortunately, estimation of Z seems difficult or im-
possible. The problem seems to be the attempt to link GSE to FSE. However, the sampling uncertainty
due to FSE + GSE can be estimated from the distributional heterogeneity, with a small modification,
by a new function, the Sampling Uncertainty (SU) proposed here. SU is calculated from the spatial dis-
tribution of the analyte in a manner similar to cyclic convolution. The new method was validated by a
riffle splitter mass reduction experiment and by variographic analysis of theoretical data. For 1-dimen-
sional sampling SU is shown to be better than variogram integration in case of cyclic or non-station-
ary variations and by being independent of the nugget effect when the nugget effect is close to zero.
Thus, the extensions allow accurate predictions of the correct sampling uncertainty for 1-dimensional
sampling and are proposed as a supplement to variographic analysis. The rationale for using SU is to
be able to set up plausible theoretical scenarios for a sampling problem, and to predict the effect of
variations in sample size, increment number, increment orientation and sampling method (random
systematic, stratified random, random or single increment sampling). SU can also give numeric re-
sults for 2-dimensional sampling. The use of SU will mainly be for teaching and for a quantitative un-
derstanding of Theory of Sampling and of the benefits of compositional sampling.

Introduction

According to Theory of Sampling (TOS) as developed by Pierre Gy, a representative sample has an acceptable (for the
intended use) bias and precision, and bias can be minimized by taking the sample correctly according to the Fundamental
Sampling Principle [1-3]. When that is the case, sampling precision is given by FSE and GSE alone, where the latter is often
much higher than the former and in practice is responsible for most of the sampling variance. Minkkinen [4] has estimated
the effects of GSE on simulated lots and Minkkinen and Esbensen [5] have made important work with a modification of the
factors used for GSE. Unfortunately it is difficult to use the present theory to predict the sampling variance due to GSE, as
shown by Geelhoed [6], see Supplementary materials S1 in [14]. A theoretical solution to this is proposed here.

The Sampling Uncertainty (SU) proposed here is a method for estimation of the relative standard deviation for a specific
sampling protocol, where a sampling protocol includes sampling method (single increment, random systematic, stratified
random or random sampling), number of increments, sampling ratio (mass of the sample divided by mass of the lot), and
the specific orientation of the increments relative to the segregation in the lot. Thus SU depends on the combined properties
of the lot and of the sampling process. For the lot, input data are spatial distributions of fragments or analyts, which in most
cases are not known beforehand, but it is often possible to set up realistic scenarios with reasonable distributions based on
prior knowledge or in parallel to similar cases.

So what can it be used for? SU is very well suited for pedagogical purposes, because all aspects of grouping and segre-
gation and distributional heterogeneity can be simulated with greater accuracy, e.g. to show the benefits of composite sam-
pling by real numbers. In a teaching environment it is also possible to make practical experiments with lots which have been
prepared with well known properties [7]. But SU can also estimate sampling errors for 1-dimensional (and higher dimen-
sional) cases in the same way as variographic analysis, i.e. the results are estimated based on a series of real samples,
and in such cases concentrations are known as function of position. In other cases, e.g. for preparing a series of secondary
samplings, it is also possible to make a first sampling round to estimate the distribution of analyts and/or fragments, and
then to use SU to make the best protocol for the following many samples. So for many practical cases SU allows a quanti-
tative comparison of different sampling schemes and a better-informed selection of the best compromise between precision
and ‘cost’.

In most cases SU will be a prediction of the Grouping and Segregation Error (GSE) because the input for the calculations
does only contain average concentrations. In other cases, when the input are data from real samples like samples for
variographic analysis, the data are affected by the Fundamental Sampling Error (FSE) and long range errors in addition to
GSE, so the result from SU will be estimates of the Correct Sampling Error. This double meaning is the main reason for
choosing a separate name for this function: SU is the result obtained by Eq. (3) proposed here, i.e. it is an estimate which
can be compared to or predict real sampling errors.

doi: https://doi.org/10.1255/tosf.133 Published under a Creative Commons BY-NC-ND Licence
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Theory
Two new functions, the Sampling Uncertainty SU proposed here, and the Fundamental Sampling Uncertainty FSU [7], allow
estimation of the effect of segregation on sampling errors from theoretical or experimental data.

The Sampling Uncertainty SU

The Sampling Uncertainty SU is calculated in a manner parallel to the calculation of the distributional heterogeneity DH..
The only difference is that the groups for SU are all the potential samples, that can be taken from the lot by a given sampling
protocol, while the groups for the distributional heterogeneity are all the potential increments that is needed to sample the
whole lot. The difference in the results is that DHL. is characteristic of the lot, but only depends on the size of an increment,
thus the other characteristics of the sampling protocol are not included and accordingly sampling errors cannot be predicted.
In SU all characteristics of the lot and the sampling protocol are included and sampling error can be predicted (from theoretic
data) or estimated (from previous samplings like in variographic analysis), with an accuracy equal to that of the input data.

This treatment will start with a situation such as a riffle splitter where the lot is 3-dimensional (X, Y, Z), but one dimension
Yis sampled in its entirety. Assume that the concentration in the X-direction along the input tray perpendicular to the chutes
are known for all xmax positions.

To explain the concept of the “potential samples”, look at the simplest example, a vertical sample with increments, taken
from top to bottom of the lot, as shown in Fig. 1. The increments could be taken at all positions in the horizontal direction as
indicated by the white arrow in the figure.

Single increment sampling Random systematic sampling Stratified random sampling

Xmax < Xmax < Xmax
Sampling function g(x) Sampling function g(x Sampling function g(x)
1 1 1
--------------------- > i’~———————'ﬂ—------+ <———H————><————’j,»———>
0 0 0
0 jmax xmax 0 jmax Xmax 0 jmax Xmax

Figure 1. Sampling with 2 increments of width jmax taken from a lot of width xmax. f(x) is the concentration as
function of position and g(x) is the sampling function.

The single increment sample consists of one increment that could be taken at any position within the lot. The 2 increments
in the random systematic sample are synchronized, so the distance between them will always be constant. For stratified
random sampling the 2 increments could be taken at any position within half of the lot. For random sampling all increments
can be taken from all parts of the lot as long as they do not overlap.

The concentration a; in a potential samples starting at index i can be obtained as a simple sum:

I=ni jmax
Potential samples: a, = z Z Qi 1=y fori=1toh (1)
ni- jmax 5 =
it Start position of the first increment
Jjmax:  Width of one increment, jmax = xmaxi/(ratio-ni)
ni: Number of increments
h: Distance between increments h = xmax/ni

ratio: Sampling ratio, Msampie/MLot
For systematic sampling, only h terms are needed, because the results will repeat themselves in a cyclic manner for
indices / > h. This mathematical sampling is equivalent to circular convolution integration, i.e. the output (the sampled con-
centrations) is equal to the input (the lot concentrations) convoluted with the sampling function, a(x) = f(x)- g(x). Single
increment sampling is equivalent to box-car averaging. For stratified random sampling and random sampling, it is slightly
more complicated, and this will be treated below.
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The position of a sample is indicated by the index for the first element in the sample, so a potential increment could start
in all positions i = 1 to xmax. If the increment starts close to the upper limit of the lot, the increment will extend beyond the
lot, and in this case the concentrations to be sampled are taken from the start of the lot. This operation is necessary in order
for the sampling to obey the fundamental sampling principles, that every fragment in the lot must have the same non-zero
probability of ending up in the final sample. This also means that the results are independent of the phase of the concentra-
tion profile, see Supplemental material S2 in [14].

For stratified random and random sampling, sums similar to Eq. (1) could be set up but the number of terms would be
extremely high for more than a few increments. Instead, a Monte Carlo method is proposed, where the positions of the
increments are generated by random numbers. Taking 4000 samples, the results will be accurate to +~3 %.

To estimate SU, all the potential concentrations a; from the mathematical sampling for a given sampling method are used

in Eq. (3).
The heterogeneity is derived from the heterogeneity of one group.
, a—-a, | M,
Heterogeneity of one group: hl. = — "= (2)
a M

L i
The Sampling Uncertainty is simply the standard deviation of all potential groups (samples) in the lot:

Su: - Lz 4”4 | Y 3)

In the rest of this paper the weighting of the terms with the masses of the individual groups is neglected. Although it is
correct in the spirit of Gy to apply this weighting, it is rarely done in practice, because 1) the mass of the increments are
often quite similar, and 2) the increments are rarely actually weighted individually. It would be trivial to include this correction
if needed.

Here two things are of the utmost importance:

First: The groups are defined as the groups of potential samples for a specific sampling method. Thus the groups for
random systematic sampling, stratified random sampling, random sampling and single increment sampling are different.

Second: The variations in ai may not include variations caused by the constitutional heterogeneity, i.e. when the input are
theoretical data without effects of fragment properties other than concentrations. In this case SU is equal to GSE alone.
When, on the other hand, aj are experimental results from sampling experiments, such as data for variographic analysis, SU
contains FSE, GSE and all long range errors. In the latter case SU is an estimate of the Minimum Practical Error.

The Fundamental Sampling Uncertainty FSU [7]

The concentrations within an increment in Fig.1 are not randomly distributed as indicated by the colours in the figure (could
be low density fragments at top and high density fragments at the bottom). In this case sampling error due to constitutional
heterogeneity (that fragments are different) are not equal to FSE, because FSE is the sampling error when all fragments are
randomly distributed within the lot. However, the sampling error due to constitutional heterogeneity can be estimated by the
Fundamental Sampling Uncertainty FSU proposed in [7] when the distribution of the fragments is known as function of
position. FSU is simply the concentration weighted average of FSE for separate parts of all increments in the sample.

In conclusion: From a table of concentrations of fragments or analyts as function of position the sampling errors due to

constitutional, distributional and long range heterogeneities can be estimated by the proposed sampling uncertainties SU

and FSU. SU and FSU are proposed as standard uncertainties [8] to distinguish them from the traditional sampling errors.
Workbooks in Excel for estimation of sampling uncertainties SU and FSU are available in Svensmark [14].

Results and discussion
Validation of the SU-method: comparison to variographic analysis

SU can be used to predict the sampling uncertainty for 1-dimensional sampling. Examples are given, where the predictions
using SU are compared to the prediction obtained from the auxiliary functions obtained by numeric double integration of the
1-dimensional variogram according to Gy [1, 2, 9]. For point selection, i.e. when the mass of the sample is neglectable
relative to the mass of the lot the results are correct by the factor 1/sqrt(1-Ni/xmax).

In order to produce results similar to variogram integration, the calculations in SU must be somewhat modified. The vari-
ogram only considers variations up to half the maximum length of the input, thus the SU cannot be done in all input points
at a time, but must be done for half the input points at a time, shifting the range until the whole length has been covered.

Unfortunately an exact comparison is not possible, mainly because of the limitations of variographic analysis. The limita-
tions are 1) the data must be approximately stationary, i.e. the mean and the standard deviation may not change as a
function of position, 2) cyclic variations are levelled out, and 3) predictions for systematic sampling are too low for nugget
effects around zero [10], and 4) the weighting of the data is not uniform, the centre sample in the variogram contributes twice
as much to the results as the first and the last point. There are also limitations for SU in comparison to variograms: When
the result should be valid for half the length of the data (as in variograms) it is not possible to use weights identical to the
weights in the variograms, see Supplementary material S3 in [14].
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For SU this limitation is only present for the comparison to variograms. In normal use, when SU is calculated for a specific
length of data, the weights are uniform along the whole length obeying the fundamental sampling principles.

SU vs variograms for a simple case - influence of trend in data: This example is with a relatively smooth increasing
variogram. The data were taken from Pitard [2] page 119 and the variogram and the predictions from the variogram were
identical to the results in [2] within rounding errors. For stratified random and random sampling the predictions from SU are
essentially identical to the results of traditional variogram integration Fig. 2. There are tiny differences, but it must be re-
membered that the method of calculation of the estimates (SU vs variogram+ integration) is completely different.

fx)  A) —f(x) —Variogram RsD% B) Random systematic sampling
0.06 9.0
—=—SU
0.05 &0
7.0 —e— Variogram
0.04 o -~ -~ s1/sq(Ni)
5.0
0.03 ---- s1Ni
40 s1/Ni
0.02 3.0
0.01 20 | 00 S a0 TTTSeemmmeo
10| T
0.00 0]
0 20 40 60 xand j 0 5 10 15 Ni
RsD% C)  Stratified random sampling RSD% D) Random sampling
9.0 9.0
8.0 —==3U 8.0 —=—3U
7.0 —e— Variogram 7.0 \ —e— Variogram
6.0 ---- s1/sq(Ni) 60 | ---- s1/sq(Ni)
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3.0 a 3.0
20 | 00 NI, TTTrtrtreeeeeelll 2.0
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0.0 0.0
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Figure 2. Influence of trends in data for predictions of sampling uncertainty (RSD %) for variogram integration and
for SU estimation. A) Concentrations, f(x), and variogram. Data from Pitard [2]. B) to D). Predicted RSD % from SU
and variogram integration. The black dotted lines indicate the position for a RSD % proportional to 1/Sqrt(Ni) and
1/Ni.

Predictions for random systematic sampling show some significant differences: SU has small deviations up and down
from a smooth line. The reason for this behaviour is that SU is very sensitive to (even small) cyclic variations, as discussed
later. The results from the variogram seem to be too low for small Ni. The reason for this is that the data are not stationary,
as there is an increasing trend in the data.

Also note that the prediction from variograms for the uncertainty for taking a single increment (Ni = 1), is different for
random systematic sampling (RSD % = 6.3) and stratified random sampling or random sampling (RSD % = 7.7 and 7.7).
But how can a single increment taken at a random position within the lot have a different uncertainty depending on the
sampling method? Random systematic sampling is started at a random position within the first box, and with only one box
this would be identical to stratified random or random sampling. To prove that the trend in the data is responsible for this
discrepancy, the data has been corrected to remove the trend, i.e. slope(f(x)) = 0, see Fig.3.

f)  A) —f(x) —Variogram RsD% B) Random systematic sampling
0.05 7.0
—=—SU

03 6.0
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0.03 40 ----s1/sq(Ni)
0.03 ---- s1/Ni
0.02 20 | S Reee | el
oot - — || | SN, T
0.01 WO e R
0.00 L 1] 00 -

0 20 40 60 xandj 0 5 10 15 Ni

Figure 3. Data without trends (Slope(f(x)) = 0). Predictions of sampling uncertainty (RSD %) for variogram integra-
tion and for SU estimation.
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Now RSD % for a single increment is the same for all methods and protocols. Note, that RSD % for random systematic
sampling from variograms is identical in the two cases (Fig. 2 & 3), i.e. variogram integration neglects linear trends in data.
This is easy to understand because for a linear trend the mean integral w; will have twice the value of the mean double
integral w2, and the variance for systematic sampling is predicted by Var(syst) = 2w’z - w; [1, 2, 9], see Supplementary
material S4 in [14]. The predictions for stratified random sampling are based on the double integral w; alone, and will thus
include the effect of any trend like SU. For random systematic sampling, the predictions from SU are seen to oscillate around
the line from variograms because of small cyclic variations.

So both SU and variogram seem to give correct results for stratified random and random sampling in the case of a linear
trend, whereas only SU gives reliable predictions for random systematic sampling.

SU vs variograms for data with cyclic variations: In this example of length xmax = 96, there is a cyclic variation with a
period of j = 6, as shown by the variogram Fig. 4 A.

fx) A) —f(x) —Variogram RSD% B) Random systematic sampling
140.00 6.0
—=—SU
120.00 5.0
—e— Variogram
100.00 40
: ---- s1/sq(Ni
80.00 A s
3.0 X ---- s1INi
60.00
40.00 8
20.00 1.0
0.00 0.0 :
0 20 40 60 80 xand; 0 5 10 15 20 Ni

Figure 4. Influence of cyclic variations for predictions of sampling uncertainty (RSD %) for variogram integration
and for SU estimation.

It is seen that there are differences in the predictions for random systematic sampling, even though a common trend is
seen. The numeric double integration of the variogram is intended to remove noise, but unfortunately it also levels out cyclic
variations. It is well known, from sampling theory for (electric) signals, that sampling with a period equal to that of the signal
(or any whole multiple of it), will give a maximum variation of the mean (j = 6 or 12 corresponding to N = 8 or 4), exactly as
seen in the SU predictions.

For stratified random sampling and random sampling, the two methods are again essentially identical as expected (data
not shown). Supplementary material S5 in [14] shows an example with a pure sine wave variation. So SU will give a correct
prediction for all sampling methods even in the case of cyclic variations.

SU vs variograms low nugget effects and for other cases

In the first case the nugget effect is zero, and the results from variogram is too low for random systematic sampling, Fig. 5.
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Figure 5. Influence of a low nugget effect for predictions of sampling uncertainty (RSD %) for variogram integration
and for SU estimation.

For random systematic sampling the difference increases dramatically with decreasing lags, Fig 5 B. So what is the correct
sampling uncertainty for j = 2, Ni = 24: 0.04 % or 0.43 %? Heikka and Minnkenen [10] have shown that the variogram
integration underestimates the uncertainty for short lags, supporting that variographic integration can give estimates that are
too low for random systematic sampling. Actually, the estimation of the nugget effect in variograms may be a problem as
shown in [11]. If random noise is added, this difference levels out, see Supplementary materials S6 in [14] where this problem
is discussed further.

Examples for data with variation in standard deviation as function of position is given in Supplementary material S7 in [14].
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Summary for SU vs variograms: The conclusion of the comparison of SU and variograms is that SU gives similar or better
results compared to variograms. Also all differences between the SU and variogram results can easily be accounted for by
the properties of variogram integration and the different weightings as explained at the beginning of these sections.

In conclusion, SU is a valid method for estimation of sampling uncertainty for 1-dimensional sampling.

SU for 1-dimensional data

Contrary to variographic analysis SU can be used to estimate the sampling uncertainty for 1-dimensional data obeying the
fundamental sampling principles, i.e. all points will have the same weight (probability) to be sampled. Extensive examples
are given in Supplementary materials S8 and S9).

SU can be used to investigate the effect of the sampling method and the number of increments for all cases that can be
represented by 1-dimensional data. Even if the effect of these (sampling method and number of increments) are well known
in theory, it is only possible to judge the magnitude of the differences from quantitative data: is random systematic sampling
better than stratified random sampling, how much is 32 increments better than 8 increments, etc.- that depends very much
on the actual case as shown by the examples given.

SU for 2-dimensional sampling

Just one example will be discussed, a square Japanese slab cake [12]. The lot is a 120 x 120 grid and samples are taken
in 1,4, 9, 16 and 25 boxes as shown in Fig. 6 I).
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Figure 6. SU for 2-D sampling. A) Concentrations; B) Variogram at the centre in two directions; C) Predicted RSD
% for 1 to 25 increments for point selection; D) to H) Predicted RSD % for sampling ratios from 2 to 16; and I)
Sampling strata for 1 to 25 increments. The dotted lines start at 100 % of the standard deviation of the lot, and all

RSD % are shown in % of standard deviation of the lot.
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For these data, with smooth variograms, the random systematic sampling gives the lowest uncertainty, whereas stratified
random sampling is similar to random sampling for low sampling ratios (ratio = 2 and 4) and intermediate between random
systematic and random sampling for higher sampling ratios (ratio = 8 — 25 and point selection). The effect of the number of
increments increases with the sampling ratio. The effect of the number of increments is small for small sampling ratios, but
note that the sampling uncertainty for 1 increment is quite low anyway in this case, only 23 % of the standard deviation of
the lot for ratio = 2. Note that the results for high sampling ratios approaches that for point selection.

The Correct Sampling Uncertainty (CSU)

Combination of the fundamental sampling uncertainty (FSU) [7] and the grouping and segregation error gives the correct
sampling uncertainty (CSU), i.e. the sampling uncertainty for correct sampling when both the constitutional and distributional
heterogeneity of the lot and the sampling geometry (increment size, number and orientation) is taken into account:

. [ 2
CSU:  seqy = \Sesu tSese ()

Example of CSU: For one of the runs in the model experiments for the improved Gy’s formula [7] the variation was too high
for sand. To estimate how much the distributional heterogeneity must be to explain this, different scenarios were simulated
and both FSU and SU (equal to GSE in this case) were calculated, and the resulting CSU was compared to the observed
total sampling uncertainty. Samples of ~125 g were taken from 1000 g by using a Riffle splitter with 18 chutes 3 times. The
mixture contained 50 g sand, 50 g sesame seeds, 700 g barley grains and 200 g steel balls with a diameter of 6 mm. See
ref. [7] for further details. The results of estimating FSU, GSE and CSU are given in Table 1 together with the observed
experimental results. Since the concentration of fragments changes as function of the position along the input tray, the effect
of the constitutional heterogeneity is slightly different from FSE (calculated as if the whole lot were randomly mixed) and
must be estimated by FSU.

Table 1: Estimated and observed sampling uncertainty RSD %

Extensions To The Theory Of Sampling 2

Sand Sesame Barley Steel
FSU 4.0 4.3 3.6 14.1
GSE 8.2 0.0 0.6 0.0
Csu 9.1 4.3 3.6 14.1
OBS 9.1 3.4 34 14.1

The distribution of the analytes in the input tray were generated by a random distribution of sand, mean = 0.05, s = 0.015.
The concentration of barley was corrected to give a sum of concentrations equal to one.

The fact that the results fit the experiments nearly exactly does not mean that the distribution is exactly as in the scenario,
as many different distributions could all give similar results. What the data and calculations do show is that it is possible to
simulate the experiment with a plausible distribution.

This example with a high GSE in a riffle splitter is unusual. Apart from sand in a few experiments in [7] GSE is negligible
for proper use of riffle splitters, and good rotary dividers behave similar or even better [13].

How to minimize the Correct Sampling Uncertainty: Results in Svensmark [7] show that it will reduce the fundamental
sampling error to separate the lot in a direction parallel to the sampling direction, and results given here show that it will
reduce the grouping and segregation error by mixing the lot in a direction perpendicular to the sampling direction. It is true,
that the spatial distribution of fragments in most cases are unknown, and that they change with manipulation of the lot, but
the message is that it is a very bad idea to try to get a uniform distribution in a direction parallel to the sampling increments
(normally this would be in the vertical direction), so segregation according to gravity may in most cases be beneficial, even
if mixing horizontally is more important.

Conclusion

The Sampling Uncertainty SU is proposed as a new way of treating correct sampling errors including the grouping and
segregation error. SU allows accurate estimation of sampling uncertainty due to distributional heterogeneity and can esti-
mate the effect of the number of increments for the sampling methods random systematic sampling, stratified random sam-
pling, random sampling and single increment sampling. The input for SU is a table of concentrations as a function of position
within the lot. For 1-dimensional sampling this is equivalent to the input for variograms, i.e. a series of samples taken in one
direction by random systematic sampling. For 2-dimensional sampling the input is a map of concentrations in 2 dimensions.
In most cases such experimental concentration maps are not available, but it is often possible to set up realistic theoretical
scenarios from prior knowledge or from similar cases.

SU can be used for 1-dimensional sampling and does not suffer from the problems associated with results from variogram
integration caused by non-stationarity, cyclic variations and low nugget effects. Real lots do not need to be stationary, and
SU will also be correct for non-stationary lots. It is still recommended to calculate the variogram because it gives valuable
information about the heterogeneity of the lot, but it is advised to also use SU as a supplement to variogram integration.

SU can also be applied quantitatively to 2-dimensional lots. This is an extension to TOS which only gives quantitative
results for 0-D and 1-D sampling. In principles there are no limitations to the number of dimensions that can be used for SU.

SU is very well suited for pedagogical purposes, because all aspects of grouping and segregation and distributional het-
erogeneity can be simulated with greater accuracy, e.g. to show the benefits of composite sampling by real numbers.
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SU allows a quantitative comparison of different sampling schemes and a better-informed selection of the best compro-
mise between precision and ‘cost’.
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The XRF method, with a long-proven track record, is one of the most common analytical techniques for
elemental measurement in the metal & mining industry. The technology offers high safety, low OPEX,
with high versatility and availability, covering the whole range of concentrations, starting from ppb
levels (in the range of 0,00001%) up to 100%. The success of the technology lies in the fact that it can
be applied to most of the periodic table, can be used on both solids and liquids, gives real time
measurements on the spot, is non-destructive for the sample and does not consume chemicals. In
addition, the technique often does not require high skills to be applied, provided that the methods for
the XRF-analysis are set up correctly by means of a suitable calibration. Among these benefits, one of
the main reasons to elect this technique over others available, is the “speed of response” that can give
a feedback within seconds of what is taking place in a hydrometallurgical process, indicating for
instance a reaction occurring or not occurring, a side reaction rate increase, reagents being depleted
or the formation of unwanted species leading to an emergency situation. Process Engineers and
operators often require knowing step after step what is going on inside a reactor, in order to be able to
intervene as early as possible. Today, thanks to a multi-element analysis by XRF, fortunately this is
possible.

Alike any test technique, sample preparation is crucial, thus measuring on representative samples is
key to control process optimization and obtain real-time feedback on metals and other elements, in
order to improve quality, planning, safety, to prevent unknown losses and reduce use of excess
chemicals. This brings about not just an economic benefit, but also an overall improved environmental
balance. Also, small improvements at every step of an integrated hydrometallurgical process, at the end
may result in large quantities of revenues for increased throughput, improved product quality, reduced
reagents, but it will also reflect into a better use of resources, reduction of raw materials used, decrease
of emissions and waste to be disposed of. For instance, a more efficient water treatment process will
save more metals, while releasing a waste solution with a lower impact to the environment.

When an ore is concentrated into a metal containing matte, it must undergo a leaching stage that will
dissolve some elements and leave others in the solid form. Having a thorough control of all the elements
present is not trivial, but it is key to optimize all the following refining stages, since ores are never
constant in composition and from time-to-time unwanted elements may exceed the limit without notice.
This is a perfect case in which the “speed of response” and the “high accuracy” of an online analysis
can play an important role for the Metal & Mining processing industry. In this paper, the authors
introduce their own “case study”, made by the world renown and leading manufacturer Glencore, at its
Nikkelverk plant in Norway, that has made use of the “C-Quand online XRF analyzer” fabricated by
Hobré Instruments, a world leading manufacturer of analyzers and sample conditioning systems. The
online XRF analyzer is employed for the control of the critical leaching phase of the Ni-Co-Cu matte,
substituting a much more complicated and costly analytical technique that used to make use of a lot of
reagents and a large equipment. In addition, the technique used before required a substantial amount
of human workforce to cope with maintenance of the systems. The results, challenges and the
improvements of the first two years of utilization of the online XRF analyzer will be shared, showing that
Process Control cannot live without proper measurement, thus measurement on representative
samples is truly the heart of processes.

Introduction

Every human activity requires resources, thus it is particularly important to optimize their use, as their depletion is a vital
global concern that affects the life of every individual, especially when they are not renewables. Beside scarcity, society
faces acquisition difficulties as mining is not evenly spread out all over the world. For instance, the “Earth Overshoot Day”
is just an example of one of the many parameters and indicators showing how we are going in the wrong direction by
depleting the “projected allocated resources” of a given year, in a shorter and shorter time, year after year. In metal

processing field, every step poses important optimization opportunities for its environmental and economic impact.

The practical approach of resource management is particularly well suited to the metal & mining industry, which have much
scope to adopt a sustainable approach to their activities. Besides considering the environmental and collective impact of
their operations, metal & mining companies ought to take steps to minimize negative effects1, share best practice (often
referred as best available techniques?), reuse resources used during processing, minimize the environmental impact and
reduce waste.

doi: https://doi.org/10.1255/tosf. 134 Published under a Creative Commons BY Licence
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Optimising mining performance and Minimising “wasted” resources

Mining as an industry creates much waste, including depleted rock, gaseous emissions, sludges, mine water and spent
water from hydrometallurgical processing. Some of these streams can be reused, either within the same production or re-
purposed elsewhere.

For instance, waste rock can be used as backfill as landscaping material or in road construction, while the sludge can be
used in pigments. Other by-products can be re-used for making construction materials (e.g. bricks or in cement kilns), resins,
glass and glazes, in agroforestry, or as part of the wastewater treatment process?.

There are also other waste streams related to the subsequent stages of smelting, up to the final refining steps of the
minerals. Considering the concept of the “waste hierarchy”, the first step to take to minimize resource use is “reducing the
amount” used. One way to do this is to optimize the leaching and extraction processes, in order to “leave behind” as little as
possible of the key metals contained in the ore to be processed. For instance, if in an ore containing 2,0% cobalt the froth
flotation process would leave behind a content of 0,1%-0,5%, it would mean that 1-5 kg of Cobalt per metric tonne of ore
would end up in the waste stream. This would likely cause a “contamination” problem to the secondary uses mentioned
above, but in terms of resources, it means that 5-25% of the contained cobalt does not get extracted. To understand the
impact, it can be considered that in order to produce 1 metric tonne of cobalt, in this example 53-67 t of ore would be
required. Comparing this to the 50 t required if the process was 100% efficient, it is clear that 3-17 extra metric tonnes need
to be processed, with all the impact related. Multiplying this amount by 10 kt of cobalt produced per year by a large producer,
would mean 30-170 kt of extra ore that ends up in the waste stream, containing an equivalent of 30-850 t of Cobalt!

In order to optimize every step of the process, it is important to closely monitor the chemistry of the reactions occurring
and this can only take place effectively through a continuous process sampling and control. The continuous analysis, active
24 hours a day, minimizes the dependence on operator’s intervention, as the process disturbances are rarely predictable.

Continuous process analyzers for hydrometallurgy

The online analysers traditionally used to control hydrometallurgy in real time include techniques like photometric analysis.
In recent years new analytical equipment like titrators and voltametric analysis have been implemented to improve the
process control. Every technique has been developed to solve some problems, but some of them bring real challenges for
their deployment. For instance, the photometric analyses require several stages to measure different elements since each
photometer only measures one element at the time and a large room for the equipment. At Nikkelverk, the photometric
analytic method for Ni, Co and Cu reported in g/L is simple, measuring the colour of the solution and relating it to the
concentration via Lambert-Beer’s law without adding any chemicals. The main problem is the need of dilution of the process
solution prior to analysis. The dilution is not accurate and can therefore give poor results. For trace analysis of this elements,
chemicals need to be added to enhance the samples response when measured.

In general, titrators may require a long time before the titration is complete and if the reaction is contaminated by other
species, results can be altered. Inductively Coupled Plasma (ICP) is probably the most widely used technique in benchtop
laboratory equipment, however the difficulty to apply it for a continuous process control lies mostly in the sample preparation
that needs to be appropriately diluted based on the actual concentration. Finally, the XRF technique, which is the main
technique discussed in this paper, in short requires a compact analyzer, no need of reagents, does not consume or alter
samples, does not need dilution and can work on a very extended range, from sub ppm to 100 wt%. The specific details are
discussed in the next section.

XRF technique

X-ray fluorescence (XRF) is an analytical technique that can be used to determine the chemical composition of a wide
variety of sample types including solids, liquids, slurries and loose powders. It is also used to determine the thickness and
composition of layers and coatings.

XRF spectrometry is a non-destructive analytical technique used to obtain elemental information from different types of
materials, as it can analyse elements from beryllium (Be) to uranium (U) in concentration ranging from sub-ppm levels to
100 wt%. It is employed in many industries and applications including: cement production, glass production, mining, iron,
steel and non-ferrous metals, oil & gas, polymers and related industries, forensics, pharmaceuticals, healthcare products,
environmental, food and cosmetics.

XRF analysis is a robust technique, combining high precision and accuracy with straightforward, fast sample preparation.
It can be readily automated for use in high-throughput industrial environments, while providing both qualitative and
quantitative information on a sample. The technique is so versatile that it is often used for rapid screening (semi-quantitative)
analysis too.

XRF is an atomic emission method, similar in this respect to optical emission spectroscopy (OES), ICP and neutron
activation analysis (gamma spectroscopy). Such methods measure the wavelength and intensity of ‘light’ (X-rays in this
case) emitted by energized atoms in the sample. XRF makes use of X-ray radiation to eject an electron of the measured
element from the inner orbit; the vacant place will be taken by a higher orbit electron, under emission of a very specific
wavelength of X-ray radiation: fluoresce (Figure 1). The amount of energy coming from the sample in this wavelength has a
linear correlation with the concentration for a short concentration range. The enhancement and absorption effects make the
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calibration itself more complicated, however this can be corrected by mathematical models in the instrument software.
An X-ray tube produced irradiation by a primary X-ray beam, causing emission of fluorescent X-rays with discrete energies
characteristic of the elements present in the sample (Figure 2).
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Figure 1. X-Ray fluorescence principle.

Figure 2. X-Ray basics.

A radiation source stands at the basis of all spectrometers, together with a sample and a detection system. The technology
used for the separation (dispersion), identification and intensity measurement of a sample’s X-ray fluorescence spectrum
gives rise to two main types of spectrometers wavelength dispersive (WDXRF) and energy dispersive (EDXRF) systems.
For the purpose of this paper, the latter will be considered.

In EDXRF spectrometers, the X-ray tube acts as a source, it irradiates a sample directly and the fluorescence coming
from the sample is measured with an energy dispersive detector. This detector is able to measure the different energies of
the characteristic radiation coming directly from the sample. The detector causes a separation (called dispersion) of the
radiation from the sample into the radiation from the different elements present in the sample. Thus on the detector X-rays
are converted to electron clouds, proportional to the energy of the X-ray. The clouds “drift” down a field gradient to the anode,
and get collected to charge a capacitor (figure 3).
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Figure 3. Energy dispersive detector,

Glencore Nikkelverk process
Glencore Nikkelverk is the biggest nickel refinery in the western world exporting 100% of the production, primarily containing
nickel, copper and cobalt. Around 50 product variances are exported to markets all over the world from the Nikkelverk. A
characteristic of all the products is high quality and the purity of the finished metals are amongst the highest in the world.
Since 1910 Nikkelverk has refined, produced and exported nickel and other metals from the production plants in
Kristiansand. Product development has been necessary to satisfy the needs of the customers. Its environmental, energy
and process technology has made the Nikkelverk plant one of the most effective and technologically advanced refineries in
the world. The Nikkelverk process begins by crushing the raw material into a fine powder and transporting it to the chlorine
leach plant. Here the metals in the raw material are separated by addition of chlorine in hydrochloric acid. The separated
streams are then sent to different processing areas for purification and refining. Various process areas treat gaseous, liquid
and solid materials (see figure 4). From these areas, the different products are sent for finishing treatment, cutting, and
packaging before they are shipped out to the world market.
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Figure 4. Flowsheet of Nikkelverk’s process.

XRF analysis applied to leaching

The first step for treating the extracted ore is generally a froth flotation process that concentrates the metals contained.
Afterwards, the concentrate is transformed in a sulphide matte. This matte is then transferred to the hydrometallurgical
section, whose first step is leaching, which is the process of dissolving a solid into a suitable solution, in order to allow the
following steps entailing purification, precipitation and so on, until final refining.

In order to optimize the leaching process, it is required to run a real time analysis to the process, especially because the
matte coming from an ore can be fairly variable in composition. This continuous analysis can be run through XRF technology,
as this is the most viable technique available, given its versatility and speed of response. For this reason, after many years
of successful use of photometric techniques, Glencore’s Nikkelverk plant in Norway has decided to switch to XRF for the
control of the critical leaching phase of the Ni-Co-Cu matte. The selected analyzer for this purpose is a “C-Quand ”fabricated
by Hobré Instruments, a world leading manufacturer of analyzers and sample conditioning systems. The main advantages
of this analyzer are:

e Multi elements simultaneous analysis

e Ability to handle the whole pH range

¢ Analyse a wide range of concentration without consuming the sample
e No dilution of sample

¢ No need of reagents

e High precision measurement

e High stability measurement

e |t can be used with both aqueous or organic solutions

Calibration of the instrument

Before being able to run a sample into an analyzer, it is important to calibrate the instrument for the given elements and
range to check. XRF technology makes no exception in this regard. Thus, the calibration takes into account as many
variables as possible, but most importantly:

e Primary elements required for the process

e Secondary elements (less important) for the reaction

e Contaminants (e.g. elements that affect X-Ray absorption)
e Matrix (e.g. aqueous solution, organic solution)

e Solid particles possibly present
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In general, all elements influencing the calibration need to be a part of the calibration setup. The calibration allows the
build-up of a “calibration curve”, that is a general method for determining the concentration of a substance in an unknown
sample by comparing the unknown to a set of standard samples of known concentration®. Thus, the known samples must
be representative and take into account the concentration ranges for the items enlisted above and assess the correlation of
as many variables as possible. The ideal situation entails a linear relationship where the curve can be approximated to a
straight line, however often this is not the case, such that calibration could need to be split for the different applicable ranges
and limits could be introduced to curb the possible combinations.

Prior to calibration, it is important to be aware of matrix effects and possible overlap corrections for each element as well
as pile-up signals from the detector which can distort the real analytical content of the elements to be analysed. In this
specific case study, the calibration of the Online XRF at Nikkelverk was done with “inhouse” calibration samples which are
mainly process samples from different part of the plant. Actual process samples are not suitable as calibration samples,
since they are unstable and start to precipitate when cooled to room temperature. Therefore, the “inhouse” calibration
samples are more diluted than the actual process samples to be analysed. Furthermore, synthetic calibration samples from
pure chemicals, called primary standards, were also implemented into the calibration to cover the whole concentration range.

The major elements in all calibration samples were determined on a WD-XRF-instrument (Axios) at the main lab. The
minors and trace elements were determined with ICP and AAS. The calibration is made by using theoretical alphas
corrections for all fourteen elements in the calibration. Water is used as a “balance-element” in the calibration model. This
calibration model gave the best calibration for a wide concentration range and was found to be suitable for all the actual
process solutions.

Test run
Once the calibration has been set, unknown samples can be analysed making use of the calibration curves, to analyse the
elemental composition.
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Figure 5. Hobré C-Quand XRF analyzer cell layout.

Figure 5 shows the Hobré C-Quand XRF analyzer cell, indicating that there is a continuous flow through the cell, subject
to a continuous X-Ray irradiation used to measure the sample continuously. The analyzer then displays a “moving average”
over a definite timeframe, so that each result is high in accuracy and repeatability.

During test run, the XRF-system needed to be adjusted to fit the needs of the Nikkelverk’s process solution. For example,
the flow cell, where the process solution is exposed to X-rays, was redesigned to make it deeper fulfilling the concept of an
“infinite thick sample”. Furthermore, the Hobré’s Online XRF instruments uses normally a reference metal (for instance
Zirconium) as a part in the flow cell to be able to correct for drift in the instruments. This reference metal had to be removed
for Nikkelverk’s purposes since its signal during measurement of the calibration samples interfered with the calibration
model. Drift correction has therefore been done with a Zirconium containing solution added manually to the system.

After adjustment of the Online XRF system and successful calibration, another issue to be solved was the injection of the
samples to the instrument. The used layout installation analyses three process streams sequentially. Therefore, a sample
extraction system for each process stream is needed ensuring that the “actual” process composition is introduced into the
analyser at all time giving real-time results. The amount of particles in these solutions was initially assumed to be minor, but
after a few months of tests it was revealed to be more substantial. The number of particles can vary in relation to events in
process steps prior to the analyser. With the valves initially installed in the sampling system, clogging was occurring
frequently and it disrupted the continuous measurements. These valves where exchanged with so-called “slurry valves”,
able to cope with particles in the process solution, thus the clogging problem was solved and it was ensured a more stable
operation of the complete analytical system.

Since the process solutions contain at times chemical components which can deposit over time on equipment part like
tubes, valves or in the flow cell, a frequent washing cycle of the sampling and XRF-system is necessary. This has to be
done manually by the operator for the current time-being and is planned to be automated in the future.
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Processing of data
Currently, both the photometric analyses as well as the Online XRF analyser are running parallel at the plant. This gives the
opportunity to compare the two different systems with each other.

Online XRF vs traditional photometry for Nickel normalised by the average of the XRF-results
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Figure 6: Plot of Ni results, normalised towards 7-day average of XRF-analysis, for both XRF and photometry.
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Figure 7: Relative variogram of Nickel measured by the Online XRF
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Figure 8: Relative variogram of Nickel measured by photometry

Figure 6 clearly shows a bias between the traditional analysis, photometry, and the newly established XRF-method.
However, the trends of the two separate curves are similar. The XRF-system transfers its data to the steering system via
Modbus. The photometric measurements are transferred via an analog system and filtered, as can be seen from the graph,
with a certain threshold. The drops in concentration during the 7-day period are due to loss of sample towards the
instruments, and for the XRF-system the washing cycles with acidic solution.
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To determine the variance of the analytical systems, though limited for the photometry due to filtration, one can apply a
variographic analysis for both series as shown in figures 7 and 8.

Table 1: Comparing the relative variance of the measurement systems to the relative total variance of the process

Extracted key variables Online XRF Nickel Photometry Nickel
V(0) — measurement system variation 0,00006 0,00013

Vsi) — total variation 0,00037 0,00030

Ratio in % for V(0y/Vsin 16 44

Variance table

As presented in table 1, the measurement system variation presented as V(o) is rather small compared to the total variance
of the process regarding the Online XRF analyser. The photometric method shows a higher measurement system variation
compared to the overall total variance though it would be expected to have a rather low V(o) due to the similar values at times
in figure 6 for the photometric measurements. Nevertheless, if the reason for this discrepancy is due to presentation of V(o)
or the filtration of the photometric data by the setup in the data transfer system, the relative total variance is in the same
order of magnitude. The improved data transfer by Modbus for the Online XRF analyser will give a better insight for the
process operators.

Looking at the ratio between measurement system variation and total variation, reported to be 16% for the presented 7-
day period, this is in accordance with the demand that measurement systems under control should contribute close to or
below 10% to the total varianceZ &. Since the Online XRF system still is above 10%, this can be explained with the lack of
an automated acid rinsing procedure and that the calibration can be further refined.

Reliability of measurements

As for many analytical systems incorporated on-, in- or at-line, the system itself has a high precision when tested in controlled
conditions. However, presentation to process solutions changing over time as well as how the samples are introduced to
the analytical system is a major challenge. The reliability of the measurements is primarily influenced by the feasibility of
collecting representative samples, and by the sample matrix (liquid totally or partially free from particles). In this specific
example, as samples normally contain some solids, it has been necessary to design a sample conditioning system including
slurry valves that can cope with the solid particles present. In addition, in order to keep the lines free from obstructions, they
have been subject to a washing from the sample take off point to the analyzer inlet, every 8 hours, using a warm acid
solution. This routine has increased the uptime to over 95%. Future improvements will entail an automatic acid rinse routine.

Advantages of continuous measurement in Nikkelverk’s hydrometallurgical process
Since the 1970s, Nikkelverk has applied online analytical systems in the hydrometallurgical process to improve the ability to
control the processes in real-time. At that time, it was not possible to purchase online analytical equipment easily from
suppliers. Therefore, the systems still running at Nikkelverk were setup by very skilled inhouse resources enabling Nikkelverk
to run its processes in a much more precise manner and counteract fast upcoming situations. However, the systems installed
at that time require constant maintenance and consume partly vast amount of chemicals. As mentioned in the previous
section, one system analyses one element at a time which results in a massive instrument park to be maintained today.
Therefore, current commercially available systems like the Online XRF have been implemented at Nikkelverk, reducing
the use of resources. As for the implementation of the Hobré Online XRF analyzer, the use of chemicals for analytical
purposes is redundant, leading to a safer work environment for the operators. The maintenance work is reduced from
currently nine photometric to one XRF instrument, reporting simultaneously results for 14 elements for each of the three
process streams. As the XRF instrument is running stable with the present washing routines, the results reported are
extremely helpful for the operation of the process. Since components like sulphate can now be reported in real-time to the
shift operators, balancing of the process has become more stable, improving quality, saving resources and improving the
overall safety.

Conclusions
In this paper they were discussed the advantages of the XRF technique for the continuous monitoring of hydrometallurgical
processes. A special focus has been given to the leaching stage of Glencore’s Nikkelverk plant, for which it has been
employed Hobré Instruments’ C-Quand XRF analyzer, customized according to the plant’s special needs and requirements.
To get the Online XRF analyzer to its optimum, further improvements are planned regarding the automated washing
procedure and an even more fine-tuned calibration. The outcome of the first 2 years of operation has shown that application
of modern analytical equipment enabling multielement analysis is the ideal tool to reach improved process control and
reduce use of resources, while providing a safer, more reliable and “requiring less maintenance” instrument to the operators.
Though the development of XRF-methods and the need to customize the sampling system to fit-for-purpose tool was time-
consuming, it is less time consuming than running and maintaining the old analytical techniques employed. Thus, Glencore
Nikkelverk’s result so far show clear benefits for the long run.
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Monitoring the lot mean and uncertainty estimates by piecewise local modelling
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Variography is an excellent tool for monitoring the long-range trend of continuous processes. Pierre
Gy has presented a method that can be used for estimating the measurement variance of a lot mean
as function of sampling frequency for different sampling modes: random, stratified, and systematic
sample selections. The method involves the estimation of the intercept (also called the nugget effect)
of the variogram at the time point zero, and numerical integration of the variogram. The method can
also be used for optimising sampling plans. At the time when variography was developed on-line
analysers were not available. Samples were extracted from the process streams and analysed in
laboratories. It was important to optimise the sampling plans to control the analytical costs and the
reliability of the plans in estimating the estimation error. For a reliable variogram more than thirty to
forty samples had to be analysed. Consequently, the results could not be used on-line.

Currently process analysers are widely used to monitor continuous processes. Like in variographic
estimation of the lot mean this method is based on the theory of stratified sampling. If the lot is
divided into N strata of equal sizes (or sublots) of which ni are sampled the variance of the lot mean
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Here s is the variance between strata mean values and s3 the within-strata variance, N: is the size of
strata as the potential number of samples and n2 the number of samples taken from the stratum. The
great advance of stratified sampling is that only the within-strata variance propagates into the lot
average if samples are taken from every stratum. With current process analysers measurements can
be taken at short time intervals and that is used in the current method to estimate the process
average and its variance continuously. Within a short range (or stratum in this case) a continuous
process can be locally modelled with a line. With systematic sampling after a minimum of three
measurements a line can be fitted to this range and the mean and variance of the range mean
calculated. That is the first stratum. When the process progresses, the calculations are repeated for
the new strata and values. It is important that the quality of the final lot can be monitored on-line,
especially if lots of certain sizes and demanding quality specifications are produced.

The method is tested with different kinds of simulated and real data sets. This method can be easily
modified also for 2D and 3D sampling targets.

Introduction
Variography is an excellent tool for monitoring the long-range trend of continuous processes. Pierre Gy’ presented in his
book a method that can be used for estimating the measurement variance of a lot mean as function of sampling
frequency for different sampling modes: random, stratified, and systematic sample selections. The method involves the
estimation of the intercept (also called the nugget effect) of the variogram at time point zero, and numerical integration of
the variogram. The method can also be used for optimizing sampling plans. At the time when variography was developed
on-line analysers were not available. Samples were extracted from the process streams and analysed in laboratories. It
was important to optimise the sampling plans to control the analytical costs and the reliability of the plans in estimating
the estimation error. Variography is an excellent tool for that purpose. More than thirty or forty samples had to be
analysed for a reliable variogram. Variograms and the variance estimates derived from variograms present average
properties of the investigated lot from the time interval that the variogram covers. Therefore, the results cannot be used
on-line.

Minkkinen & Paakkunainen? have presented an optional method for variographic analysis. That method has been
further developed in this study. Currently process analysers are widely used to monitor continuous processes. Like in the
variographic analysis the estimation of the variance of the lot mean is also in this method based on the theory of stratified
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sampling. If the lot is divided into N1 strata of equal sizes (or sublots) of which n1 are sampled, the variance of the lot
mean a is

S§L=%-Z—§+%-%z%,ifM=nlandN2>>n2 (1)
Here s? is the variance between strata mean values and s2 the within-strata variance, N is the size of strata as the
potential number of samples and n2 the number of samples taken from the stratum. If samples are taken from every
stratum only the within-strata variance propagates into the lot average, because N; — n; = 0 . That is the great advance
of stratified sampling. With current process analysers, measurements can be taken at short time intervals and that is
used in the current method to estimate the process average and its variance continuously. Within a short range (or
stratum in this case) a continuous process can be locally modelled with a line. With systematic sampling after a minimum
of three measurements a line can be fitted to this range and the mean and variance of the range mean calculated. That
is the first stratum. When the process progresses, the calculations are repeated for the new strata and values. When lots
of certain sizes and demanding quality specifications are produced, it is important that the quality of the final lot can be
monitored on-line. That makes it possible to classify the product based on the quality.

The method is tested with different kinds of simulated and real data sets. This same method is easy to modify also for
2D and 3D sampling targets.

Principle of the method

With modern process analysers measurements can be taken at short intervals. In chemical processes where large
quantities are processed, changes in average process values are slow. As the consequence of this, within short time
intervals the changes can be effectively modelled with linear models fitted to the measurement results within the
intervals. These short intervals can be treated as sublots forming the total lot monitored. From the predicted values and
residuals, i.e., from the differences between the measured and predicted values, the estimates of the residual variances
and the variances of the sublot mean values can be estimated as shown below.

Local modelling of continuous data

In the following presentation the equations are written using the MATLAB style. A set of measurements a;along time or
distance axes with a constant lag between measurements can be presented as vector y = [ay, ay, ..., a, ], where ni is
number of measurements within the lot. Fitting a line to sublots of two consecutive measurements (systematic sampling)
is done as follows:

_M1 _[@1 G2 An-1
x=[1ob Y=loyar ay | )
b11 b21 an—l,l]
3
bi b o )
Predicted values of Y,,.q = X+ B (4)

Regression coefficients B = X\Y = [

The mean values of the substrata of duplicates are: mean(Y) = \_(] = [ﬁl, a,,. ..,dnL_l] = mean(X) B (5)
2

. . . . S5
The variances of substrataj=1 ... n; -1 are s? = var(Y) and the relative variances are srzj ==

j a;
The variance of the mean value of each stratum j for duplicates is: sél, = sz/z_

The slopes of the lines fitted to duplicates are equal to the differences: B(2,:) = Y(1,:) - Y(2,:) and mean(var (Y)) and
mean(B(2, j)?)/2 are equal to the value of the variogram for lag = 1.

From duplicates it is possible to get the estimates of the total variances of sublots of 1 lag and their pooled value for the
total lot.

The variance of the duplicates var(Y(:,j) = s} = Sire + Stena - If the trend within the lag is approximately constant,
i.e., the slope is approximately constant and s2.,,, = 0, from duplicates it is possible to estimate only sjz. The variance
estimate s3,,,; ~ sZsz + 52,41, is the sum of the fundamental sampling variance and analytical variance. If the properties
and concentrations of the particles in the mixture are known, sZgzcan be estimated theoretically (in variographic analysis
this is usually called the variance of the nugget effect, vo). Many publications recommend that the nugget effect of the
variograms is estimated experimentally by fitting a line to five to ten first variogram points and extrapolating it to lag zero.
That is an easy but unreliable method as was shown by Heikka & Minkkinen* and Minkkinen3.

The observation vector can be folded into the Y matrix containing more than two rows as follows. If n; is the length of
the y vector and it is folded to Y having i = 1 ... j rows; X must be modified accordingly. Again, the columns of X can be
used for all substrata, i.e., the columns of Y of the lot.
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The regression coefficients of lines fitted to substrata (columns of Y) together with predicted values are again obtained

e, b
from equations (3) and (4): B = X\Y = b1y bay, vy Prm1a] g Y,rea = X B, and the mean values of the strata

b12 b22! ey bn,Z
(=columns) of Y are obtained using Eq. (5). The difference to the previous case is that we can also calculate the residual
(measured — predicted) matrix E:

E=Y-Yyea (7)
From the residuals, the residual variance for each substratum j can be calculated:

sf = sum(E(:,/))/( - 2) (8)
The predicted mean values of the substrata j are [61, a,,.. .,dnL_,H] and are again calculated by using Eq. (5.)
The variances of the strata midpoints are

.y (©)

2
S_
aj

After the first j measurements of the lot are available, a line can be fitted to the first column of the matrix Y and the
mean a;-,, residual variance 51-2=1 and variance of the sublot mean, 55,-:1 = jzzl/j , can be calculated. If the measurement

vector is folded according to the Eq. (6) after each new measurement, a new stratum can be added to Y. Calculating the
mean of the substrata j at the midpoint of the range j largely removes the effect of autocorrelation. When the process
progresses a new mean can be obtained as the mean value of the strata covering the ranges from sublot 1 to the last
value included in the lot that is monitored. As every stratum has the mean and standard deviation according to the Eq.
(1), the between-strata variance is eliminated from the variance of the lot mean and only the within strata variances
propagate into the lot mean. When new sub-lots are completed, cumulative values can easily be calculated, e.g., by
using the following short MATLAB code where alLj(1:,j) are the predicted mean values of sublot midpoints from Eq. (5)
and varaLcum(j) the variance of lot mean as function number of strata j :

forj=1:nw-j+1,
aLcum(j) = mean(aLj(1:,));
varaLcum(j) = mean(s2aj)/j;
end

In the following section examples with some simulated and real data sets are analysed with this new proposed method.
For comparison, results are also calculated ignoring autocorrelation. The notation used in presenting results in the
examples are:

Process mean value and variance Ignoring autocorrelation are: a; = mean([al, as, ... ,anL]) and s? =
var([al, a, ... ,anL]). If the autocorrelation is not taken into account, the variance of the process mean is calculated as
function of the number of samples using Eq. 10.

2 _— o2
SaL_sa/nL

(10)

Examples
Example 1 is a simulated data set presenting a process with linear drift. The process and the results modelling the
process with moving windows of three observations are shown in Fig. 1. It shows the line presenting a time interval from
a linearly increasing process and 30 measurements with random noise presenting a nugget effect (sum of the
fundamental sampling error + analytical error of the measurements). Fig. 1 shows also the variogram and the variance
estimates for systematic sampling estimated from the variogram using Gy’s method. When a line was fitted to seven first
values of the variogram, extrapolation to lag = 0 gave for Vo a negative value. As the variance estimate cannot be
negative, a value Vo = 0 was used in estimating the variance estimates corrected for autocorrelation for the systematic
sampling mode.

If the process is linear, the detrending (or correction for autocorrelation) can be made by fitting the line to all
measurement points and calculating the measurement variance from the residuals, Y = [a;; a;; ...;a,,] in Eq (6).
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Figure 1. Example of a linear process with measurement noise (upper panel). The lower panel shows the
variogram. The variogram extrapolated to lag zero gives a negative value. Therefore Vo = 0 was used in
calculating the variance values for systematic sampling (triangles).
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Figure 2. The upper panel shows 30 measurements from the simulated linear process (red dots) and mean of
moving windows of 3 lags. The lower line shows the moving average as function of increasing range. The lower
panel shows the relative standard deviation as a function of the number of measurements; the upper (red line)
ignores the autocorrelation and in the lower panel the relative standard deviation is estimated with the current
method from the consecutive moving windows of three measurements.

The upper panel of Fig. 2 shows the measurements, mean values of the moving windows of three measurements, and
the moving lot mean as a function of measurement, or increasing range monitored. The lower panel of the figure shows,
for comparison, two relative standard deviation estimates as a function of the number of measurements. Many sampling
guides even today ignore the effect of autocorrelation and evaluate the mean and the uncertainty of the mean based on
random distributions like normal, binomial or Poisson distributions. The figure presents both estimates. Table 1 shows
the summary of the results of this experiment. The difference of the uncertainty estimates is large: The relative standard
deviation of the mean, ar, of 30 measurements is clear: 0.73 % ignoring the autocorrelation and 0.0107 % estimated
from the residuals from strata of three measurements using the proposed method. The variogram gave a lower value,
0.098 % because the extrapolation of the variogram to lag zero underestimated the value of Vo.

Example 2 presents the results of a simulated periodic process, also contaminated with a random noise. Table 2 gives
the summary of this process. This data was analysed by using variography. The variogram up to lag 20 and the
estimates of variance of the systematic sampling as function of sampling lag are presented in Fig. 3. In this case
extrapolation to lag zero gave a negative value instead of the expected design value of 0.0165. V, = 0 was used as the
nugget value also in this case for estimating the variance of systematic sampling by using Gy’s method. Gy’s estimate of
the relative standard deviation with lag 1 for the mean of 80 measurements was 0.073%. Estimated from the residuals

the result was 0.085 %.
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Fig. 4 shows 80 of the first measurements from the simulated process, the mean values of moving windows of three
measurements, and the relative standard deviation estimates of the lot of using the current method and ignoring the
autocorrelation.

Table 1. Properties of the linear simulated data set analysed in Example 1. Ignoring the autocorrelation, the
relative standard deviation of the total Lot of 30 measurements is 0.73 %. Estimated from the residuals of the
line fitted to all 30 measurements it is 0.17 %. W is the variance (hugget effect) obtained by extrapolation of the
variogram to lag = 0. Estimated from the variogram by Gy’s method he relative standard deviation estimate is
0.098 %.

STATISTICS MEAN VARIANCE
NOISELESS PROCESS 10.725 0.194
NOISE 0 0.0108
TOTAL, sZ 10.729 0.184
FROM RESIDUALS 0.0107
Vo(EXTRAP) -0.0065

RSD estimates assuming randomness: 100m% =0.73%

10.725

RSD from residuals: 1007“0'1001:27;30% =0.17%

Table 2. Properties of the cyclic simulated data set analysed in Example 2. The Vo estimate was obtained by
extrapolation to lag = 0. The relative standard deviation of the total Lot of 80 measurements is 0.085 % estimated
by the current method, and 0.073 % estimated by Gy’s method from the variogram. If the autocorrelation is
ignored the relative standard deviation estimate is 0.81 %.

STATISTICS MEAN VARIANCE
NOISELESS PROCESS 10.000 0.5063
NOISE 0.0055 0.0165
TOTAL, s2 10.0055 0.5304
FROM RESIDUALS 7.35x10°°
Vo(EXTRAP) -0.13
0.5304
80
RSD estimat: i d : 100 ———% = 0.819
estimates assuming randomness 10.00555 /0 /0
/ -5
RSD from residuals: 100M% = 0.085%
10.00555
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Figure 3. Absolute variogram of the periodic process up to lag 20 and extrapolation to Vo together with the
variance estimates for systematic sampling.
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Figure 4. Upper panel: Process values (red line) and mean values of the windows of three measurements (black
circles) and moving average as function of increasing range. Lower panel: Relative standard deviation estimates
ignoring the autocorrelation (upper line) and the estimates with current method (lower line) as a function of
increasing range.

Example 3: Data for this example was taken from the study carefully analysed by using variography in references®-7.
In that study 100 samples were taken during unloading from a shipload of soybeans. Samples were analysed for
genetically modified material (GMO). In the European Union the material must be labelled as GMO containing material if
the content exceeds 1 %. 0.9 % has been used as the decision limit for acceptance. It is supposed to give a 95%
confidence that the true value does not exceed 1 %. Most sampling guides recommend that sample numbers of 4 to 8 is
sufficient. That is illusory. With the segregation pattern of this example, in the above-mentioned references® -7, with a
sample size of 3000 beans the minimum number of samples (or increments making a composite sample) is 42.

Figure 5 presents the analytical results (ai) as the relative heterogeneity contributions: hi= (aiag - aj)/a the relative
variogram calculated from the heterogeneities. The concentration of GMO material shows high variability. This is a good
data set to demonstrate the value of the method proposed here. If the concentration of the analyte can be measured on-
line, the average quality of the process can be evaluated in real time and the product could be classified based on the
average quality. This example shows what could be achieved with on-line measurement of the GMO content if such a
technology were available. In this example the quality was estimated after each twenty samples taken (equivalent of
dividing the cargo during unloading into five sub-loads). The results are presented in Figures 6 -10 and in Table 3.
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Figure 5. Relative heterogeneity contributions of GMO in 100 samples taken during unloading a shipload of
soybeans together with the variogram.
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Figure 6. Measurements and moving mean calculated from three sample windows of the first substratum
consisting of twenty samples (upper panel). The lower panel shows the relative standard deviation estimate of
the moving mean. The continuous line shows the results if autocorrelation is ignored and the dotted line the
results calculated from the residuals.
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Figure 7. Results of the second stratum of twenty samples.
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Figure 8. Results of the third stratum of twenty samples.
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Figure 9. Results of the fourth stratum of twenty samples.
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Figure 10. Results of the fifth stratum of twenty samples.

Table 3. Summary of GMO example

VARIANCES RSD %

RANGE M(E/SN var(a) From From From
residuals var(ai) residuals
1-20 0.423 0.1431 0.0392 19.6 11.0
21-40 3.32 7.5 2.62 19.3 11.5
41 -60 9.47 16.4 2.82 10.2 4.18
61 -80 4.19 25.9 2.39 26.9 8.70
81-100 2.29 19.1 9.44 33.2 31.6
Mean of ranges 3.94 13.8 3.46 9.4 11.1
1-100 3.96 21.0 3.80 11.6 13.4
Vo(EXTRAP) -0.13

This example shows the advantage of on-line measurements in monitoring continuous processes, raw materials and/or
products. When analytical results are obtained with short intervals, the role of random error can be filtered from the
estimation of the lot mean. A great advantage is, if a product with high quality specifications is manufactured, it can be
continuously classified to product lots according to the quality. Like in this example, the average concentration of the first
fifth of the cargo unloaded from the ship is 0.423 %, well below 1 %, and could be labelled as non-GMO material.

Example 4: Data for this example consisted of 100 process analyser measurements of one of the components at 10
min intervals from the feed to a flotation plant. The variance plot clearly shows the noisy parts of the process and the
moving mean plot how the noisy parts affect the mean of the lot. That can be valuable diagnostic information for process
control.
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Figure 11. Results of a range of 100 process analyser measurements from a feed to a flotation plant. The
sampling interval used was 15 min covering a total of 25 production hours. The top panel shows the analyser
results and the middle panel the residual variance, s]2 , of the windows of j measurements. The lowest panel
shows the variance of the mean of the moving average.

Modification of the method to 2-dimensional lots

It is easy to modify this method to handle also 2-D lots. If the samples have been taken at regular grids, a plane can be
fitted to squares taken from the grid. X and Y need to be redefined:

111 as,
112 _ a1z
X_121 Y_au
12 2 Az

The second and third row of X are the coordinates of the corners of a square on the plane from which the samples are
taken and Y the vector of the corresponding analytical results. Otherwise, the equations used for the 1-D case apply.
Modification for a 3-D case can be done the same way. For a more complicated sampling grid it is possible to use
experimental designs.

Summary

Variography is very useful and a well-established method to analyse the long-range variability of 1-D processes. It can
provide variance estimates for different sampling modes corrected for autocorrelation and for optimising the sampling

interval when samples are cut from the process streams for laboratory analysis. The results are usually available long

after a certain lot is produced. The results are also based on the average values of the process.

Process analysers on the other hand can produce results at high frequency. If the traditional variography is used for
estimating the sampling variance of the lot, only a part of the data is used. The method proposed here gives the results,
variance and mean of the progressing lot in real time. This is especially useful if the product has strict quality
specifications (e.g., medicals, foodstuff, fertilizers). If the product is delivered in containers or big bags, they can be
assigned individual certificates of their content.

While with increasing number of measurements the effect of the random part of the measurement error becomes
insignificant in the lot average, that does not eliminate the systematic errors. A lot of process analysers are based on
different spectroscopic techniques which get information only from a thin layer of the process stream. That can be a
problem when materials which have a high tendency to segregate are analysed. When such materials, like crushed
particles or powders on conveyor belts, are analysed and complete cross-sections cannot be sampled, the only solution
is to randomize, if possible, the material at the point where the process analyser is installed. If that is not possible,
material balance calculations cannot be based on process analyser results. Still, the results can be useful in monitoring
the process behaviour with time.
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Challenges in Quality Assurance and Quality Control Systems Development

Neressa Sukha
144 Oxford Road, Rosebank, Johannesburg, South Africa E-mail: neressa.sukha@angloamerican.com

Quality Assurance and Quality Control (QA/QC) is of critical interest in the mining industry. Over the years,
Anglo American Platinum has adopted a sound strategy of Best Practice Principles (BPP) for mass meas-
urement, sampling, sample preparation, analysis, and metal accounting. Often, much effort is focused on
implementation and maintenance of quality control systems to provide quality assurance. Within the Anglo
American Platinum business units, QA/QC data are deemed of significant value on a day-to-day basis and
on a higher level also provides a means to prove or disprove evaluation and metal accounting disputes be-
tween various sites and/or opposing members of the Joint Evaluation Committee (JEC). Unfortunately,
QA/QC data and associated QA/QC systems alone do not always provide the technical or tangible reasons
to supplement explanations around anomalies in performance. It is sometimes necessary to go beyond
monitoring and focus on interpreting the QA/QC data to comprehend the underlying issues. This paper aims
to showcase a multitude of actual case studies pertaining to troubleshooting of challenges encountered
throughout the Platinum processing pipeline (i.e., Concentrator to Smelter to Refinery). These challenges
range from areas of mass measurement to sampling, to sample preparation and analytical as well as plant
performance. Observations and learnings from these instances indicated that even though stringent QA/QC
was adhered to, it was evident that complying to first principles of mass measurement and sampling theory,
minimum sample mass and an ongoing understanding of individual material characteristics was crucial. It
was also highlighted that the re-assessment of designs, methods and protocols are necessary per material
stream and that a standardization approach across all Anglo American Platinum business units is perhaps
sensible at one time but may not always be appropriate and/or relevant.

Introduction

Anglo American Platinum operations are divided into mining and process respectively. The mining end comprises of open pit and
underground mining, while the process end comprises of Concentrator Plants (fully owned and joint ventures), four Smelters, one
Base Metal Refinery (BMR) and one Precious Metal Refinery (PMR). UG2, Merensky, Platreef and Great Dyke ore reefs are mined
and processed to produce final products including precious metals as well as base metals. The Group Evaluation, Metal Accounting
and Analytical (GEMA) team reside within the Anglo American Platinum corporate function and high-level responsibilities include
ensuring that risk is mitigated through governance of the evaluation, analytical and metal accounting entities with strict adherence
to the AMIRA Code of Practice P754". Frequent evaluation meetings are held between site personnel and GEMA to discuss the
trended quality control data and maintain quality assurance.

With current economic pressures, Lomberg? succinctly emphasizes the challenges with exploration and exploitation of Platinum
Group Element (PGE) deposits since the very low ore grades hover around the detection limits of analytical techniques and
factors such as the nugget effect. Bhattacharya, Islam, Kumar & Santosh?® further mentions that the practice of statistical quality
control in the minerals industry is very limited and variable but can be a somewhat promising technique in terms of quality assur-
ance. According to Simon & Gosson* quality assurance and quality control are the two major components of any quality manage-
ment system. Consistent with the 1ISO definition, quality assurance is ‘the assembly of all planned and systematic actions neces-
sary to provide adequate confidence that a product, process, or service will satisfy given quality requirements,” and quality control
refers to ‘the operational techniques and activities that are used to satisfy quality requirements.’

Quality control plays a significant role in ensuring quality assurance; however, in certain instances quality control systems provide
only a means to consolidate important information in a concise manner without really detecting the problem or non-conformance.
This paper focuses on actual case studies within the Anglo American Platinum Concentrator Plants and Smelters.

Case Study A: Weighbridge mass reconciliation

Wet filtered concentrate material is transported by flexi-side tipper trucks from various Concentrator Plants to the Smelters within
the Platinum Group. In this instance, multiple concentrate streams were directed to one particular Smelter in question. The wet
mass comparison on gross mass was performed between the Sender and Receiver sites to reconcile masses for metal accounting
purposes. The relative difference between the gross masses were calculated and trended as per norm. Figure 1 below illustrates
the gross mass comparison for Stream A over a period.

doi: https://doi.org/10.1255/tosf. 136 Published under a Creative Commons BY-NC-ND Licence
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Figure 1. Gross Mass Comparison for Stream A.

The % relative difference between the Sender and Receiver was generally within the control limit of £1% set by Group Metal
Accounting and thus the site metal accountant did not immediately raise any concerns. However, after further discussion at an
evaluation meeting, it was agreed that a bias clearly existed with the Sender site weighbridge consistently reading higher masses
than that of the Receiver site. Even though a quality control system was in place, this did not ensure that the problem was
identified, investigated, and resolved immediately. In addition to this, the Receiver site also consolidates weighbridge mass data
via an automated system. The system is setup to pre-calculate the % relative difference and if exceeded, security personnel and
the site super user need to investigate further. Upon discussion with site personnel, it was clear that a gap existed between the
amount of these occurrences and the implication thereof.

Bi-monthly weighbridge checks using certified weights is a Group Standard and this site had deviated from this and therefore
there was no way of confirming if the Receiver’s weighbridge was accurate or not. Further mass comparisons were performed for
other incoming and outgoing streams at the Receiver site and the same pattern emerged. A full weighbridge re-calibration was
then initiated, and the original equipment manufacturer conducted the calibration. Prior to calibration, the weighbridge and asso-
ciated parts were inspected. It was found that one of the load cells which contribute to the overall truck gross mass value was
defective. The defective load cell was subsequently replaced, and the data post calibration was trended. Figure 2 below illustrates
the mass comparison for Stream A before and after the weighbridge load cell replacement and re-calibration.
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Figure 2. Gross Mass Comparison for Stream A after Re-calibration.

Having replaced one load cell and re-calibrating the weighbridge lowered the % relative difference values to be unbiased and
well within the control limits. Furthermore, if the bi-monthly weighbridge checks using certified test weights were done, this would
have possibly outlined the problem earlier rather later. In this case study, it is observed that systems are in place to minimize risk
by monitoring and controlling certain variables however, if the highlighted warning signs through quality control systems are not
acknowledged and actioned then one can go on without realizing the implication thereof. The possible outcome of this scenario
has a domino effect. The Smelter accountability could be skewed because of under estimation of inputs, and in-situ stock com-
parison with theoretical stock would not tie up. In addition, since the Smelter is deemed the Receiver and the Concentrator Plants
are deemed the Sender, and the Receiver mass is the official mass used for metal accounting purposes, the Concentrator plant
would also have an inflated recovery and over-accountability.

Case Study B: Specific gravity comparison

An Anglo American Platinum Smelter receives two independent, PGM enriched concentrate streams from two Concentrator Plants
respectively. The respective concentrate streams are transported by pipe to the concentrate handling area located at the Smelter.
Each concentrate stream is sampled by means of a vezin-vezin sampler combination. The primary increment is sub-sampled by
the secondary vezin and the sample is then deposited into two stationery openings 180° apart. The vezin-vezin combination is
designed and operated according to the principles of Theory of Sampling and as such representative samples are always ensured.
The density of the respective concentrate streams is reported in terms of Specific Gravity (SG). An A and B sample results per daily
LOT. The SG of the A sample collected during sub-sampling of the day tank is determined during sample preparation done at the
Evaluation Laboratory within the Smelter. The B sample is reserved for backup purposes. In addition, an SG determining instrument
is installed on the concentrate weigh tanks of both Concentrator Plant 1 and Concentrator Plant 2. The SG from the instrument is a
calculated value based on differential pressure. To date, both the sample SG and instrument SG have been trended and compared
together with the % solids of the samples collected.

The contractual agreement between the Smelter and the Concentrator Plants states that a penalty may be invoked (at the dis-
cretion of the Smelter) should the average of the individual monthly SG readings obtained from the instrument SG be less than a
value of 1.600. Furthermore, the instrument SG is the official SG to be reported with the % solids being the input for metal
accounting purposes. Concerns were raised around the reliability and accuracy of the instrument SG data being reported. To
address these concerns and assist the Smelter with a methodology to follow, sample SG and instrument SG data from November
2016 to February 2018 was analysed.

Monthly Weighted SG — Difference between Sample and Instrument SG
A monthly weighted SG for the Plant 1 and Plant 2 streams were calculated for the Sample and Instrument, and the difference
between these values was then determined. All raw data was used as part of this analysis and no data was removed as possible
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outliers to give an overall indication of worst case scenario. Table 1 and Table 2 below provide a summary of the monthly weighted
SG data for Plant 1 and Plant 2 respectively.

Table 1. Plant 1 Monthly Weighted SG Data.

Month SG — Sample (Lot) SG - Instrument Difference (Sample - Instrument)
Nov-16 1.560 1.529 0.031
Dec-16 1.581 1.562 0.019
Jan-17 1.609 1.584 0.025
Feb-17 1.622 1.597 0.025
Mar-17 1.628 1.609 0.019
Apr-17 1.651 1.623 0.028
May-17 1.613 1.610 0.003
Jun-17 1.622 1.607 0.015
Jul-17 1.616 1.598 0.018
Aug-17 1.569 1.571 -0.002
Sep-17 1.597 1.573 0.024
Oct-17 1.614 1.586 0.028
Nov-17 1.623 1.581 0.042
Dec-17 1.553 1.568 -0.015
Jan-18 1.570 1.521 0.049
Feb-18 1.577 1.623 -0.046

Data has been factorized and site details omitted for confidentiality purposes.

Table 2. Plant 2 Monthly Weighted SG Data.

Month SG - Sample (Lot) SG - Instrument Difference (Sample - Instrument)
Nov-16 1.564 1.605 -0.041
Dec-16 1.667 1.627 0.040
Jan-17 1.637 1.606 0.031
Feb-17 1.635 1.594 0.041
Mar-17 1.685 1.652 0.033
Apr-17 1.672 1.640 0.032
May-17 1.639 1.620 0.019
Jun-17 1.696 1.650 0.046
Jul-17 1.661 1.637 0.024
Aug-17 1.633 1.620 0.014
Sep-17 1.661 1.636 0.024
Oct-17 1.609 1.632 -0.024
Nov-17 1.623 1.581 0.042
Dec-17 1.553 1.568 -0.015
Jan-18 1.634 1.645 -0.011
Feb-18 1.621 1.637 -0.016

Data has been factorized and site details omitted for confidentiality purposes.

From Table 1, the calculated monthly weighted Plant 1 SG for the Instrument was less than 1.600 for November and
December 2016, January, February, July — December 2017 and January 2018.

From Table 2 previously, the calculated monthly weighted Plant 2 SG for the Sample was less than 1.600 for February, November
and December 2017. It appears from the data in Table 1 and Table 2, that the Plant 2 stream delivers a higher and more consistent
SG than that of the Plant 1 stream. It is also notable that the Instrument for intermittent periods generally reports a lower SG than
that of the Sample SG for both Plant 1 and Plant 2 streams. A possible reason for this may be that settling of solids is present in
the weigh tanks and therefore the solids present in the area below the bottom pressure probe is not accounted for. Having said
this, for other time periods, the difference between the Sample SG and Instrument SG for both streams is positive and negative
which indicates that a consistent bias is not present since introduction of the Instrument. One might argue however that there are
consecutive periods where the difference between the Sample SG and the Instrument SG is one sided and is therefore bias.
Using the monthly SG data for both methods, the Standard Deviation (SD) on the difference between the Sample SG and Instru-
ment SG was determined for both streams. Applying the standard deviation on the difference between the Sample SG and
Instrument SG resulted in the following summary as per Table 3 and 4:
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Table 3. Plant 1 Monthly Weighted SG Data — Standard Deviation on Difference of SG’s.
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Volume — Instru- Difference 1sd (calcu-

Month Sample (Lot) ment | (Sample - lated for each +1sd -1sd | +2sd | -2sd | +3sd | -3sd
nstrument) | month data)
Nov-16 1.560 1.529 0.031 0.060 PASS | PASS | PASS | PASS | PASS | PASS
Dec-16 1.581 1.562 0.019 0.090 PASS | PASS | PASS | PASS | PASS | PASS
Jan-17 1.609 1.584 0.025 0.065 PASS | PASS | PASS | PASS | PASS | PASS
Feb-17 1.622 1.597 0.025 0.082 PASS | PASS | PASS | PASS | PASS | PASS
Mar-17 1.628 1.609 0.019 0.027 PASS | PASS | PASS | PASS | PASS | PASS
Apr-17 1.651 1.623 0.028 0.074 PASS | PASS | PASS | PASS | PASS | PASS
May-17 1.613 1.610 0.003 0.074 PASS | PASS | PASS | PASS | PASS | PASS
Jun-17 1.622 1.607 0.015 0.052 PASS | PASS | PASS | PASS | PASS | PASS
Jul-17 1.616 1.598 0.018 0.029 PASS | PASS | PASS | PASS | PASS | PASS
Aug-17 1.569 1.571 -0.002 0.034 PASS | PASS | PASS | PASS | PASS | PASS
Sep-17 1.597 1.573 0.024 0.045 PASS | PASS | PASS | PASS | PASS | PASS
Oct-17 1.614 1.586 0.028 0.038 PASS | PASS | PASS | PASS | PASS | PASS
Nov-17 1.623 1.581 0.042 0.145 PASS | PASS | PASS | PASS | PASS | PASS
Dec-17 1.553 1.568 -0.015 0.135 PASS | PASS | PASS | PASS | PASS | PASS
Jan-18 1.570 1.521 0.049 0.045 FAIL | PASS | PASS | PASS | PASS | PASS
Feb-18 1.577 1.623 -0.046 0.060 PASS | PASS | PASS | PASS | PASS | PASS
Table 4. Plant 2 Monthly Weighted SG Data — Standard Deviation on Difference of SG’s.

Volume — Instru- Difference 1sd (calcu-

Month Sample (Lot) ment | (Sample - lated for each | +1sd -1sd +2sd -2sd +3sd -3sd
nstrument) month data)

Nov-16 1.564 1.605 -0.041 0.042 PASS | PASS | PASS | PASS | PASS | PASS
Dec-16 1.667 1.627 0.040 0.081 PASS | PASS | PASS | PASS | PASS | PASS
Jan-17 1.637 1.606 0.031 0.110 PASS | PASS | PASS | PASS | PASS | PASS
Feb-17 1.635 1.594 0.041 0.044 PASS | PASS | PASS | PASS | PASS | PASS
Mar-17 1.685 1.652 0.033 0.059 PASS | PASS | PASS | PASS | PASS | PASS
Apr-17 1.672 1.640 0.032 0.115 PASS | PASS | PASS | PASS | PASS | PASS
May-17 1.639 1.620 0.019 0.055 PASS | PASS | PASS | PASS | PASS | PASS
Jun-17 1.696 1.650 0.046 0.042 FAIL | PASS | PASS | PASS | PASS | PASS
Jul-17 1.661 1.637 0.024 0.034 PASS | PASS | PASS | PASS | PASS | PASS
Aug-17 1.633 1.620 0.014 0.039 PASS | PASS | PASS | PASS | PASS | PASS
Sep-17 1.661 1.636 0.024 0.058 PASS | PASS | PASS | PASS | PASS | PASS
Oct-17 1.609 1.632 -0.024 0.076 PASS | PASS | PASS | PASS | PASS | PASS
Nov-17 1.623 1.581 0.042 0.145 PASS | PASS | PASS | PASS | PASS | PASS
Dec-17 1.553 1.568 -0.015 0.135 PASS | PASS | PASS | PASS | PASS | PASS
Jan-18 1.634 1.645 -0.011 0.050 PASS | PASS | PASS | PASS | PASS | PASS
Feb-18 1.621 1.637 -0.016 0.026 PASS | PASS | PASS | PASS | PASS | PASS

From Table 3 and 4 respectively, only one failure is noted for Plant 1 and Plant 2 on the 1SD limit for the difference between the
Sample SG and Instrument SG.

% Co-efficient of Variation —Sample SG and Instrument SG
The % Co-efficient of Variation (COV) was calculated for the period November 2016 to February 2018, taking into account the
Sample SG data and the Instrument SG data. In general, a % COV below 5% indicates an acceptable performance. For Plant 1
and Plant 2, the % COV (with any possible outliers) were calculated as follows in Table 5:
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Table 5. %COV with Possible Outliers.

Plant 1 Plant 2 Target
% COV for Sample SG 5.04 5.13 5.00
% COV for Instrument SG 2.89 2.73 5.00
% COV for SG Difference (Sample SG — Instrument SG) 3.65 3.77 5.00

The Instrument SG data resulted in a lower % COV of 2.89 compared to the Sample SG % COV of 5.04% for Plant 1. Similarly,
for Plant 2, the Instrument SG data resulted in a lower % COV of 2.73 compared to the Sample SG % COV of 5.13% This indicates
that the instrument performance is consistent (precise but not necessarily accurate) over a long period of time. Furthermore, the
% COV for the SG difference between the Sample SG and Instrument SG was calculated to be below 5% for both streams.

For Plant 1 and Plant 2, the % COV (without outliers) were calculated as follows in Table 6:

Table 6. %COV without Possible Outliers.

Plant 1 Plant 2 Target
% COV for Sample SG 3.09 3.91 5.00
% COQV for Instrument SG 2.60 2.63 5.00
% CQV for SG Difference (Sample SG — Instrument SG) 2.04 2.30 5.00

The SG outliers were determined by plotting a histogram of the historical data and removing the values which did not appear for
more than 0.6% (frequency of less than 5 times in an excess of 400 data points) of the total data points. Again, the same conclu-

sion around the Instrument SG performance was noted as per above.

Variograms: Sample SG vs. Instrument SG

Variograms were also produced using the Sample SG data and Instrument SG data for period November 2016 to February 2018.

For Plant 1, the VO value was 0.729 and 0.251 for the Sample and Instrument respectively indicating that the error associated
with the Sample SG data is almost three times that of the Instrument SG data. Figure 3 and 4 indicates the Plant 1 variogram for

the Sample and Instrument respectively.
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Figure 3. Variogram for Sample SG data — Plant 1.
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Figure 4. Variogram for Instrument SG data — Plant 1.

For Plant 2, the VO value was 0.875 and 0.309 for the Sample and Instrument respectively indicating that the error associated
with the Sample SG data is again almost three times that of the Instrument SG data. Figure 5 and 6 indicates the Plant 2 variogram
for the Sample and Instrument respectively.
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Figure 5. Variogram for Sample SG data — Plant 2.
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Figure 6. Variogram for Instrument SG data — Plant 2.

In both cases, the Instrument gave a better correlation (indicated by the longer lag periods) than that of the Sample. This provides
confidence that the instrument can provide a more consistent and reliable SG value than that of the Sample which is prone to
human errors.

Control Limits — Difference between Sample SG and Instrument SG
Control limits (+1SD, +2SD & +3SD) for the difference between Sample SG and Instrument SG was determined using the data from
December 2017 to February 2018 — refer to Figure 7 and 8.
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Figure 7. Control Chart — Plant 1.
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Control Chart - Difference between Sample (Lot) - Instrument
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Figure 8. Control Chart — Plant 2.
The number of data points failing the respective SD limits are summarized in Table 7 and 8 below.

Table 7. Failures corresponding to Control Limits — Plant 1.

73

Plant 1 +1SD -1SD +2SD -2SD +3SD -3SD
(PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL)

Number of Data Points - FAIL 29 5 7 0 2 0

Number of Data Points - PASS 54 78 76 83 81 83

% FAIL 34.94 6.02 8.43 0.00 2.41 0.00

% FAIL 6.83 1.41 0.40

Table 8. Failures corresponding to Control Limits — Plant 2.

Plant 2 +1SD -1SD +2SD -2SD +3SD -3SD
(PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL) | (PASS/FAIL)

Number of Data Points - FAIL 11 1 3 0 1 0

Number of Data Points - PASS 74 84 82 85 84 85

% FAIL 12.94 1.18 3.53 0.00 1.18 0.00

% FAIL 2.35 0.59 0.20

From analysing the % failure, it is recommended that a control limit of +2SD be implemented for decision making around how to

proceed when differences between the Sample SG and Instrument SG result.

% Solids vs. Sample SG/Instrument SG

The % solids is determined from the daily sample and is highly dependent on how the sample is retrieved from the sampling point
and handled in the Evaluation Laboratory. A Pearson correlation was done between the % solids and Sample SG as well as between
the % solids and the Instrument SG for both streams. It both instances, the Pearson correlation co-efficient was slightly better for
the Sample than the Instrument. This is due to the % solids being determined from the physical sample itself. In addition, the

Pearson correlation co-efficient calculated indicated a poor correlation between % solids and the SG data.

A theoretical calculation was then done to determine what the % solids calculated would be compared to the % solids measured
during sample preparation. From theory, the solid ore SG for Plant 1 and Plant 2 is approximately 3.2 and 4.0 respectively. It is

assumed here the blending of ore types or treating of waste does not occur.

Parity charts were plotted to compare the % solids measured and the % solids calculated values for Plant 1 and Plant 2 respec-

tively — refer to Figure 9 and 10.
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Parity Chart of % Solids Measured vs. % Solids Calculated Sample - Lot/Instrument
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Figure 9. Parity Chart — Plant 1.

% Solids Measured

Figure 10. Parity Chart — Plant 2.
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As expected, in both cases, the % solids calculated from the Sample SG compares better with the % solids measured as they
are inherently related whereas the Instrument SG is not. This tool however can be used to quickly assess if the % solids measured

is within range or not.

Through this exercise of analysing the actual data, a quality control methodology was derived. As per previous illustrations, a
control limit of £1SD and +2SD should be implemented for decision making around how to proceed when differences between

the Sample SG and Instrument SG result:

o |f the difference is greater or smaller than the 1SD limit of 0.047 for Plant 1 and 0.040 for Plant 2 respectively, then the
SG and % solids on the B sample may be done.

o |If the difference is greater or smaller than the 2SD limit of 0.094 for Plant 1 and 0.080 for Plant 2 respectively, then the
SG and % solids on the B sample must be done.

e Ifthe SG of the B sample compares well with the SG of the A sample but the % solids of the A and B sample differ, then
determine the % solids calculated and compare with the % solids measured to get an indication if something went wrong
with the sample preparation of sample A, sample B or both samples A and B;

e The control limits must be reviewed every six months with assistance from Group Evaluation Metal Accounting and
should be implemented by the Smelter thereafter.
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This case study highlights the statement made by Bhattacharya et al.3, in that statistical quality control is a promising technique
with regards to quality assurance. There is also a need to re-assess upper and lower control limits from time to time and to
determine what is an appropriate limit based on the expectations and instrument capability.

Case Study C: Poor 4T accountability

The importance of sampling in the mining industry cannot be over-emphasized, whether in exploration, in mining or in mineral
processing®. The conventional wisdom suggests that when the rules and procedures for representative sampling are well defined
and followed and the sampling equipment is in good order, unbiased samples will be obtained. In sampling, there are two major
areas where bias can exist, namely, sampling and sample preparation. Sampling bias generally occur when (i) increments coincide
with cyclic events (ii) when only a portion of the stream is being sampled (iii) where cutter specifications are not being adhered to
(iv) when sample containers are overfilled®. Therefore, the best defence against any sampling bias is the correct sampling protocol,
correct mechanical design of the sampling rig and adequate control and maintenance during its operation®1°.

The 4T (individual elemental analysis comprising of elements: Platinum, Palladium, Rhodium and Gold) accountability for all
Concentrator Plants within Anglo American Platinum is calculated, charted and is used as a risk management tool to rapidly
determine metal content discrepancies between input and output streams. A UG2 Concentrator Plant was historically under-
accounting in terms of Platinum Group Metals (Platinum, Palladium, Rhodium and Gold). The current practice at this Concentrator
Plant is that crushed run-of-mine UG2 ore is milled in a semi-autogenous (SAG) mill and the mill product is classified using a
screen to produce undersize and oversize material streams respectively. The oversize classification screen material is sent back
to the SAG mill for further grinding. The undersize material is gravity fed to a surge tank and this material is then pumped to the
primary rougher flotation circuit. Prior to being fed to the primary rougher flotation circuit, the material is sampled by an automatic,
two-stage, vezin-vezin sampler as seen in Figure 11.

~ Primary slurry sample

Official slurry sample
Reject slurry sample

Figure 11. Vezin-Vezin Sampler Combination?.

The debate on the source of under-accounting pointed towards possible non-representative sampling or biased sampling occur-
ring in the Concentrator Plant feed sampling system. There were numerous indications that pointed in the direction of the feed
sampling system being the problem. Process related challenges such as poor classification screening efficiency and missing
classification screen panels led to unnecessary chokes in the feed to the vezin-vezin sampling system. These chokes only height-
ened the poor accountability trend further. Internal and external audits conducted indicated that all the other parameters contrib-
uting to the determination of the accountability value were not to be questioned. There were also no obvious or noted changes in



76 Challenges In Quality Assurance And Quality Control Systems Development

ore blend ratios and primary mill grind. A sensitivity analysis done using the plant accountability model also indicated that the
likely contributor to the poor accountability was the feed grade as opposed to the other parameters. It was hypothesized that the
main reason for the consistent under-accounting may be due to over sub-sampling of finer material into the official samples and
consequently under sub-sampling of the coarser material present in the feed slurry streams. UG2 feed material size by assay
analyses indicate that higher platinum and palladium grades are associated with the sub 75um size fractions as opposed to the
coarser size fractions above 75um’. Indications are that because of the under sub-sampling of coarse material, the head grade
of the feed into the plant is overstated leading to an under accountability of metal content.

Conventionally, a primary vezin or linear cross stream sampler is used to take a minimum number of primary increments per
sampling campaign. For larger increments the flow through the secondary vezin, could be restricted by means of a conical hopper
with regulated compressed air at the reduced hopper outlet to agitate the primary slurry increment until sub-sampling is complete.
The air agitation alone did not keep all particles, of varying size and density in “equal” suspension throughout the sub-sampling
duration of the primary increment. The finer, high-grade particles were suspended for much longer compared to the coarser and
heavier, low grade particles resulting in a final sample that was biased low in coarse, low grade particles. This was established
through a series of vezin credibility tests. To combat the resulting segregation error, a re-design of the intermediate hopper system
was considered, and this included (i) retrofitting the design of the discharge nozzle on the original hopper (ii) use of a new hopper
design, that mechanically agitates the slurry with an original discharge nozzle design (iii) use of a new hopper design with the
new discharge nozzle design. Replica vezin credibility and chronological sub-sampling tests were done using all the intermediate
hopper configurations to measure the evident bias. The results obtained using the original hopper and new nozzle design showed
the best improvement in the bias related to particle size distribution in the sub-sample and reject, indicating that particle segre-
gation had been significantly reduced to give more credible sampling results.

From Figure 12 below, a notable improvement in plant accountability was realized with an unbiased relationship between build-
up (calculated) and measured feed grade?.

UG2 Concentrator

4T Accountability (%)

Figure 12. 4T Accountability.

The nozzle re-design, although effective in significantly reducing the bias between the official sub-sample and reject sample, was
still limiting in that only a certain number of primary increments could be taken per shift or per sampling campaign. The nozzle re-
design did not cater for any process variability. By producing a variogram, the time interval that a sample needs to be taken to
overcome process variability can be determined. This comment is further supported by Esbensen® statement that “Variographic
analysis of the specific lot heterogeneity is demonstrated to furnish a reliable basis upon which to estimate a minimum number
of increments needed to suppress total sampling error below a regulatory threshold”. The mechanically agitated hopper (MAH)
design of 60L capacity together with the nozzle re-design allows for superior benefits including additional flexibility to increase
the number of primary increments taken per campaign, agitating and circulating the collected increments and sub-sampling there-
after to produce a more representative sample. This will be applicable in all sampling scenarios but more specifically in scenarios
where the process variability in the feed (such as mill grind) is high and increments need to be taken over shorter but regular time
intervals. It is envisaged that the MAH will eventually replace all conventional intermediate hoppers in the Platinum division. The
initial cost or capital outlay for the mechanically agitated hopper is estimated to be in the region of 200 000 ZAR per sampling
point. As an illustration, given that two metal accounting points exist, the risk of a parameter such of recovery being inaccurate
by +1% over a 12-month period for five years amounts to a Net Present Value (NPV) of +244 million ZAR with a payback period
of 2 days. In this case study, mere trending of relevant data was not enough to pinpoint the actual issue and it was highlighted
once again that understanding and evaluating ones’ material characteristics is indeed not a once off task.
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Case Study D: Poor analytical precision

Crushed dry material sub 3mm is the final product from the Anglo Converter Plant (ACP) and is sent to the BMR for further refining.
This material is rich in platinum group metals as well as base metals with Platinum grades ranging between 1000g/t and 2000g/t.
The material is sampled via a vezin sampler, and the resulting sample is further processed at the Evaluation Laboratory. Sample
splits from the final laboratory purpose splitting method are sent to two internal analytical laboratories and the analytical precision
is then determined. The particle size required for assaying this material and any other material in the Platinum Group has historically
been 90% (by mass) passing 75um. This requirement is necessary to have a properly mixed sample that is relatively homogeneous
before sampling for fluxing and subsequent analysis. A sample containing precious metals that is not properly mixed for homoge-
neity will always result in twin stream analysis discrepancies due to the nugget effect.

Over the years, much focus has been placed on evaluating this material stream. The paper by Kruger & van Tonder'® showcases,
in much detail, the process that took place to explain poor accountabilities between the ACP and BMR. An audit and physical
inspection as well as a change in the sampling protocol and sampler itself was introduced to eliminate the confirmed sampling
bias. Following all these interventions, the accounting between the ACP and BMR had been restored to be within statistical limits
with the difference between physical and theoretical stock being below 5% relative to the cumulative input.

For some time, however, the inter-laboratories precision have been outside the relative standard deviation limits of 5%, indicating
poor precision and thus prompting further investigation. After much test work, it was observed that during the final splitting method
of the sample, the presence of platelets following rod milling was the main contributor to the variability in grade between the
sample splits sent to the two internal laboratories. It is believed that during rod milling, heat is generated and may cause smearing
which in turn creates platelets being higher in grade than the remaining particles within the sample. Kobe & Kruger'" outlines the
details pertaining to the history behind the need for wet rod milling of the crushed dry material prior to assaying. This case study
supplements all the observations and comments made in the previous case studies in that assigning a sampling protocol is a
continuous process. Even through the material characteristics were well understood and the minimum sample mass was imple-
mented and adhered to, other factors such as sampling and sample preparation errors/non-conformances could easily negate
that impact and create further issues downstream. In this case study, the devil was in the detail and looking beyond the quality
control was necessary to alleviate the problem. It was essential to re-visit the development of the knowledge base for this material
type and emphasize the need to assess materials individually on a chemical and physical basis and assign control limits specific
to the material type. The understanding and importance of rod milling was only the beginning and further investigation was needed
for overall optimization.

Conclusion

The case study examples collectively highlights one common question: How does one bridge the gap between having QA/QC
systems in place, realizing that there may be an area of concern, and subsequently resolving the concern. For now, the answer
remains with continuous, real-time trending of QA/QC data using data analytics in conjunction with equipment inspection and audits.
In addition, it ultimately amounts to following basic principles and fully understanding one’s material characteristics. QA/QC systems
are the key to supplementing further investigation and should be treated as such.
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Better sampling, preparation, and analysis (SPA) can improve the precision of results for resource
grades and commodity trading. What we are often asked by customers is how they might quantify these
improvements in terms of economic benefits.

One way to do this is by applying the SPA precision of your results to the selling price of the resource.
In this paper, a deeper look into resource pricing methodology for iron ore will be undertaken and how
improved precision, on the quantification of the critical elements in this product, can affect the sell-
ing/purchase price of this commodity.

Using a real-world example, this paper will show the results of a basic business case study, investigat-
ing the return on investment (ROI) for a Sampling Improvement Project (SIP) including a well-designed
sampling, sample transport, sampler preparation and analysis facility. The investigation will include the
estimated total cost of the SIP, from the problem statement to implementation, together with an estimate
on operational costs. This is then compared to the potential profit gains that the SIP could provide.
Primary focus will be on structures/methods used to determine commodity prices, how the measure-
ment of the concentration of the critical elements link to pricing, and how variations in measured vs
actual concentrations effect the final price. Also considered will be the economic benefits of faster more
reliable data collection as well as improved quality moisture measurement.

Introduction

There is a lot of consideration within the sampling community around how better sampling, preparation, and analysis
(SPA) improves the precision of results for resource grades. The debates, however, often fail to demonstrate how monetizing
this improvement can be quantified. Some of these debates and discussions have been highlighted and discussed in the
October 2021 edition of Spectroscopy Europe under the special section on Economic Arguments for Representative Sam-

pling™.

One way to attempt to quantify this monetary improvement is by applying the SPA precision of your results to the selling
price of the resource and then balancing these differences in precision against the costs of improving precision.

The higher the price that resource companies can sell the resource for (with the same cost base) the more profit they can
realize. On the same note, the lower the price that consumers (refineries etc.) can purchase the resources for (with the same
quality), the more profits they can realize. Two obvious statements but points that tend to be overlooked when delving into
the details of motivating for budget to install or upgrade sampling and sample preparation systems.

There is typically a large penalty payable by producers if they overstate the critical element content of their respective
resources. It is, therefore, common for producers to understate measured content by the level of confidence or precision
they have in their SPA results. The consequence of this is a larger discrepancy in the price they can sell their resource at,
compared to what they could be selling it at. The further away from the actual value that the reported value is, the more the
producer will lose if the content is understated.

Discussions below will show the results of an investigation into resource pricing methodology for iron ore, and how im-
proved precision, on the quantification of the critical elements, in these products can affect the selling/purchase price.

The investigation will include the review of structures/methods used to determine the commaodity price, how the measure-
ment of the concentration of the critical elements drive this pricing and how variations in the concentrations effect the final
price. It will also look into a few other economic benefits of a SIP, such as how improved turn-around-time on results, whilst
still maintaining confidence in the results, can add to profits earned.

To understand the true ROI it is also important to know what the total cost of the SIP will be, not only the final project, but
also the investigations required to establish that a SIP is required, and what systems will be needed to suitably fulfil these
requirements. This all requires many man-hours and other resources, all of which have an associated price tag. In addition
to this, the final installed system (sampling, sample transport and laboratory) often holds a large price tag that, and if not
properly understood and explained to stakeholders, could already put a stop to a project before it has started. Estimations
of these costs, based on real world projects, are discussed, and compared to potential gains as well as the cost of lost time
whilst the project is underway (i.e., the cost of not having optimal results until the upgraded system is in place). The results
of the comparison are used to illustrate what ROI can be expected based on a relatively large automated SIP.

Although this paper is focused on iron ore, the principles of the discussion are universal to all other commodities. Effec-
tively, giving the seller or purchaser the tools to evaluate their product to the highest level of confidence possible will also
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enable them to assign the most suitable price tag to the commodity, whilst maintaining or reducing the risk of penalties from
over/understating the commodity quality.

Cost benefits for an Iron Ore port facility

Before we look at the cost savings of a sampling improvement project it will be prudent to investigate the time and cost
that is involved in initiating and implementing the project; it is important to establish an understanding of what to expect when
approaching this matter. Sampling improvement projects (SIPs) are often shut down before they are started, often because
of the perceived high capital cost required for these projects. It is important, therefore, to understand these expected costs
from the start and ensure stakeholders are aware of what they should expect to pay for their improved profits that a well-
executed SIP will bring them.

The time and costs do not start at order placement on a supplier for the manufacture and integration of a system, but
instead they start quite a way back up stream of this. Time, and therefore costs, start already at the investigation stage
where it is necessary to establish if there are any improvements possible in a given system. The question could be asked;
“why spend time and money investigating a system that is producing as expected and has not shown any signs of concern?”
As you will see later in the discussion, the longer an improvement takes to be defined and rectified, the larger the value of
the net “un-known” profit loss will be. It is for this reason that regular investigations should be carried out with the intent of
continually improving the process.

What will also be highlighted here is the criticality of installing the best possible sampling, preparation and analytical (SPA)
system the first time around. This is, primarily, because the cost that will be incurred for the upgrade is far outweighed by
the potential profit not realized during the time that it takes to establish the problem, specify a solution, engineer the solution,
manufacture, and integrate the solution.

Scenario requiring a SIP
Although the figures used in the example below are based on actual projects of this nature, the author has chosen to
represent these figures as a hypothetical project for the purposes of this paper.

Scenario: Here we consider an existing (brown fields) Iron Ore port facility where Iron Ore is blended from stockpiles to
achieve a required product grade and transferred via conveyor into a ship hold at a design rate of 5000tph. This facility was
initially designed and built with an appropriate SPA system for the nominated throughput, but over time the port increases
its loading capacity to 10000tph (50MTPA), whilst failing to upgrade the SPA system accordingly.

What could be wrong with the brownfields sampling system after the plant is upgraded to the higher loading
rate?

This is a common problem that, | am sure, most operators have experienced at some point in their careers. Listed below
are few possible problems that this facility could face until their sampling, preparation and analytical system is corrected (in
no order of importance):

e With increased flow rate, and therefore likely increased belt speed, the primary sample cutter angle could be too
shallow for the new flow (i.e., the cutters are no longer cutting through the stream at 90deg)

o With increased burden depth the cutter aperture may no longer accommodate the entire stream

e The flow rate of material could be causing the cutter spoon to fill up to quickly and therefore not all sample is
collected in the cutter aperture as it passes through the stream (i.e., material could be steadily overflowing out of the cutter
as it passes through the stream)

e ltis possible that the drive to move the cutter through the stream is not strong enough for the new rate and therefore
battles to move at a constant speed through the material stream

e  Precious maintenance and inspection SOPs will no longer be suitable as there will now be a higher wear rate on
the cultters, this could be resulting in worn cutters going unnoticed for longer than acceptable

e  Because of the higher flow the primary sample will be larger (assuming the cutter was already moving through the
stream at 0.6m/s and therefore could not be increased further), the secondary sampler and other downstream equipment

(feeders, crushers, and the like) may also be undersized to handle the new sample mass

o  With the faster loading rate and the required number of increments remaining the same, the time between primary
cuts will be greatly reduced which could result in backlogs in the downstream sampling, sample preparation and analytical
systems (leading to possible sample loss, sample mix-ups etc.). This often results in the plant reducing the number of
increments which of course could be detrimental to the precision of the sample results due to the increase in sample
variance (because of time variation of grade), especially if there is a high level of variability in the ore.

e  With larger samples, manually transporting these to the laboratory could now be a concern (further delaying the
sample from getting to the laboratory and also furthering the risk of sample degeneration before it reaches the laboratory)

All these problems will result in a number of sampling errors and likely sample preparation and analytical errors as well, if
the laboratory is not set up to handle the new load of samples. The financial damage these errors can result in, even if a
small error (i.e., resulting in even a 0.1% degradation on precision of results) can be catastrophic. What is even more
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alarming, is that these financial losses are almost never even detected - it is difficult to assign a value to a profit most

organisations don’t even know they are losing out on.

Analysis of the cost of the large upgrade project

Labour costs. It is often months or years before an alarm is raised that there could be an opportunity to gain additional
profits from a SIP. Then from the date that this alarm is raised, as can be seen in the Table 1, it will typically take approxi-

mately 3 years to detail and implement an upgraded solution.

As seen in Table 1 and illustrated in Figure 1, between the project owner and their suppliers, approximately 30 000 man-
hours are typically spent during this period for engineering (electrical, mechanical, software, etc.), process and sampling
specialists, technicians, procurement, management etc. to develop these primary stages:

Table 1: SIP life-cycle stage duration
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Sampling Improvement Project (SIP) life-cycle stages

Cumulative days

Total man-hours

Identification of problem/opportunity for better sampling 60 days 732.00
Consultation with industry on what is required 60 days 110.00
Testing to quantify what the current situation is and a simulation of what could be possible to 40 days
quantify what improvement can be made 1340.00
Define what can be changed to be able to act on better sample information (i.e. what process 60 days
can be changed/modified in reaction to the sample results to better improve profits) 410.00
Business case model of what the hidden costs of not improving sampling to analysis are 40 days 350.00
Prepare and issue specification documents for tender 80 days 700.00
Adjudicate tender responses 20 days 310.00
Order placement on successful bidder 20 days 10.00
Detailed design of sampling to analysis system 160 days 16352.00
Manufacturing of systems 100 days 2906.00
Delivery, installation, and commissioning of system 80 days 5160.00
Validation of installed system 40 days 1280.00
implementation of monitoring and maintenance program for sampling to analysis system 20 days 340.00
Total 780 days 30000.00|

Man hours spent during SIP lifecycle
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Figure 1: SIP lifecycle manhours spent
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Capex and Opex. Based on past SPA industry solutions of a similar nature, for a +-50MTPA iron ore project a suitable (and
often the only) solution to be able to sample, transport the sample and analyse the sample fast and precisely enough to
allow for confident “real-time” changes to the blending and loading process, is an end to end fully automated sampling to
analysis process. As these solutions are typically also the most capital-intensive options, the author has chosen to consider
this type of fully automated system for the model. This will represent the highest cost option for comparing any ROI calcula-
tions.

Comparing past industry indicative prices, from various leading suppliers in these systems, for a port facility of 10000tph
Iron ore (50MTPA capacity), a fully automated sampling, sample transport, sample preparation and analysis system will cost
in the region of US$7.5M. The cost of a new building and services for this facility could add a further US$2.8M. Then,
assuming US$120/hr as a combined rate for the resources required to carry out the tasks listed above (30000 man-hours),
the cost of labour for the project will be US$3.6M.

The above total estimated project cost is around US$13.9M from the start of an investigation to the final installed and
operational solution. If not already included in the project, any upstream process optimisation changes should also be care-
fully considered. While this may increase the final project cost, the longer-term benefits will also be greater.

Of course, there are a multitude of configurations that SPA systems could have to reduce initial capital expenditure, e.g.
reducing the level of automation, but each concession should be carefully considered, along with the overall purpose of the
upgrade, to ensure not to degrade KPI’s, such as throughput, cost of sample due to manual handling and precision degra-
dation which are all required to achieve the maximum benefit of the upgrade.

Finally, a cost that must also be considered, is the cost to operate and maintain the facility itself. Although it will be included
in the ROI calculations, it should be noted that this cost is not additional, as in the case of this brownfield project example
(Scenario requiring a SIP), a SPA system in some form is assumed to be already in place and therefore these operational
costs are already being incurred. A conservative estimate for inclusion of operational expenditure (maintenance and spare
parts) is approximately US$1.8M/annum.

Analysis of economic benefits

Without the context of ROI these numbers may appear to be large, and again, this is where stakeholders struggle to see
value, however now we will investigate the economic benefits of implementing best practice SPA. To calculate the ROI for
the large capital expense and high operating costs of this application we can consider the primary contributing factors or
“money makers/breakers”. The primary factor in this instance, is the potential profit loss due to selling the product below
what it could be sold at, as a direct result of the level of sampling, preparation and analytical precision achieved during
loading. The precision on chemical analysis will affect the price sold and the precision on the moisture analysis will affect
the percentage of on-grade ore that is not billed for (i.e., overstating moisture level will result in less of the loaded mass
being invoiced as ore).

In the case of the example noted above, because the upgrade will make it possible to analyse the samples in close to
real-time, as the ship is being loaded, it is possible to optimize the grade of material being loaded, by blending the correct
grades as it is loaded. This offers the opportunity to increase the total volume of ore available for sale with no other changes
in production (i.e., ore that would have been considered low grade waste can now be blended in with higher grade ore and
sold at the price of the higher-grade material).

Although smaller in comparison, other benefits of the fully automated system include the ability to process the samples
faster and have the laboratory purged and cleaned between batches of material in a much-reduced time. This reduction in
process and delay time between lots results in a shorter duration that the vessel needs to be sitting at port, saving on port
costs and allows the supplier to issue certified results for invoicing in a shorter period.

Iron Ore price structure based on precision. Iron ore products are broken into several different classes/grades of ore.
Each grade, however, is still a non-commutable commaodity (each unit has unique qualities that add or subtract value) due
to its variation in quality. There are many different methods used by large multinational corporations to calculate the purchase
price of iron ore at any one time. These methods form the basis of negotiations of larger supply contracts, which can become
very complicated. As a basis of discussion in this paper the author has selected one method of pricing, developed by an
international price reporting agency (PRA); Metal Bulletin (Fastmarkets MB). This method involves an index of key price-
affecting chemical components of Iron Ore, namely: iron, silica, alumina, and phosphorus. The indices are called the Value-
In-Use (VIU) indices.

To better understand this method, and how it is applied to prove points noted above, it is good to have a slightly better
understanding of the iron ore market. Below is a summary of this based on information referenced from an article in the
MetalMarket Magazine, June 20182

The article notes the following:

Different percentages of iron content reflect both the natural variation in iron ore grades found in mine deposits and the
degree of processing (if any) employed to upgrade the ore for a certain use. In general, higher purity ores help increase hot
metal yields in the blast furnace, and lower production cost by reducing the amount of coke required. For these reasons, the
rule of thumb is “higher Fe grade, higher price.”
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Market conditions drive the preferences for the various ore types, and the differentials between the different iron ore
indices are dynamic. Profit margin, defined by the price of the final product less the cost of raw materials, that steelmakers
are achieving, is considered to be one of the largest drivers of these market conditions.

Because Blast furnaces cannot easily be switched on and off, to optimize their operating rates in varying market conditions,
steelmakers need to be astute in purchasing of iron ore.

To maximize blast furnace yields, when margins are high, steelmakers prefer high-purity ores to optimize the profits from
each tonne they produce, however, Low-grade ores are turned to by steelmakers when margins fall away, to minimize their
production rates and reduce costs.

More recently, at least in China, environmental policy has become a key driver of prices across the iron-ore grade spec-
trum. Typically, lower-grade ores with higher fractions of deleterious elements such as silica and alumina require increased
consumption of coke, which can raise emissions of controlled gases and particulates.

Also quoted directly from this article:

“Though Metal Bulletin published indices for several grades of iron ore, the real-life variability is such that virtually all ores
differ in some respect to the base specification of the index they settle against. Where actual iron ore grades do not match
the index specifications exactly, counterparties typically agree premiums or discounts based either on bilateral negotiation
or using the VIU indices published by PRAs. Metal Bulletin’s VIU indices, calculated and published monthly, help companies
agree upon appropriate price adjustments based on the iron, silica, alumina and phosphorus content of their specific prod-
ucts.”?

Price calculation using VI. With the Value-in-use indices, each of the key elements are considered separately and com-
pared to the base value of the specific grade of iron ore. Although each element is looked at in isolation their VIU adjustment®
is applied additively for the difference in each chemical content from the index base specifications. Considering a 62% Fe
fines ore, the price formula is as follows:

Price=index+[(actual Fe - 62)xFe_VIU]+[(actual Si - 4)xSi_VIU]+[(actual Al - 2.3)xAl_VIU]+[(actual P - 0.1)xP_VIUx100]

Precision (20) on chemical results of critical elements. For the purposes of discussion, it is noted that the actual accurate
value of ore being loaded is perfectly as per the base values for this commodity type, i.e., Fe=62%, Si = 4%, Al = 2.3% and
P = 0.1% with moisture of 8%. It is then considered that, to avoid harsh penalties for overstating the quality of the ore, the
supplier will degrade/understate their analytical results based on the SPA precision achieved (i.e., with a 0.35% precision
on Fe, the supplier will degrade the product value by 0.109% when calculating the final price of the product as-loaded).

Although some automated port laboratories in South Africa and Australia have managed to reduce their total precision for
Fe to just below 0.16%, as a baseline in this calculation the author has chosen to consider the overall precision specified in
table 1 of the ISO 3082 specification for Iron ore* (+210kt lot as per figure 2), as the value that the upgraded sampling to
analysis project should aim for. These levels of precision will be applied to the critical elements and considered scenario 1
(results after upgraded SPA system)
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Table 1 — Qverall precision, fopy (values as absolute percentages)

Guality characteristics Approximate overall precision
Fa
Mass of lot
t
Over | 210000 | 150000 | 100000 | 70000 | 45000 | 30000 | 15000 | Less
270 000 to o [+ ] o o to than
270000 | 210000 | 150000 ( 100000 | 7OODD | 45000 | 30000 | 15000
Iron content 0,24 0,35 0,37 023 040 042 D45 D40 55
Sdica content 0,34 0,35 037 033 040 042 045 048 |55
Aluming content 0,11 012 0,12 0.13 014 0,15 0,16 0,18 0,20
Phosphorus content 00034 | 00035 | 00036 (00037 | OODO3E | 00040 | DOD42Z | 00045 | D048
Moisture content D24 0,35 0,37 023 040 042 D45 D40 D55
Sze-I00mmore |- 10mmimcion | 34 | 35 | ag 37 39 40 s2 | 44 | =0
mean 20 %
Size — 50 mm ore
Size — 6,3 rmm fraction
—31.5+ 8.3 mm ore | mean 10 %
Size - Sinter feed + 6,3 mm fraction . - - .
mean 10 % 1.7 1,75 B 1.85 185 20 2, 22 25
Size — Pelet fead — 45 pm fraction
mean 70 %
See-Peles -83mmémction) nag | o70 | o072 | o074 | o7e | oeo | os4 | oee | 100
mean 5 %
KNOTE The vaues :l'.ﬂmII fior slica, aluming and phoephonis coment are indcative and subject to confimation through Imemational bestaon.

NOTE The owverall precision for other physical charactenistics and mefallurgical properties is not specified in this
International Standard, because they are used to gqualitatively compare the behaviour of iron ores during handling and
reduction processes.

Figure 2: Table 1 from the ISO 30824

Of course, it must be noted that no amount of downstream treatment can resolve large sampling error noted in the sam-
pling problems above, and that in this example (Scenario requiring a SIP), trying to quantify the accuracy and precision of
the samples taken, compared to the actual grade of the lot is nonsensical and not possible. But, again for the purpose of
the discussion it is conservatively assumed that even with all the problems of the system noted in the example (Scenario
requiring a SIP), before the SIP upgrade, the precision achieved for this grade of product is as follows: Fe precision = 1%,
Si precision = 1%, Al precision = 2% and P precision = 0.35% with moisture of 15.35%. In manually operated sampling and
sample preparation labs it is not uncommon to see precision values well in excess of 5% for Fe, so it should be noted that
the estimate here is conservative. These levels of precision will be applied to the critical elements and considered scenario
2 (results before upgraded SPA system).

If the index price of 62% Fe fines is as per the values taken from the MBIOI (Fastmarkets MB Iron Ore Indices) index from
the 8" September 2021 (code MBIOI-62), the selling price of scenario 1 and 2 can be calculated:

o 62% Fe fines = $132.19
. Fe-VIU =2.55

o Si-VIU = -4.97

o Al-VIU =-5.99

o P-VIU -0.7

Scenario 1 (results after upgraded SPA system):
Price=$132.19+(61.892-62)x2.55+(4.007-4)x-4.97+(2.301-2.3)%-5.99+(0.1-0.1)x-0.7x100=$131.87

Scenario 2 (results before upgraded SPA system):
Price=$132.19+(61.69-62)x2.55+(4.02-4)x-4.97+(2.323-2.3)x-5.99+(0.100185-0.1)x-0.7x100=$131.15

From this example, it is seen that if no upgrade project is carried out the supplier could be losing at least US$0.72/tonne

of ore that is sold. If this facility is selling 5S0MTPA this would be worth up to US$36 000 000/annum in lost profits.
The charts below (Figure 3 and Figure 4) illustrate the resultant profit degradation as the total precision deteriorates.
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Figure 3: Profit degradation with deterioration of precision on deleterious elements for a 50MTPA iron ore port
facility
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Figure 4: Profit degradation with deterioration of precision on Fe for a 50MTPA iron ore port facility
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Precision on Moisture. If we then consider the effect precision of the moisture value has on the effective price (using the
index price of 62% Fe fines with a moisture base of 8% as per the values taken from the MBIOI Fastmarkets MB Iron Ore
Indices?®) then scenario 1 (0.35% total precision, 2 o, on moisture) would be charging for 0.014% less product than actual
(0.0035/2 x 8), and scenario 2 (15.35% total precision, 2 g, on moisture) would be charging for 0.614% less product than
actual (0.1535/2 x 8). So, by upgrading the facility (assuming the upgraded facility could achieve a 0.35% precision on the
stated moisture), the supplier will be able to sell 0.6% more ore with no other process change requirements. This equates
to 300 000 tonnes of ore on a 50MTPA facility or US$39 657 000/annum additional profits at the iron ore price noted above
for the 62% Fe fines.
The chart below (figure 5) illustrates the resultant profit degradation as the total precision on moisture deteriorates.

Us$.00M

moisture grade

-Us$1.00M

-Us$2.00M

-Us$3.00M

-Us$4.00M

-Us$5.00M

lost profit as a result of having to lower the price for the same
product

-Us$6.00M
0.00% 0.50% 1.00% 1.50% 2.00%

Total SPA precision on critial elements

Figure 5: Profit degradation with deterioration of precision on Moisture for a 50MTPA iron ore port facility

Faster turn-around time. It is even possible for a producer to realise savings that they did not expect to achieve with a SIP.
An example of this is experienced by an Iron ore port facility that realized that by being able to invoice their client over two
days earlier for every shipment resulted in them getting their “money in the bank” faster and benefiting from the interest
earned for these additional days. Assuming an interest rate of 5%pa on invoiced costs, a Fe price of $132.19/DMTU and a
lot size of 200kt, this was worth around US$7243/200000t vessel loaded, the overall yearly value, of which, equated to over
US$1 810 821.92/annum additional profit.

Opportunity to carry out “in-ship” blending of ore. As noted earlier, if the port facility has the required infrastructure to
react quickly enough to change using the near real time data, with the level of confidence needed in the data, low grade ore
can be blended in with higher grade ore as the vessel is being loaded. This optimizes the use of both high- and low-grade
ore reserves. For a 50MTPA port facility this could mean selling at least 0.1% additional ore that would have previously been
assigned as waste product. At the above price of US$132.19/t of 62% Fe fines (as above) this would equate to an additional
US$6 609 500/annum additional profit previously not possible.

ROI for a large SIP — 50MTPA Iron Ore port sampling to analysis facility

The above scenarios provide a good understanding of what can be expected in regard to the cost of implementing a SIP
as well as what the possible economic benefits are. The larger scale of the operation, the more there is to win or lose. Let's
now consider the comparison between expected CAPEX and possible profits achievable after the sampling improvement
project has been completed.

From the sections above (summarized in table 2), the estimated CAPEX for the world class SIP considered is US$13 900
000 with an ongoing operational cost of around US$1 800 000. In comparison, the potential profits to be realized because
of this SIP are as follows and as per figure 6 below:

e  Profits from enabling a higher price to be charged for the same ore, US$36 000 000
e  Profits from being able to charge for more ore (less water) for the same product, US$39 657 000
e Potential additional profits resulting from the ability to process the samples faster, US$8 420 321
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Offsetting these gains to the capital and operation costs a Pay-back period of less than 3 months is possible as can be

seen in figure 7.

Table 2: Breakdown of ROl input values

Expense Operational |Potential
. profit gains
Item description (labour and i
CAPEX) costs/year |(/year)
Cost of man hours from owner and supplier USS 3.60M
Automated sampling, transport and laboratory USS 7.50M
Building and services USS 2.80M
Total capital cost USS 13.90M
OPEX/year USS$ 1.80M
Value of faster loading rate (invoice 2 days earlier) USS 1.81M
Ability to charge more due to improved precision USS 36.00M
Ability to optimize grade by blending in ship (improvement of 0.1% additional on grade ore) USS 6.61M
Moisture result precision (Improvement from 15.35% to 0.35%) USS .40M

us$ 36.0M

Additional proffits to be made

USS$ 6.6M

Us$ 39.7M

Uss 1.8M
Value of faster loading rate Ability to charge more due to Ability to optimize grade by Moisture result precision
(invoice 2 days earlier) improved precision blending in ship (improvement of  (Improvement from 0.5% to

0.1% additional on grade ore)

Figure 6: Potential profits that can be realized after a SIP

0.35%)
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Economic Benefits Of Improving Precision

Combined

Overstating maisture
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Figure 7: Possible ROI

Consider on 20% of possible profits. It could be argued that these are only a best case potential profits, so this ROl could
be unreasonable. But even if it is considered that only 20% of these additional earnings are possible, as per the chart below
(Figure 8), a combined pay-back period of less than 11 months is still possible.

Combined

Overstating moisture

s biendnaepeninty _

POTENTIAL RECOVERABLES

VIU price adjustment

Faster TaT on results

PAY-BACK PERIOD IN MONTHS

Figure 8: Pay-back period based on 20% of the potential gains

Cost of installing an under designed or unfit for purpose sampling to analysis system

As per table 1 above, it can take well over 3 years to take a sampling improvement project from the problem statement to
implementation, especially for a brownfields (existing) facility. Based on the figures above the potential profits not realized
in those 3 years could amount to anywhere between US$55 000 000 to US$250 000 000. If the full system, from sampling
to analysis, had been better considered at the start of the complete port facility (i.e. when the facility was first installed), and
all future upgrades could have been included in these early designs, it could have been possible to bank these additional
profits.
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Discussion

Pricing methodologies and contractual agreements for Iron Ore and other commodities can come in many forms and are
often very complicated. What remains constant, however, is that if the analysis of the grade or product is not accurate and
precise the calculated price for this material will be incorrect. In the above example this has been proven using the difference
in price between what a poor sampling, sample preparation and analysis system can provide, compared to a well-designed
complete end-to-end solution. If, in this case, the supplier/purchaser contract pricing method used was different and perhaps
could have been a more traditional contract, with a fixed price for a set grade of ore, then potential profit could still be
calculated based on the precision of the results. That is to say, it could be assumed that the supplier sets the grade of the
product higher based on the level of precision and confidence that they have in the results. This has a direct impact on the
amount of ore that can be sold as “on-grade” and how much “good” ore is lost because it is considered waste when it could
have been sold as high grade.

This concept does not only apply to final load out product and could be considered throughout the process chain, from
exploration through to final refined product. If each step in the production process can be monitored with a high level of
precision, especially if it possible to get these results in real time, this can reduce costs by allow for better control of use of
additives, recognise trends resulting in maintenance predictions, finely adjust process parameters in accordance with the
results to optimize the overall process, etc. all of which result in better profits.

As seen in the example above (in the section labelled; Scenario requiring a SIP), it is highly critical to consider possible
future expansions of the plant when designing the sampling system. If this is not done then either the SPA system will throttle
the ability of the plant to produce more or (as in this same example) the plant is expanded without upgrading the sampling
system which also has massive “unseen” costs to the facility (a possible US$250 000 000, excluding the time that this
problem went un-noticed). It should also be noted that, before a budget is assigned to a sampling improvement project (SIP),
by various stakeholders, it is key for these stakeholders to ensure that a suitable business case study is carried out to
understand what the potential cost of a “cheaper” system could be on the long-term profitability of the plant. Specifications
and KPI’s for the SIP should be based on this study and every compromise to the specified “ideal” system should be well
considered against these KPI's, i.e., if the system is downgraded from the “ideal” how will this affect the KPI's and will this
system still achieve what is expected from it.

Management and executive members often only see sampling and laboratories systems as something to have in place
only to satisfy contractual requirements for sale of the product, and therefore assign little thought (and budget) to them. By
looking at historic data, looking at where better quality results could have been used to realize additional profits, consider
how these better results can be achieved through sampling improvement projects and presenting this in a financial model
or business case, there may just be a shift in how these systems are perceived throughout the organization.

Conclusion

It is possible to define the economic benefits of being able to improve precision of results through sampling improvement
projects (SIPs). This can be done by comparing the price of product if the precision is high and if it is low. In the real-world
example discussed in this paper, a pay-back period of less than 11 months is calculated on a US$13.9M SIP investment
(this is considering only 20% of the possible gains are realized). In basic terms, on a 50MTPA operation the revenue received
is US$6.6B/annum (based on the Fe price in the example above), the total potential additional earnings, while only 2.4% of
this, can add up to over US$84M/annum.

It is also concluded that all systems should be continually monitored and investigations into improvements should be
carried out a regular basis. This is critical to ensure that the least possible time is spent operating a system that is not making
as much profit as it could be.
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Many commercial coal testing laboratories are accredited to 1ISO 17025' — General requirements for the com-
petence of testing and calibration laboratories. There is an expected reliance in the Coal mining industry that
the laboratory adheres to all elements of this standard in between successive accreditation audits conducted
every 18 months by the independent accreditation body, National Association of Testing Authorities (NATA).

In the absence of proactive QAQC & QM practices monitoring the quality of the information reported by labor-
atories, potential issues impacting production decisions and reconciliation results are only determined in a
reactive manner.

In addition, for mining companies working with several internal and external laboratories across the supply
chain, the management of the logistics, practices and information becomes very challenging and time-con-
suming, impacting the company’s ability to track laboratory results as key inputs in a production and recon-
ciliation perspective.

The absence of proactive QAQC & QM practices results in a sub-optimal/reactive approach in the Coal indus-
try, increasing the risk of short-term unaware production gaps related to quality, increased time required for
quality breach investigations, the absence of a holistic approach/monitoring in the value chain, and the finan-
cial impact for the business performing under sub-optimal conditions.

This paper aims to show the journey towards the implementation of a new proactive QAQC and QM program,
where now the quality of many different laboratories across the supply chain can be monitored and linked
with global reconciliation results, as an improvement opportunity to complement the current industry stand-
ard ISO 17025 accreditation and Proficiency Round Robin approach.

Introduction

The current benchmark, as a QAQC program in the Coal mining industry, is the alignment of laboratory practices to ISO require-
ments. The vast majority of commercial (and some non-commercial) coal testing laboratories in Australia are accredited to ISO
1702511. There is an expected reliance in the Coal mining industry that these laboratories adhere to all the elements of this standard
in-between successive accreditation audits conducted by the independent accreditation body, National Association of Testing Au-
thorities (NATA). NATA’s standard audit frequency is 18 months and therefore, in the absence of a proactive QAQC & QM practice
monitoring the quality of the information reported by laboratories for customers, potential issues impacting production decisions and
reconciliation results can only ever be determined in a reactive manner and information’s quality only rely on laboratory’s internal
QAQC. In other words, a number of issues could arise ‘unchecked’ for laboratory’s customers during the 18 months in-between
these independent laboratory technical reassessment audits, issues that can potentially impact on the quality (precision/accuracy)
of the results being reported by the laboratory to their customers resulting in unplanned out of specification product and the like. A
robust proactive approach to QAQC and QM would identify these types of accuracy and precision issues before they become an
issue.

Current reactive QAQC and QM coal industry practice

Reactive by its very definition is always after the fact, investigations into quality breaches are conducted after the train leaves the
mine for the port or after the ship has loaded and set sail. Quality breach investigations take time to perform and tie up valuable
resources in response to a situation rather than controlling it. Reactive QAQC and QM practices are backward looking and provide
limited opportunities to introduce opportunities for continuous improvement.

Typically, reactive QAQC & QM programs are ad hoc in nature, for example: in response to a quality breach a Round Robin
program might be organised to test the laboratory against another one, or many in an attempt to identify a bias or trend.

In a reactive QAQC environment, elements that affect sample analysis such as laboratory calibrations, compliance to national or
international standard methodologies and the results of the laboratory’s internal QC program might only be reviewed by the cus-
tomer following a quality breach. This is because of industry expectations of the ISO17025 accreditation process creating a false
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sense of confidence and reliance on compliance is a driver of this reactive environment.
A reactive approach to QAQC & QM may involve the following elements:
e External Coal proficiency Round Robin program to monitor technical competence of testing laboratories.
¢ On-site technical audit to review a laboratory’s operation to ensure methods, equipment, personnel, QC, calibration,
result validation and reporting are fit for purpose.
This approach only provides information of a snap shot in time and does not really go far enough to identify emerging trends or
the presence of true bias.

Proactive QAQC and QM

The requirements of proactive approach to QAQC and QM involve the following key components (Dominguez, 20192):

e Quality Assurance (QA), refers to the plan in terms of controls, tools and practices that need to be implemented to assure
the quality of all data or deliverables (“where, what and when to apply”). On Sample Analysis, the basic controls should
target:

o Laboratory calibrations that shall be performed for major and minor elements, because of the impact on the
assays reported.

o Laboratory internal QAQC process to review assay results by batch before results are reported.
On-site technical laboratory audits to ensure the previous two points are being performed as per prescribed
cadences.

e Quality Control (QC), refers to the thresholds used to assess (approve or reject) QA performance”.
o Round Robin proficiency programs to monitor technical competence of testing laboratories.
o Coal Reference Materials (Coal RMs) to monitor laboratory accuracy and precision at low-mid-high grade
ranges/saturations.

e Quality Management (QM), refers to:
o  Continuous monitoring stage to proactively determine control performance deviations.
o  The precursor of appropriate corrective actions to close gaps (escalation), especially trend analysis (by ranges
time and/or grades).
Recognise the good work.
o  Final verification step to check the gap has been closed.

Implementation of a more proactive approach
In order to implement a more proactive approach, the following elements are suggested for the coal industry, to complement
those discussed in the reactive approach:

e Arrange for regular on-site technical audits to be conducted in-between the 18 month NATA I1SO17025 accreditation
audits. These technical audits must review the laboratory’s operation to ensure methods, equipment, personnel, result
validation and reporting remain fit for purpose in-between accreditation audits. In these audits also ensure that the pre-
scribed cadence for calibration and internal QC activities are maintained. Figure 1, shows an example of a laboratory
calibration schedule.
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n
CALIBRATIONS 2022 Due - progress

LAB/PTL | Task: Frequency: |January | February | March | April [May | June | July August | September | October | November | December
Balance Masses -
NATA Source
(external) Larger
EXTERNAL | masses Yearly
Balance Masses -
NATA Source
(external) smaller
EXTERNAL | masses 3 Yearly
Balances Analytical - .
LAB/PTL | One Point Check Monthly 24/01/2022
Balances Analytical -
Repeatability
(external) - ensure | 6 monthly
to compare against | (mixed over
3 yearly calibration | the year)
EXTERNAL | report various

Balances Analytical
Calibration - NATA | 3 yearly - Due
EXTERNAL | Centificate Issued | 05/2022

‘Analytical & 300kg -

Service by NATA

EXTERNAL | Reg. Authority 6 monthly
Relative Density 3 monthly ifin
A8 Bottles use
Crucible Swell
Apparatus -
L8 Check | Monthly
Volatile Crucible
L8 Register Yearly
Combustion
L8 Furnaces - Temp. Ck | Yearly
Ash Fusion Furnace - | 3 monthly if in
A8 Temp. Ck use
CHN Truspec
A8 Furnace - Temp. Ck_| Yearly
Gray King Furnace -
Temp. Ck - upon
LAB/PTL | use Yearly
CHN/Sulphur
L8 Furnace - Temp. Ck_| Yearly
$632 Sulphur
L8 Furnace- Temp. Ck _| Yearly
Volatile Furnace-
L8 Temp. Ck 6 monthly
ASTM Volatile
L8 Furnace- Temp. Ck | 6 monthly

Figure 1. Example laboratory calibration schedule.

e Arrange coal proficiency Round Robin programs to monitor the technical competence of testing laboratories across the
coal quality supply chain. This approach allows the companies to review all of its laboratories across the supply chain
(>20 laboratories). Robust Z-score statistics are reported for each analysis parameter reported by each laboratory in
each program, Z-scores greater than +3 are identified as outliers.

In the past, data management was difficult and time consuming, and all the setup for the visualisation process used to
take days to be compiled. Currently, formats can be developed in Spotfire and the visualisation process (in different
types of graphs) now takes few seconds. For example, visualisation of the Z-scores in Box Whisker format for each
parameter allows for trending and comparative analysis to be performed. Figure 2, shows a Box Whisker plot of Z-
scores for individual laboratories across 5 different organisations for ash. This visualisation enables the direct compari-
son of 26 laboratories in the one view making it easier to identify potential intra and inter laboratory trends and biases,

and also, has application in supporting the Reconciliation process across the coal quality supply chain.

Box Plot
Ash

6.00

5.00

4.00

ZScore v + v

-56.00

-6.00

Figure 2. Box Whisker plot of Z-scores for individual laboratories across 5 different organisations for ash.
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¢ On a sampling perspective, in previous years, samples used in the Round Robin used to be prepared and analysed,
meaning different sources of error impacting the final results, for this reason coal pulverised and homogenised Reference
Material (RMs) is now used as blind samples, allowing the company to review the precision and accuracy of analytical
results all of its laboratories across the supply chain. For each coal RM the difference between each laboratory’s result
and the reference value (delta) is monitored for each parameter against the method reproducibility (R) limit for that
parameter, deltas greater than R are identified as outliers. Figure 3, shows a Box Whisker plot of the differences
between laboratory results and the coal RM reference parameter value for individual laboratories across 4 different
organisations for Ash. This visualisation enables the direct comparison of the precision and accuracy of 23 laboratories
in the one view.

Lab Result - Ref Value
Ash Data limiting

030 Ash_RM1
(Pagefiltering ignored)
Reference points:
....... Auerage
Lines and curves:
Horizontal Line:
—000
Horizontal Line:

—R

Horizontal Line:
—-R
Horizontal Line
RV+SD
Horizontal Line:
RV-SD

Figure 3. Box Whisker plot of the differences between laboratory results and the coal RM reference parameter value for
individual laboratories across 4 different organisations for Ash.

Figure 4, shows the standard score 3 month moving average plot. The standard score is the number of standard deviations by
which the laboratory result is above or below the reference value of the Coal RM. This visualisation enables the direct comparison
of emerging trends or bias of 23 laboratories in the one view.
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Figure 4. Standard score 3 month moving average plot for individual laboratories across 4 different organisations for ash.

Because of the logistical challenges related to the quality management of >20 laboratories, in different sites across the coal quality
supply chain, as a first step towards the proactive approach, laboratory internal QC data is supplied from all the laboratories and
imported into a QC dashboard which allows the company to regularly review the internal QAQC processes used to review assay
results by batch before reporting. Figure 5, shows the difference between each QC sample result and the QC sample’s reference
value. This visualisation enables the direct assessment of individual laboratories on a short term perspective, enabling the monitor-
ing and detection of emerging trends or bias more proactively than the old assessment every 18 months.
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Figure 5. Box Whisker plot of QC data (difference between QC result in each assay batch and QV reference value) for
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individual laboratories across 4 different organisations for ash.

Figure 6, shows the daily QC run chart (difference between QC result in each assay batch and QV reference value) and monthly
Box Whisker plots of QC data for 3 laboratories in the same organisations for ash. This visualisation enables the identification of
emerging trends or bias at each individual laboratory and also the potential impact of final reconciliation and financial /marketing
results.
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Figure 6. Daily QC run chart (difference between QC result in each assay batch and QV reference value) and monthly Box
Whisker plots of QC data for 3 laboratories in the same organisations for ash.

e In addition, normal contract review meetings with laboratories can now include:
o The review of this information in order to compare the individual laboratories within the organisation, and dis-
cussions of the outcomes of the company’s review of QAQC activities conducted between meetings.
Benchmark individual laboratories within the same company, but also between companies.
o  The monitoring of the progress of any actions raised to address any findings raised during any of the proactive
QAQC review processes described above.

Conclusion

There are many benefits for implementing a proactive QAQC and QM program. Issues that impact on the quality (precision/accu-
racy) of the results reported by laboratories have the potential of resulting in unplanned out of specification product, creating even
more workload and stress for companies that operate in a resource constrained environment. A proactive approach on QAQC and
QM in the coal industry, as described in this paper, would identify these types of accuracy and precision gaps before they become
an issue.

Using a visualisation product, such as Spotfire or Power BI, significantly reduces the time it takes to create them, once the importing
template database has been created.

The use of a pulverised reference material (Coal RM) is important to eliminate the potential misleading conclusions from samples
that need to be prepared and analysed i.e., sampling and preparation errors are significantly minimised from the equation.

It is essential to regularly receive and review laboratory internal QC data in order to closely monitor quality. Reliance on the labor-
atory or leaving the review of this data to the 18 month NATA ISO 17025 accreditation audits to identify and react to emerging
trends and bias is not at all proactive.
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A proactive QAQC and QM program enables better inputs into the reconciliation process, emerging trends and bias are identified
long before they become a problem which means better financial outcomes for port and marketing.

This paper describes the beginning of a journey, there are more milestones currently in progress to achieve an even more robust
proactive approach to QAQC and QM.
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In variographic analysis the nugget effect provides an estimate of the total process measurement
system error. The value of variographic analysis can be further increased by differentiating the
analytical error from the sampling errors. The ratio of the minimum practical error (MPE) to the
analytical error provides an estimate of the suitability and performance of a sampling system since
the analytical error would still remain even if sampling errors could be completely eliminated. The
sampling and analytical errors for four systems used to obtain 1-D lots of pharmaceutical powder
blends is presented. The first studies were conducted with blends moving over a conveyor belt and
with the feed-frame of a tablet press. The researchers then developed and patented a new stream
sampler and chute for sampling and analysis of pharmaceutical powder blends. Near Infrared or
Raman spectra were obtained as the powder blends flowed or moved and used to determine the
drug concentration in the blends. Even though these methods do not require sample extraction and
sample preparation in a laboratory, they are still subject to sampling errors which were estimated
through the variographic analysis. The MPE was compared to the analytical error for these four
systems. The results obtained show that it is often possible to reduce sampling errors to less than
ten times the analytical error. These studies represent the first efforts to estimate and reduce
sampling errors in the analysis of the powder blends used to manufacture the tablets that many
patients take daily.

Introduction

In 2004 the Food and Drug Administration published its Process Analytical Technology (PAT) Guidance to encourage
innovative pharmaceutical development, manufacturing, and quality assurance." The agency defined PAT as a “system
for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical
quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final
product quality”. This guidance recognizes that the raw materials used in a process may show some variation in their
physical properties and chemical composition. However, the manufacturing process may be controlled using the
information provided by the real time analyses.

The real time analysis is performed through fast non-destructive analytical techniques such as near infrared and
Raman spectroscopy. The PAT system differs significantly from many pharmaceutical processes that depend on
performing an operation for a certain time, without any monitoring of the process, relying on testing after the production
process has been completed. However, PAT systems are also affected by sampling errors.? 3 This research group is
focused on studying the analytical and sampling errors in PAT for pharmaceutical manufacturing. In all the systems
under study a 3-D system is transformed to a 1-D system making variographic analysis possible. The group first
performed this transformation which permitted analyses in conveyor belts and the feed-frame of a tablet press.*® The
group then developed and patented a new stream sampler and chute for sampling and analysis of pharmaceutical
powder blends.%'2

Variographic analysis permits the estimation of the sum of analytical and sampling errors through the nugget effect
as indicated in a number of previous studies. '3-'> However, there is also a need to differentiate the sampling errors
from the analytical errors. The analytical error may be estimated through a repeatability or short-term precision study.
The repeatability study consists of six or more consecutive spectra on the same sample (the sample does not move or

doi: https://doi.org/10.1255/tosf.139 Published under a Creative Commons BY Licence
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flow while the spectra are obtained). The group has performed repeatability studies in every project where variographic
analysis was performed.

Several previous studies from the TOS community have indicated that the sampling error is often 2 — 3 orders of
magnitude larger than the analytical error.'®'® However, if sampling systems were to be fully optimized, the sampling
errors would approach the magnitude of the analytical error. Analytical methods will always be subject to an unavoidable
random error.'® This study describes a quantitative effort to investigate the ratio of sampling and analytical errors in
PAT methods with 1-D sampling and variographic analysis. The repeatability study is used as a measure of the Total
Analytical Error (TAE) and compared to the minimum practical error (MPE) obtained through variographic analysis.'®
The MPE should be of higher magnitude since it provides an estimate of both the sampling and analytical errors. The
MPE should approach the variance of the repeatability study as the sampling system is improved. As the sampling
system is improved the ratio of the MPE and the repeatability study should approach a value of 1. This hypothesis is
evaluated by comparison of the results of four sampling systems including: a conveyor belt*, freed frame”: 8 20-22 stream
sampler 92 and chute?®, which have used for sampling and analysis of pharmaceutical blends.

Experimental

1-D Sampling Systems:
A total of four 1-D sampling systems have been developed for analysis of powder blends. In these systems the powder
blend is not removed for analysis at a laboratory. Near infrared or Raman spectroscopy are used to obtain spectra of
the powders, providing real-time non-destructive analysis. When NIR spectroscopy is used, 32 scans are averaged into
a single spectrum. A composite sample is obtained since the material is flowing or moving as the scans are obtained.
The active pharmaceutical ingredient (API) concentration was predicted through a partial least squares (PLS)
regression calibration model for each single spectrum.® The lag distance between pairs of drug concentration values
was used in the calculation of variograms.

The first 1-D sampling system used was a conveyor belt. ® The pharmaceutical powder mixture was deposited on
a 3 m long rig with 10 cm width that moved at a linear velocity of 10 mm/s over the conveyor belt. The NIR spectra
were obtained while in motion, at a point further along the conveyor belt. The fiber optic probe is fixed over the conveyor
belt as shown in Figure 1.4

l
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Figure 1. NIR spectral acquisition in a1-D optical sampling system for a conveyor belt

The second experimental set up consisted of a hopper, a feed frame from a Fette 3090 tablet press (Fill-O-Matic,
Fette Compacting, Schwarzenbek, Germany) adapted on a table and high-density polyethylene disc. The thickness of
the disc is 12.5 mm and has 36 holes of 10 mm diameter each one. This set up is used to simulate the tablet press
turret.?%- 24 Figure 2 shows the experimental set-up for the feed frame sampling system.
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Figure 2. Example experimental set-up for a feed frame sampling system

The feed frame consists of three chambers, it has two levels and two inspection windows. The distributing chamber
receives the powder from the hopper and transports it, using a paddle wheel, to fill and to set the dose to the chambers
through two orifices in the partition plate 2024, The paddle wheel speed and die disc speed were varied in a number of
experiments. The procedure is to add powder blend to the hopper; while the paddle wheel and die disc stand still. The
feed frame is turned on and it transports the powders to the chambers and inspection windows, where the NIR probe
is installed over the left sapphire window to acquire spectra.

Figure 3 shows: 1) the transition chute and NIR (2) and stream sampler where spectra can be obtained.?®> The chute
and stream sampler were designed to comply with the Fundamental Sampling Principle (FSP) which stipulates that all
parts of the lot must have the same opportunity to be selected, and samples should be collected without affecting the
material composition 3 '4. The transition chute has a length of 41 cm a 15 cm width, with a 1 cm thickness and 2.54 cm
diameter. The NIR spectra collected at the chute are obtained through a sapphire window placed 30 cm after the entry
of the flowing powder. The chute is placed at an angle of 75 degrees as shown in Figure 3. The force of gravity and
stream sampler revolutions allows the flowing powder blend to pass through the chute, generating more stability and
continuity in the powder flow.23
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Hopper

Powder Collector

Figure 3. Schematic of the experimental sampling system set-up for the chute and the stream sampler.

The stream sampler has a chamber of approximately 150 mm diameter. The powder flows into the chamber by a
wheel of rectangular paddles with a 5 mm thickness, which rotate counterclockwise at controllable speeds. The center
of the paddle wheel has a diameter of approximately 86 mm, more than fifty percent of capacity of stream sampler.® '2
The powder leaves the system at 270° after its entry, avoiding powder re-circulation and changes in the drug
concentration. This design reduces the probability of attrition and rupture of particles, which could affect the
heterogeneity in the material. At the top of stream sampler, there is a sapphire window in the cross section of the flow
powder. The stream sampler has an off-line powder collector, this collector is slid into the sampler to acquire the powder
sample from a full cross-section of flow area. The sampler uses a 1.56 cm?® volume, stainless-steel cup. The sample
collector is used to select and analyze samples with a reference method ® '° However, all the results described in this
study were obtained as the powder flowed through the stream sampler. This study does not report work with the powder
collector.

Multivariate data analysis

The calibration models were developed and evaluated using multivariate data analysis software. The algorithm used is
based on nonlinear iterative partial least squares (NIPALS) algorithm.2® In the development of the calibration models,
the spectra can be transformed by mathematical pretreatments such as standard normal variate (SNV), first and second
derivative (Savitzky-Golay algorithm), etc. The PLS model was evaluated with the Root Mean Square Error of
Prediction (RMSEP), the Relative Standard Error of Prediction (RSEP), and bias as shown in equations 1 - 3.

P ——
RMSEP = [M=i ()
m
IRy’
0, = Zi=1V1 JUJ
JoRSEP = 100 « | SN 2)

Bias = Yi=1Fi-yi) 3)
m

Variographic analysis
Variographic analysis was performed to estimate the sampling and analytical errors in the in-line PAT measurements.
Figure 4 shows an example used to illustrate the information provided by the variogram. The variograms were
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generated through the use of a Matlab code (Matlab version R2013b, The Math Woks, Natick, MA). The variograms
were calculated according to Equation 4.

0.4
0.3
MPE = F(g}— 0.2
0.1

0.0

t t 1 t 1 t 1 T T L B |

0 5 10 15 20 25 30 35 40 45 50 55 60
—_ )
Range Lag (j)

Figure 4. Example of variogram and variogram elements; Sill, MPE, Range, Lag (j) distance.

Qtotal-j

o 1
Vi) = 2(Qtotar — 1) qZ:1 (h(q+j) B hq)z

(4)

The variogram function V(j), represents the variation between the predicted drug concentration for the composite
samples. The Qtotar represents the total number of composite samples, hg+j and hq is the concentration value in each
sampling point (expressed as the heterogeneity contribution). The j is the lag distance defined as the inverse of the
sampling frequency in 1-D sampling. The lag is the distance between increments (or distance between samples) and
can be expressed by time when the material is sampled # 1416,

Variographic analysis makes it possible to calculate the contribution errors in the measurements. The total error
variance (SZ) contribution to the analytical measurement uncertainty is: the sum of the sampling variance (S?) and
analytical method variance (S3). Eq.5.

S22 =52+52 ()

The minimum practical error (MPE) — or nugget effect - is the minimum variance expected for any measurement
situation, determined by back-extrapolating the first 3-5 points of V(j). In Equation 6 it is possible to calculate the total
sampling error (TSE), and the total analytical error (TAE) as a variance calculated by from the analytical repeatability
study.

MPE = TSE(S2) + TAE(S2) (6)

The sill is the mean variation of a variogram (the flat ceiling of the variogram). The ‘corrected-sill’ is calculated by
subtracting the MPE from sill (relative to the dynamic of process and residual heterogeneity). The range is the lag at
which the variogram becomes effectively constant 15 16,

Procedure to performing the repeatability studies

The analytical repeatability study was performed by obtaining six consecutive spectra of the same sample (without
moving the fiber optic probe). The drug concentration associated with these spectra was determined through a PLS
calibration model. The variance of the drug concentration obtained through the six consecutive spectra was then



1 04 Differentiating Analytical Error From Sampling Errors In Pat Methods Through Variographic Analysis

calculated. The repeatability study was performed 3 to 10 times; then, the pooled variance was calculated as an
estimation of total analytical error (TAE).*

Data
The data shown in Tables 1 and 2 were obtained from previous publications by the present research group during the
last five years.

Materials

A number of active pharmaceutical ingredients (API) and excipients were used in the blends, The APl used were
metformin milled granules with a purity of 98 [%w/w] 4, acetaminophen (APAP) 78, ibuprofen powder'" 22, anhydrous
caffeine 10 12 21. 23 Microcrystalline cellulose, lactose monohydrate as excipients non-co-processed excipients,
magnesium stearate as lubricant and colloidal silicon dioxide as glidant.

Results

The four sampling systems were evaluated through variographic analysis. The repeatability study was used to estimate
the TAE. The sampling error and total analytical error were differentiated through the ratio of the MPE and TAE. Table
1 shows the (MPE/TAE) ratio results of studies employing the conveyor belt or feed frame and spectrometer (NIR
and/or Raman). The studies were performed with concentrations of the active pharmaceutical ingredients which varied
from 3 to 100% (w/w), and with several common excipients.

Table 1. Summary of studies performed with the conveyor belt and feed frame.

Sampling API Conc. MPE TAE
System % (wiw) (Yow/w)? (Yow/w)?2
Conveyor
4 (NIRS) Metformin 95.0 0.0513 0.0002 257

Model 1

Conveyor
4 (NIRS) Metformin 97.0 0.0414 0.0002 207
Model 1
Conveyor
4 (NIRS) Metformin 100.0 0.0013 0.0007 2
Model 1
Conveyor
4 (NIRS) Metformin 95.0 0.0683 0.0002 342
Model 2
Conveyor
4 (NIRS) Metformin 97.0 0.0559 0.0003 186
Model 2
Conveyor
4 (NIRS) Metformin 100.0 0.0009 0.0010 1
Model 2
Conveyor
4 (NIRS) Metformin 95.0 0.0750 0.0010 75
Model 3
Conveyor
4 (NIRS) Metformin 97.0 0.0500 0.0010 50
Model 3
Conveyor
4 (NIRS) Metformin 100.0 0.0005 0.0020 0.3
Model 3
7 Feed Frame | ctaminophen 3.00 0.0023 0.00061 38

(NIRS) ' ’ ’ ’
Feed Frame

7 (NIRS) acetaminophen 3.00 0.0020 0.00061 3.3

Reference (#) MPE/TAE




J. Puche et al., Proceedings of WCSB10: TOS Forum Issue 11, 99-110 (2022) 105

Feed Frame .
7 (NIRS) acetaminophen 3.00 0.0034 0.00061 5.6
Feed Frame :
8 (NIRS) acetaminophen 10.0 0.019 0.00012 158
Ibuprofen
29 Feed Frame |\ hrocessed 425 0.136 0.0365 373
(NIRS) s
excipients)
Ibuprofen
Feed Frame | ¢ processed 50.0 0.166 0.0160 10.4
22 (NIRS) ibi
excipients)
Ibuprofen
22 Feed Frame | 5 processed 57.5 0.138 0.0788 175
(NIRS) s
excipients)
Ibuprofen (non-
29 Feed Frame Co-processed 425 1.74 0.127 13.7
(NIRS) o
excipients)
Ibuprofen (non-
29 Feed Frame Co-processed 50.0 1.88 0.215 8.74
(NIRS) o
excipients)
Ibuprofen (non-
29 Feed Frame Co-processed 57.5 1.76 0.148 11.9
(NIRS) .
excipients)
Feed Frame .
21 (NIRS) Caffeine 4.00 0.0047 0.0016 2.9
Feed Frame ;
21 (NIRS) Caffeine 5.00 0.0061 0.00096 6.4
Feed Frame .
21 (NIRS) Caffeine 6.00 0.0068 0.00078 8.7
21 Feed Frame Caffeine 4.00 0.046 0.00048 96
(Raman)
1 Feed Frame Caffeine 5.00 0.0389 0.00084 46
(Raman)
21 Feed Frame Caffeine 6.00 0.045 0.0012 38
(Raman)

Ratio of MPE to the TAE in the conveyor belt studies

The ratio of the MPE to the TAE on the conveyor belt varied from 0.3 to 342 as shown in Table 1. This very large
variation is related to the heterogeneity of the blends. Table 1 shows three experiments with the conveyor belt, where
the drug concentration was predicted with three calibration models.# Each calibration model had a different range of
concentrations: 90-100 % (Model 1), 85-100% (Model 2) and 65-100 % w/w metformin (Model 3). Three test set blends
with concentrations of: 95.0, 97.0 and 100.0 %w/w of metformin were predicted by the calibration models. The
experiment was purposely designed with high concentrations to obtain blends with low heterogeneity. The use of the
single component (100% w/w metformin granules) provided an opportunity to reduce the heterogeneity to a maximum
level, and thereby quantify the analytical error. The MPE/TAE for the test set blends varied from 257 to 2 for Model 1,
and from 342 to 1 for Model 2 and from 75 to 1 in Model 3. The lowest MPE/TAE were obtained, as expected, for the
100% (w/w) metformin granules.

Table 1 also shows three examples with the conveyor belt where the metformin concentration was predicted by NIR
spectroscopy when only one material (metformin granules) was present in the conveyor belt. The use of a single
component was done to minimize the heterogeneity and reduce the sampling errors. In this case the MPE/TAE values
obtained were: 2, 1, and 0.3. These results show that the sampling error is minimized, and it approaches the TAE. The
differences obtained were related to the calibration model used to predict the drug concentration. The MPE/TAE of 2
was obtained with a calibration model which included blends that varied from 90 to 100% w/w. The MPE/TAE of 1 was
obtained with a different calibration model which included blends that varied from 85 to 100% w/w. The MPE/TAE of
0.3 was obtained with a different calibration model which included blends that varied from 65 to 100% w/w. These
experiments confirm that the MPE was reduced by using a material with a low heterogeneity.
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Figure 5A shows the variograms of a test set blend with 95% w/w metformin analyzed in the conveyor belt. Figure
5B shows the variogram for the 100% w/w metformin. The MPE is 150 times lower in the 100% (w/w) metformin
granules. The greater heterogeneity of the 95% w/w metformin resulted in the larger MPE.
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Figure 5. Comparison of variograms of test set blend 95 % w/w (A) and 100 % w/w (B) of APl obtained over
conveyor belt with NIR spectrometer.

The ratio of the MPE to the TAE in the feed frame

The ratio of the MPE to the TAE in the feed frame varied from 2.9 to 158. The feed frame was used with materials with
a wide range of physical properties. The ratio of 158 was obtained at the continuous manufacturing facility at Rutgers,
and it includes the effects of various components of the manufacturing line.® The experimental set-up is more complex
than in other studies where the feed-frame was used. These results were also with acetaminophen, a cohesive material
that affects flow properties.

Table 1 shows another case, the comparison of spectrometers in the simultaneous analysis of drug concentration,
the NIR and Raman spectra was obtained over the feed frame of the tablet press.?! Figure 6 shows the variograms for
the test blend of 5 % w/w caffeine, the MPE is 6 times less when the NIR is used. The TAE is similar when using each
spectrometer, but the ratio (MPE/TAE) is 6.4 for NIR and 46 with Raman spectroscopy. The difference of ratio obtained
suggests a larger sampling error when using a Raman spectrometer. More studies of this difference will be illuminating.
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Figure 6. Comparison of variograms of test set blend of 5% by NIR(A) and Raman (B) in simultaneous analysis.

Ratio of MPE to the TAE in the stream sampler and chute
Table 2 shows the (MPE/TAE) ratio results of studies employing the stream sampler and the chute respectively. The
results obtained with the stream sampler varied from 1.3 to 34. The first study with the stream sampler involved the
prediction of test set blends with 12.00, 15.00, and 18.00% w/w caffeine.'® The MPE/TAE ranged from 2.3 — 3.4 for
these test set blends. The second study with the stream sampler involved test set blends with only 2.00, 3.00 and 4.00
% wi/w) ibuprofen in cohesive powder blends.!" The MPE/TAE for these blends varied from 7.6 — 24. The greater ratio
may be due to the cohesiveness of these powder blends, which influence the powder flowability. The stream sampler
was also used with low drug concentration powder blends where the concentration of caffeine in the test set blends
ranged from 0.76 — 4.02 % w/w."> The MPE/TAE for these blends varied from 2.9 to 34.

The results obtained with the patented chute, used in the experimental setup illustrated in Figure 2, are also shown
in Table 2.2 The MPE/TAE varied from 29 to 153 for these blends. These are preliminary results with the chute, and
additional studies are planned.

Table 2. Studies performed with stream sampler and chute.

Sampling Conc. o ) o )
Reference (#) System API % (wiw) MPE(%w/w)? | TAE(%w/w)? | MPE/TAE
Stream
10 sampler Caffeine 12.00 0.192 0.083 23
(NIRS)
Stream
10 sampler Caffeine 15.00 0.217 0.083 26
(NIRS)
Stream
10 sampler Caffeine 18.00 0.279 0.083 3.4
(NIRS)
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Stream
11 sampler Ibuprofen 2.00 0.0044 5.8 *10* 7.6
(NIRS)

Stream
11 sampler Ibuprofen 3.00 0.0076 9.3 *10* 8.2
(NIRS)

Stream
11 sampler Ibuprofen 4.00 0.0104 4.4*104 24
(NIRS)

Stream
12 sampler Caffeine 2.02 0.0019 5.6 *10° 34
(NIRS)

Stream
12 sampler Caffeine 3.09 0.0042 3.6 *10* 12
(NIRS)

Stream
12 sampler Caffeine 4.02 0.0034 2.3*10* 15
(NIRS)

Stream
12 sampler Caffeine 0.76 0.0020 6.8 *10* 29
(NIRS)

Stream
12 sampler Caffeine 1.51 0.0018 3.6 *10* 5.0
(NIRS)

Stream
12 sampler Caffeine 2.26 0.0028 2.2*10% 13
(NIRS)

Chute . *40)-5
23 (NIRS) Caffeine 2.02 0.0041 9.3 10 44

Chute . *4 (-4
23 (NIRS) Caffeine 3.09 0.0094 3.2*10 29

Chute
. * -5
23 (NIRS) Caffeine 4.02 0.011 7.2*10 153

Conclusion

The hypothesis in this work was that improvements in a sampling system could lead to an MPE/TAE value as low as
of 1 in the best of all possible cases. This assessment may be used to improve the performance of powder samplers.
The MPE and TAE were compared in four different sampling systems. The results obtained indicate that this ratio is a
valuable source of information with which to compare sampling performance of PAT systems. This is the first
comparison of MPE and TAE in pharmaceutical PAT systems.

The use of the single component (100% w/w metformin granules) reduced the heterogeneity to a minimum level and
indeed provided MPE/TAE values close to 1. Metformin blends of 95% and 97% (w/w) blends were also analyzed, but
the lowest MPE/TAE values were obtained, as expected, for the 100% (w/w) metformin granules.

This kind of performance comparison is only possible in PAT systems where 1-D sampling and variographic analysis
are performed. The value of TOS for PAT applications is evident.
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As was demonstrated by Gy empirically, then elucidated by Francois-Bongarcon, only the P95 size of
comminuted material (i.e. the size of a screen rejecting 5% of the material in mass) is relevant to sam-
pling theory variance formulas. In practice, when establishing sampling nomograms or using historic
data for heterogeneity testing, the P95 is not always known and the material is not always preserved
for P95 determinations by screening. A non-theoretical study of the experimental material previously
used and published by Gy had suggested some unpublished, rule-of-thumb, order-of-magnitude cor-
respondence between other Pxx sizes (e.g. P100, P80, P75, etc.) and P95, to be used as a last resort
when no better determination is possible. This correspondence surprisingly followed an arithmetic
progression. In this paper, various types of size distributions were researched and most of these rule-
of-thumb formulas were reasonably confirmed, except for the correspondence between P95 and P100
(maximum size), which was therefore updated. The reasons for the arithmetic progression and its ex-
ception for P100 also became clearer in the process.

Introduction

In the process of establishing a numerical model (formula) for the relative variance of the fundamental sampling error, Gy
stumbled on two problems: defining the comminution size using a single size parameter (nominal size) and relating it to
the average fragment volume weighted by mass, in the lot to be sampled. In his well known formula:

Rel.Var. = cfg¢ d® (1/Ms - 1/ML) (1)

indeed, the term fgd?® intends to represent that average quantity. It includes the chosen nominal size d, a shape factor f
that transforms the cube of that size into a volume, and the granulometric factor g, which pretends to transform the nomi-
nal volume fd®into the mass-weighted average volume in the lot.

This feat was not obvious from the start. Defining the comminution degree using a single parameter had been done be-
fore using a "percent passing" size, and Gy decided not to innovate there. But which percentage passing was to be used?
And how could it be miraculously related to the average volume in the entire distribution of fragments, irrespective of the
type of material and comminution, using a simple multiplicative and universal constant g? As it turned out, it is indeed
possible, but only if we restrict the definition of the comminution degree to the use of a 95% passing size (a.k.a. P95) for d
and use an approximate value of 0.25 for constant g. That has been described and demonstrated .

e Since then, two practical problems have arisen recurrently:

e Should laboratories be coaxed, often against their will, to use only P95 size on their comminution standards and

controls?
When performing heterogeneity testing, i.e. model (1) calibration, or when establishing or optimising preparation protocols
and sampling nomograms, what if the P95 size is not available and no material left that can be screened (a typical situa-
tion when dealing with historic data)?

Practical derivations of P95 to date

Going back briefly to Gy's purely experimental study of that constant g, Francois-Bongarcon established rules of thumb
(ROT) to derive the likely P95 size when only another Pxx size is known. This was done by identifying a subset the typical
curves, out of the well known 114 experimental used by Gy to relate the percent reject x (i.e. 100% - xx%) to the mass-
weighted average volume of the fragments 2. This subset was selected so as to represent the types of materials and
comminution most often encountered in process plants and laboratories. These unpublished rules, which have been used
as required but successfully since circa 2000, are shown on Table 1. They revealed a curiously arithmetic progression.

doi: https://doi.org/10.1255/tosf.140 Published under a Creative Commons BY-NC-ND Licence
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Table 1. ROT for P95 (circa 2000)

xx(%) P95/Pxx
95 1.00
90 1.25
85 1.50
80 1.75

That left the problem of 'guestimating' P95 when only P100 (a.k.a. Pmax or d-max) is known. Indeed it is not rare in pro-
tocols to prescribe crushing to a maximum size, which is usually achieved using a screen and iteratively returning its over-
size to the crusher until all the material passes. It was in slightly more recent times that Francois-Bongarcon thought to
have found a way to relate P95 to the maximum size.

Indeed, Gy had also published a curve (reproduced as Figure 1) that showed an alternative granulometric factor g' as a
function of the ratio r=d-max/d-min. This new, rigorously demonstrated factor g' must be substituted to constant g in for-
mula (1) in such a case, applying it to d-max? instead of d® (where d = de¢s = P95).

The study and mathematical formula that yielded that curve was not initially found. It was noticed by Francois-
Bongarcon 3, however, that the asymptote for very large ratios seemed to be close to 0.1. Assuming this was true, and
observing uncalibrated material would correspond to an infinite value of the ratio r, to the limit, its gdes® would also be
equal to g'd-max?® with a g' taken as the apparent asymptotic value of 0.1. Curiously again, this led to P95 = 0.75 d-max,
which could hardly be another coincidence, so that a new table of ROT was used since then that included P100 (Table 2).

G' FUNCTION OF GRANULOMETRIC SPREAD
(for closely sieved material)
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Figure 1. Granulometric factor for closely sieved material

Table 2. Revised ROT for P95 (published 2019)

Xx(%) | P95/Pxx

100 0.75
95 1.00
90 1.25
85 1.50

80 1.75
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Experimental fact checking
The time had come to (re-)verify these handy figures experimentally, especially the relationship to P100, as part of a se-
ries of papers being written on size distribution models.

After numerous discussions of the topic with the Intertek Laboratories in Jakarta, three usable data sets consisting of 10
samples each with detailed size distributions by screening were obtained. Two sets were for pulverized ore material, the
third one was for crushed material. For each of the sets, it was possible to interpolate the Pxx for xx=5, 10, 15 and 20. A
Rosin-Rammler model was used to improve the interpolations (over a linear one). For each sample of the crushed mate-
rial, the maximum fragment size (P100) was evaluated based on screen retained masses by linear extrapolation, which
was confirmed best over other methods, in the case of crushed material, using photos of the coarsest fragments. In each
case, the P95/Pxx factors were calculated. The averages of these are shown in Table 3. They confirm the older ROTs,
except for P95/P100, for which the new value of 0.40 is now recommended instead of 0.75.

This new, experimental confirmation of reasonableness the old ROTs for P90 and below make sense since they were
already established based on Gy's experimental results. In retrospect, that the new experimental value of P95/P100 does
not lie in the linear progression of the others makes sense. Cumulated size distribution curves have a stronger inflec-
tion/curvature somewhere above 95%, the strength of which, under the blinding charm of completeness of the observed
linear progression, had been overlooked (Figure 2 — with any x-scale and/or units).

Table 3. P95/Pxx Factors and ROTs

p95/pmax| p95/p95 p95/P90 p95/p85 p95/p80
Crushed 0.47 1.00 1.33 1.73 2.05
Pulps 0.42 1.00 1.27 1.47 1.72
pulps(2) 0.36 1.00 1.20 1.37 1.50
AVG 0.42 1.00 1.27 1.52 1.76
Min 0.26 - 1.1 1.20 1.33
Max 0.64 - 1.74 2.10 2.55
Initial RoT 0.75 1.00 1.25 1.50 1.75
New RoT 0.40 1.00 1.25 1.50 1.75

100.00%

95.00% +

90.00% +

85.00%

80.00% -

75.00% -

Cumulative Proportion

70.00% -

65.00% -

60.00% +

55.00%

Fragment Size

‘ -- ®-- As per experimental averages As per initial ROTs

Figure 2. Average Size Distribution of the Material

Closely sieved material
The curve of Figure 1 above was derived from a formula found in section 55.4.2 of Gy,19672, where the complete study of
the g' substitute to the classical granulometric factor g is described.

Gy started off assuming that material was sieved between two screens of mesh do (=d-max) and dr (=d-min), separated
by a number 'R' of AFNOR standard screens sizes, or 'modules’. The AFNOR (French National Standardisation Organisa-
tion) screen sizes are in geometric progression of ratio 10"1° which is very close to 2'3, so that:
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dr¥=do®/ 2R (2)

He then set up to estimating the average mass-weighted volume of the calibrated fragments between the two screens.
Assuming approximately uniform distribution of masses in throughout the R modules, he found that the average cubed
fragment in the calibrated material could be written g'do® where:

g'=(1.5-1/2R"+1/2R1)/R
If we call r the ratio d-max/d-min = do/dr , by virtue of (2),
R = 3 LN(r)/LN(2)
which allows us to adequately calculate g' from r, as on Figure 1, independently for the AFNOR progression.

As it turns out, the asymptote of that curve, however slowly reached, therefore is zero. This clearly invalidates any pre-
vious asymptotic reasoning to derive P95 from P100, which explains the wrong ROT for P100 that had been previously
found.

Conclusion
The experiment described in this paper is leading to the following take-away, but one should remember that deriving a P95
using ROTs remains a last resort when direct measurements are not possible:

e Previous ROTs below P95 were confirmed
e The ROT concerning P100 was found to be erroneous and was corrected
e The New ROTs in Table 3 are now believed to be safe to use

In particular, given the natural variability of comminution results from sample to sample, it may not be necessary to force
laboratories to change their definitions of comminution standards and controls, as long as sampling calculations and nom-
ograms are always made using P95 equivalents derived with these ROTs. This important conclusion is novelty.
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In the process industry arena, analytical endeavors are today well served by the Process Analytical
Technology (PAT) framework, offering a plentitude of on-line analytics, mostly spectroscopic: UV-VIS,
NIR, RAMAN, NMR, ‘acoustic chemometrics’ a.o. This context is generally considered satisfactory, but
there is a major catch. The present paper focuses on a fundamental feature in process sampling, the
link between an on-line analytical technique and a moving stream of matter, which is to be character-
ised, monitored, and analysed. A process sampling operation can serve many objectives; process
regulation, product or interim product characterisation, optimisation of raw material consumption,
maximizing energy efficiency, pollution, and environmental impact management — or process, plant,
company, corporation decision making at supervisor and management levels concerning economics
and risk management. All these objectives can only be meaningfully undertaken if based on relevant
information, that is, if based on reliable analytical data, which in turn is 100% dependent upon repre-
sentative samples, or representative sensor signals. The singular common element in all of this is the
process sampling interface. This paper develops a critique of most current interfaces, with a scathing
verdict: the dual role of the process sampling interface as both delineating an appropriate aliquot vol-
ume while facilitating the specific analytical technique, has largely been overlooked, with a significant
negative effect that is spelled out in full detail across implemented solutions across widely different
application sectors. Most current process sampling interfaces do not comply with TOS’ demands, put-
ting representativity severely at risk for heterogenous materials.

Introduction — setting the scene

The Theory of Sampling (TOS) has always been front and center concerning how to extract representative samples from
moving lots (process sampling), e.g. from a conveyor belt or from ducted material streams. TOS’ preeminence is that iden-
tical Governing Principles (GP), Sampling Unit Operations (SUO) and Sampling Error Management (SEM) can be applied
identically to both stationary and to moving lots. The 70-year application history in TOS’ traditional realms is highly successful
regarding physical extraction of increments and samples, especially in the Mining, Minerals and Metals processing and
refining industry (M3), in cement production and in many other process industry sectors dealing with broken ores, particulate
matter, minerals and slurries. A comprehensive, up-to-date introduction to TOS in these sectors can be found in three recent
TOS textbooks, and in the wealth of references to the extensive literature found herein'3. These are conveniently presented
in a comparative overview, easily available®.

Recently in these industry sectors, a pronounced interest can be observed for applying modern sensor technologies
for on-line monitoring because of the obvious advantages for fast, real-time information used for process monitoring and
control allowing optimized decision making, all with significantly added economic results. These approaches take a broader
view on available analytical techniques that can be applied on-line, always closely related to the characteristics of the ma-
terials and lots involved (physical, chemical, other). A key example outside TOS’ traditional realm is the use of Near InfraRed
(NIR) spectroscopy in the broad pharmaceutical manufacturing context (‘pharma’ for short). In terms of societal importance
and total turnaround economy, one can meaningfully equate M3 and pharma.

In the process industry arena today, analytical endeavors are well served by the Process Analytical Technology (PAT)
framework, offering a plentitude of on-line mostly spectroscopic analytics: UV-VIS, NIR, RAMAN, NMR, ‘acoustic chemo-
metrics’ a.0. A comprehensive introduction to this field can be found in the “PAT bible (2010)".

The present paper focuses on the fundamental feature in common in process sampling, the link between an on-line
analytical technique and the moving stream of matter, which is to be characterized, monitored, and analysed. A process
sampling operation can serve many objectives, process regulation, product or interim product characterization, optimization
of raw material consumption, maximizing energy efficiency, pollution, and environmental impact management — or process,
plant, company, corporation decision making at supervisor and management levels concerning economics and risk man-
agement. All these objectives can only be meaningfully undertaken if based on relevant information, that is if based on
reliable analytical data, which in turn is 100% dependent upon representative samples, or representative sensor signals
from the start.

doi: https://doi.org/10.1255/tosf.141 Published under a Creative Commons BY-NC-ND Licence
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The singular common element in all of this is — the process sampling interface.

Below it is shown that this commonality is the critical success factor w.r.t. representative sampling sensu TOS. To reveal
the critical role of the process sampling interface, examples shall be presented from TOS’ traditional realm (not many are
needed taking into account the WCSB10 context), but deliberately also from what at first sight may appear as very different
industrial sectors, pharma and similar industries (food/ feed processing, production and manufacturing for example), but
which are never-the-less dealing with the same matter, i.e. heterogeneous aggregate mixtures, only often from a finer grain-
size realm (powders, slurries). From these industrial sectors focus shall be on NIR spectroscopic applications, which are all
in the realm of PAT.

While at first sight the M3 and pharma/food/feed (PFF) industry sectors are likely to be found disparate in the extreme in
their process technology contexts and w.r.t. the wildly different materials involved, it turns out they are closely related in their
identical need for representative process sampling to conduct reliable process monitoring and process control, and QC/QA
of interim/finished product. In fact, for PFF the need for appropriate sampling Quality Management (QM) is identical to those
for M3. This means that M3 and PFF industries are fully aligned and joined precisely at the juncture which is the focus for
the present paper — the process sampling interface. The common role of the process sampling interface is to bring a specific
on-line analytical technique in appropriate contact with the material/product/streaming material that is to be characterized.
The role of the process sampling interface is to facilitate the analytic interaction with the moving material — without giving
rise to sampling errors to any degree more than absolute necessary. This turns out to be a formidable challenge.

In this paper, the analytical specifics in themselves are not of interest (see the abundant PAT literature). Below it is all,
and only about what comes before analysis. Also, the analytical competence per se is very rarely an issue; it is almost
universally well taken care of in the form of thoroughly validated analytical procedures.

So, are the M3, PFF, and all similar particulate matter realms fully competent regarding the specific process sampling
issues? After all, solutions to this task can look at the unparallel success for historical TOS applications over ~70 years in
science, technology, industry, trade, society and in the environmental sciences. For more than five decades the Theory of
Sampling (TOS) is rightly famous as the framework that covers all necessary elements, i.e, design of sampling procedures
and equipment, correct implementation, correct practical operation, sufficient maintenance, a necessary and sufficient the-
oretical competence framework.

Well, it turns out there are still aspects of TOS application that can benefit from a general perspective - and none more
so than the process sampling interface.

TOS vs. PAT — an exemplar contrast from which to learn

Within TOS’ traditional realms it is well known how to sample particulate matter and mixtures, both from stationary lots and
from moving streams of matter. When it comes to how to extract physical increments and samples in a representative
fashion, the foundation of TOS reigns supreme, and all new applications always take their point of departure from this
framework and the from the wealth of accumulated practical experience, as witnessed by the historical library of Proceedings
from the World Conferences on Sampling and Blending WCSB1-WCSB10. Sampling by physical extraction is very well
served indeed, see®? for example.

By contrast, for ‘sensor sampling’ i.e., Process Analytical Technologies (PAT), which is claimed to be a ‘no sampling
needed’ approach, there is no similar theoretical framework for the sampling step, which is rather often treated in a somewhat
stepmotherly fashion. Instead, a pronounced practical approach rules in this realm®, in which the question of how to achieve
representative sensor signals is the first item on any agenda, here intimately related to the design and implementation of
the specific analytical instrumentation, which is to be put in operation by way of a sensor interface connecting to, and inter-
acting with, the streaming flux of matter.

This endeavor is closely related to the specific analytical technique involved (the use of NIR is dominant, but other ana-
lytical techniques find their use as well in specific cases). This is always based on specific calibration approaches; calibration
is always needed as PAT instrumentation is multi-channel, multi-wavelength — producing multivariate spectral data. There
can be observed a drive: “get the multivariate spectral signals — and all will be well”, which is based on the overwhelming
success of the data analytical discipline chemometrics in the form of multivariate calibration of process sensor signals from
multi-channel analytical instruments'®. One often gets the distinct impression that the specifics of a PAT sensor interface is
more driven by the needs and requirements of the sensor analytics than of considerations for the analytical support (vol-
ume/mass) that can be realized. This is where the issue of the effective increment volume crops up.
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Preluding what is more fully illustrated in systematic graphics below, PAT solutions make use of three principal types of
interfaces, three sampling modi, which are very well known in TOS. Pat interfaces are almost always of the type (1,2)
instead of (3):

1. Taking part of the stream, all of the time; or
2. Taking part of the stream, part of the time; instead of
3. Taking full cross-steam increments part of the time (the only TOS-compliant sampling approach)

These sampling modi have been illustrated with particularly clear graphics in a companion contribution in these proceed-
ings, see Figs. 2-4 in Novaes & Hidding (2022)".

With modus (3), focus rightly is on sampling the entire stream, full slices of the stream, while sampling in process time.
While with (1,2), the full width/breadth/depth of the stream is never covered in full, leading to TOS-incorrect sampling,
massive IDE, thereby breaking one the two necessary-and-sufficient requirements for representative process sampling
(unbiasedness and sufficient precision).

Based on such a failing PAT focus, the issue of representativity here is mostly, or sometimes wholly, only related to
spectral and reference sample measurement uncertainty (MU) — but data modeling errors and uncertainties are also
acknowledged if the chemometrics is not up to the job (data model under — or over fitting). With this PAT focus, the realm
‘before sensor signal acquisition’ is often unwittingly ignored, even though this is the very domain where sampling errors
abound. This issue constitutes the central theme of this presentation: In the PAT realm sampling errors are incurred in the
exact same fashion as when extracting physical samples from moving streams. In the PAT realm this is largely a surprising
insight — indeed this parallel is also able to shed light on how process sampling sometimes is subpar, even in the TOS
arena.

For these reasons, sampling error effects impacting on the quality of sensor and probe signals largely constitute a terra
incognito in the PAT realm. This situation invites all parties to take a serious look at the need to comply with TOS’ stipulations
for representativity, no matter with what interface configuration sampling is performed. It turns out that there is a complete
duality between TOS and PAT, which must be acknowledged and followed where- and whenever the goal is representative
sensor signals, see chapter three in%, and also'®'". This duality is the central theme for this paper.

Be aware that a dear friend goes under many names. Thus, what in chemometrics is termed ‘multivariate’ (multi-variate,
meaning many variables), in many other scientific and technological fields has acquired the name ‘hyper-spectral a.o. A
good example of the latter, and a good example of the emerging awareness of the spectral (multivariate, hyper-spectral)
advantage by frontline players, would be Mittrup et al (2017)'?, which is also among the pioneers applying NIR spectroscopy
in M3.

The contradiction between TOS and PAT has been highly frustrating, indeed a situation that has lasted for the better
part of the last 10-15 years. The scope can best be illustrated by the fact that the first edition of the famed source book:
“Process Analytical Technologies (PAT)” (2007) did not contain a specific chapter on sampling (sic). While the second
edition, out just three years later (2010)?, features a comprehensive chapter, aptly named: “Process sampling: Theory of
Sampling (TOS) — the missing link in Process Analytical Technologies (PAT)” — the title says it all!

Focusing

In many industry sectors, there is today an emerging rush to take advantage of ‘modern sensor technology’ (including
‘advanced’ statistics, machine learning and other artificial intelligence approaches), to provide real-time process information
to support and optimise business decision making. Although this trend manifests itself slightly differently in different process
industry sectors, typically because the sector viewpoint is intimately related to one dominating specific analytical approach,
e.g., XRF, PGNAA, NIR, it is rare to find awareness of the overarching hidden commonality involved, the role of process
sampling interface. Focusing on this issue makes it possible to review and critique a multitude of current applications to
avoid making the same mistakes over and over in many disparate realms in science, technology, industry, trade, society,
and the environment.

In medias res - PAT

Process monitoring and control in technology and industry is incomplete without full understanding of all sources of variation,
causing bias and impression. It is particularly important to be able to decouple sampling and analytical variations caused
by bias-generating errors because these can, and shall be reduced maximally, indeed preferentially eliminated. This is the
first, well-known mandate of TOS: elimination of sampling bias. By contrast, the analytical bias is fundamentally different,
not always clearly acknowledged as is a major point in'. The analytical bias is treated very well within the specific analytical
realm and literature.

A case in point: It is not enough to make use of Multivariate Statistical Process Control (MSPC) or similar QCQAQM
monitoring approaches based on charted analytical results, because these may well be compromised by unknown signifi-
cant sampling errors, if not adequately identified, quantified, and reduced to below a relevant a priori acceptance threshold:
This situation results in unnecessarily large bias and impression.
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More precisely: Process data are affected both by analytical measurement errors as well as extraction sampling errors
or sensor signal acquisition errors. This understanding is of critical importance, because the latter two categories of sam-
pling error effects are all too often unrecognized, or unknown. But worse, they typically dominate over analytical errors by
factors 5-10-20+ the more heterogeneous materials targeted and/or if proper sampling competence is not brought to bear
in the design, implementation, maintenance, and operation of the fotal process measurement system. Alarmingly, almost
always the Total Analytical Errors (TAE) constitute only a very small, sometimes vanishingly small proportion of the total
Measurement Uncertainty (MU) — What makes “all the difference” quantitatively and qualitatively, is the Total Sampling
Error (TSE). Below we are only interested in how to minimize TSE in process sampling.

In the PAT and in the process technology context in general, it is not sufficiently known that sensor signal acquisition
gives rise to identical error types as does physical sample extraction.

Below we bring forth the critical analogy between Process Analytical Technologies (PAT) and conventional physical
sample extraction and show how three QCQAQM tools, the Replication Experiment (RE), interleaved sampling (IS), and
variographic process characterisation (VC) can be involved. RE, IS, VC constitute a necessary and sufficient on-line ap-
proach for total variability decomposition. Without proper sampling error management (error identification, reduction and
elimination), on-line analytical instrument calibration and validation will unavoidably incorporate significantly inflated data
uncertainties, the bias complement of which is inconstant and without correction possibilities, all of which assuredly com-
promises the ultimate process monitoring and control objectives significantly.

The presentation below reflects the close interaction between TOS, PAT and chemometrics, a competence overlapping
that is not much in focus in the IPGSA realm. Here, space consideration does not allow more than referral to a select suite
of key, comprehensive literature sources for interested parties who wish to go deeper with respect to fundamental theory
with all three scientific fields1"50,

A practical starting platform for the present objective shall be a fundamental sampling duality.

The fundamental duality between physical and sensor sampling

Below all efforts have been made to make illustrations completely anonymous; no identification of persons, locations, in-
strument brand or companies is intended. Only the didactic value of correct vs. incorrect, faulty, or fatal non-compliance
with TOS is of interest.

Afundamental sampling duality: Physical increment/
sample extraction vs. sensor signal acquisition (PAT)

ﬁ b N
y Samplingerrordaliy .

TOS: Identical sampling errors with , as without sensor technologies (PAT) |

Fig. 1. The fundamental sampling duality between physical increment/sample extraction (left) and sensor signal
acquisition (right). Installing PAT sensors has often been claimed to be equivalent to ‘no sampling needed’ —
alas! lllustration copyright KHE Consulting teaching collection, used with permission.

Installing PAT sensors has often been claimed to be equivalent to ‘no sampling needed’ — alas, this is a complete fallacy.
The issues treated below are not novelties for the sampling community — rather they should be trivial but are not entirely.
But the main thrust of this paper is directed at related scientific communities, such as chemometrics, process technology,
process engineering, processing, and manufacturing plant design — all facing the same issues. For these communities, it
has been a rude awakening how the “Eureka moment” in the right panel of Fig. 1. dissolved into a whimper as soon as
proper Total Measurement Uncertainty and full system performance validation was invoked. Alas, TSE error effects also
abound in the PAT sensor world. “Why - there is literally no physical sampling involved?”
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First lesson: Both physical extraction sampling errors and sensor technology spectral acquisition errors are in play — in
fact they are identical, as even rudimentary TOS-analysis will show.

The sampling interface

Figure 2 shows the key insight presented in this paper: TOS’ mandatory rules that guarantee representative increment
extraction from a moving lot (physical process sampling) are identical when applied to secure a representative sensor signal
from a ducted material stream (sensor or PAT process sampling). There is an often-overlooked subtlety involved here,
which is the distinction between a sample container, holder, cup, vial — and a sampling interface, see further below.

Primary Processsampling

S

Primary process sampling

LAS NN

Fig. 2. Key commonality between physical increment/sample volume and sensor signal support in process sam-
pling: Identical rules apply w.r.t. correct increment delineation and extraction (complete and undisturbed volumet-
ric coverage) for both physical extraction as well as for delineation of the sensor signal support volume as facili-
tated by a sampling interface. This illustration can either be viewed as looking down on a heterogeneous 1-D
moving material lot f.ex. on a conveyor belt - or it can be understood as a vertical section through a horisontal
conduit transporting a heterogeneous material (indicated by irregular texture). From both points of view, TOS-
correct process sampling necessitates recovery of, or spectral coverage of, the full delineated cross-stream incre-
ment volume, shown by the three renditions in the upper panel Only fully covering increment volumes with planar-
parallel boundaries will result in representative increments or samples. lllustration copyright KHE Consulting
teaching collection, used with permission.

Flow

@

Note the non-representative increment geometries indicated in Fig. 2. The upper panel shows fatal ‘grab sampling’,
either as partial 3-D volumes or as superficial grabbed increments from the top of conveyed material only. The central panel
illustrates increment delineation/extraction f.ex. resulting from a valve opening capturing a “partial fraction of the moving
stream of matter all the time” only (as well exemplified by the infamous Shark Fin valve), while the bottom panel shows
flawed cross-stream increment delineations, flawed as they furnish unbalanced increments w.r.t. transverse stream heter-
ogeneity. None of these configurations corresponds to the imperative demand for an uncompromised full slice of the moving
stream, none of these deliver TOS-compliant increments.

Thus, Fig.2 shows the non-negotiable demands for correct vs. incorrect increment delineation, which determines whether
a sampling process will give rise to Increment Delineation Error (IDE) effects, or not. By implication, the illustration also
shows the demands for elimination of Increment Extraction Errors (IEE). These demands on a practical physical sampling
system, for example from a conveyor belt, applies with equal criticality for sensor sampling, but contrary to what is often
assumed, there is not a dichotomous divide between physical — and sensor sampling. Fig. 3 shows the most often occurring
principal process sampling options of either modality; it is noteworthy that all the shown examples from current process
technology do not deliver representativity'->.
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Overview of typical physical process or sensor sampling designs I

Flow

1
%
TR

D E F
@ Sensor |location |

All designs shown are not TOS- compliant

- process sampling is not representative!

Fig.3. Overview of typical, often occurring sampling system configurations and locations encountered in process
technology across diverse industry sectors. “Sampling valves” are designated A through I, while typical locations
of sensor technology solutions (PAT) are marked as red arrows. None of the process system solutions shown here
are representative however, see®. lllustration copyright KHE Consulting teaching collection, used with permission.

Whether designed for physical increment/sample extraction by use of “sample valves” [A through 1] from vessels and
containers, horisontal or vertical pipelines — or designed to take advantage of the much claimed “no sampling necessary”
sensor technology (PAT), none of the sampling systems depicted in Fig. 3 will give rise to representative samples or signals,
which is easily verified by reference to the ‘full slice imperative’ shown in Fig. 2.

Figures 2 & 3 and the remarks above, lend full justification to the duality argument illustrated in Fig 1.

There is another duality presented below. lllustrative examples of the main message in this paper shall come, appar-
ently willy-nilly, from both the pharma PAT/NIR world and from the traditional TOS process realm addressing M3 for ex-
ample. This is deliberate, as it is meant to bring forth the universality of the discussion of the process sampling interface
that follows.

But first a few reflections on sensor spectroscopic penetration depth, which are of key interest.

Spectral penetration depth also matters

NIR analysis is influenced by how lots, samples, and smaller sub-samples are handled before the aliquot is presented to
the analyser. An iconic author in the NIR field (P. Williams, 2001) listed ~30 sample-associated factors that affect the
accuracy and precision of NIR analysis, but only gave indicative actions for how to avoid some of these and emphasized
that: “If [these] are not efficiently carried out, consistent and accurate NIR analysis is not possible, no matter how sophisti-
cated the software.”, (Williams quoted in'3). We might here add: “... and regardless of the analytical competence”. This view
is in complete agreement with the principles presented by TOS.

Thus, with respect to analytical errors and their effect (NIR and for almost any other analytical modality), in a specific
sense it is all about what comes before analysis — because this is where the quality, relevance and validity of the subsequent
analytical results originate! Disregard for this realm is like the original sin ...

One specific analytical issue can also be seen as impacting the sampling realm, which is of paramount importance for
sensor process sampling. This concerns the effective spectroscopic penetration depth. We shall use NIR as an exemplar
for many other spectroscopic techniques, although their individual penetration depths will vary, and can be widely different.
However, the principal argument below is universal: penetration depth is a bona fide sampling issue, penetration depth
uncertainty matters!
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Diffuse Specular Incident NIR
Reflection Reflection Radiation

Transmitted NIR
Radiation

Fig. 4. Schematics for NIR spectroscopy/spectrometry, illustrating the thorny issue of varying penetration depth.

lllustration copyright, Rodolfo Romanach teaching collection, used with permission. See also discussion in'?

The analytical setup in Fig. 4 illustrates the business end of sensor sampling of a powder mixture, based on the interac-
tion of the incident radiation with the material, either in an extracted sample contained in a sample holder (full cylinder
height) or in an assumed, correctly delineated volume serving the same purpose as the sample container. This volume is
delineated by the sensor sampling interface.

The key issues is that this interaction is simultaneously a sampling operation (sensor sampling), as well as the physical
basis for quantitative analysis through a multivariate calibration model, allowing prediction of a specific material property
(often a concentration) (Esbensen and Swarbrick 2018)'°, Romariach and Esbensen 2016)'3. However, this type of chemo-
metric prediction of analytical concentration will be fraught with unnecessarily inflated prediction errors (prediction vari-
ances), with varying material-dependent impacts, due an obvious volume mismatch between the assumed aliquot volume
(full cylinder height) and the physically realized support volume for the spectral signals, which is only a fraction hereof.

In this case, sensor sampling is intricately related to the physics of diffuse reflection in NIR spectroscopy. The volume
mismatch issue is in general material dependent. As the top layers of the sample will receive more radiation than the bottom
layers, less radiation reaches the bottom part of a material on a volume-to-volume comparison. For a given material with a
specific physical constitution and different grain-size distribution a.o., the depth penetration also depends on the wavelength
used. The lower wavelength radiation penetrates to greater depths at where molecules absorb less NIR radiations. Thus,
the effective sample mass interacting with NIR radiation also varies according with wavelength. A more comprehensive
introductory description of these issues can be found in'® and in “Sampling” column in Spectroscopy Europe/World SE-2
(2021)'4, entitled “What are Sampling Errors — and WHAT can be done about them”, which has this ingress:

“The objective of this column is to provide easy-to-understand examples of sampling errors. Prompted by
recent participations and presentations at on-line conferences and meetings, we believe there is a need
for a more fulfilling introduction and exemplification of the concept and real-world consequences of com-
mitting “sampling errors”. WHAT is a sampling error? WHAT is the result of sampling errors? WHAT can
we do about sampling errors? [...] The point of departure will be in the Theory of Sampling (TOS) and in
the near infrared spectroscopy analysis and pharma application sectors, but the focus will be developed to
be more general, so that readers can carry-over to other scientific and application areas of interest.”

The vast professional NIR literature is readily available (a plethora of references can be found in the literature referred to
above).

The key issue is that the effective volumes are not identical — which according to TOS’ framework will unavoidably lead
to a bias.

It is sometimes argued that since this mismatch error is ‘identical’ for all samples (calibration, validation, prediction sam-
ples), it will in effect create a ‘constant bias’, which will influence calibration, validation, and prediction samples identically,
that can therefore be corrected for (as can an analytical bias). However, this is a fatal misunderstanding because this
understanding tacitly presupposed that all materials, mixtures, and powders are identical when involved in NIR analysis, all
differences in sample preparation, handling, pouring, compactification, and presentation a.o. notwithstanding. But this is
clearly never the case for the multitude of very different materials subjected to NIR analysis in this world.

These relationships cannot be resolved universally by the traditional route of demanding a “bigger sample”. The solution
is hoped to be NIR radiation interacting with an increased analytical mass in a well-designed fashion to accomplish practical
composite sampling and at the same time guarantee sampling correctness (elimination of sampling bias). This objective
has been the holy grail for decades of development of suitable ‘sample cells’ within the NIR realm, far from all of which
having reached this goal, however. While the specifical analytical problems of this kind are well recognised, it takes more
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than a minimum of TOS competence to look through the immediate manifestations of many ‘sample interfaces’, salient
examples appear below.

This kind of sensor sampling error cannot be corrected for by any physical pre- or post-treatment, any mathematical
algorithm or by any software approach. These issues will always affect adversely on the possibility of developing fully
optimised calibration models. All NIR spectroscopic methods are similar to a multiple path-length sample cell where particles
may interact with radiation more times than once. The mass analysed by the radiation may be estimated in some cases but
is generally not known in detail. Most other analytical chemists know exactly the material that is analysed, including its
mass. The authoritative “HANDBOOK of NIR Analysis (2020)”, chapter 19, characterises this fundamental sensor sampling
enigma in the following way (quote): “NIR spectroscopists are spectacularly the most successful analytical chemists that do
not know the exact sample mass being analysed!” Factor in the appropriate density of the analysed material, then mass
=~volume in this scathing dictum.

For multivariate calibration truly to be the chemometric be-all, end-all solution to process sampling, it is imperative that
‘an increment — is an increment’ - in the sense that ‘a process sampling interface increment volume — is simultaneously also
the physical reference sample volume of matching size’. This is obviously not something that can be taken for granted
across the gamut of analytical techniques in the realm of PAT.

The process sampling interface is a harsh mistress at this most fundamental scale. It pays to pay attention, also because
other issues occur at the scale of the process sampling interface itself.

Spectral averaging is not composite sampling

Development of PAT systems to meet TOS’ Fundamental Sampling Principle (FSP) is an ongoing challenge. Full compli-
ance with FSP requires that an entire cross section of a process stream shall be obtainable for it to be a bona fide repre-
sentative increment, Fig. 2. This requirement is probably the most often occurring sin-by-omission, or sin-by-neglect, in
many current PAT and in similar process technological applications.

As but one example, the Field-of-View (FOV) of a beam of NIR irradiation only interacts with, say, the top 1-2 mm or so
of a moving bed of matter. For a process stream the depth of which may be many, many times greater; there is clearly a
massive Increment Delimitation Error (IDE) at work here. This situation must rightly be considered beam grab sampling,
incurring a significant support volume mismatch. The parallel with physical grab sampling is striking — the duality is com-
plete.

Today’s dominating modus operandum is pledging allegiance to a massive averaging of spectral scans acquired during
the process flow. While this in some, restricted way appears to constitute an improved procedure, the penetrative question
is, how much better is a number of grab samples, scanned or physically obtained grabs, if none of them complies with the
necessary principles for increment representativity? In the informed optics of TOS, this ‘way out’ for PAT analysts will
unfortunately not necessarily lead to representative averaged signals even though apparently using spectral composite
sampling - because it is still only the uppermost part of the streaming matter which is ‘averaged’.

A representative composite sample (physical or optical) requires that all constituent parts of the lot moving through the
sampling interface, have the opportunity to become part of the composite sample. This can manifestly not be obtained by
any variation of increments which only represent the top of a moving stream, or any similar series of partial increment
volumes only, Fig. 2. This is a structural impossibility. Spectral averaging is not by itself TOS-compliant composite sampling,
thereby affecting TSE — but spectral averaging does help to get the analytical uncertainty better constrained, thereby af-
fecting TAE (only). This all takes place under the complete boundary condition of the Total Measurement System Error
TMSE := TSE + TAE.

From PAT/NIR sensor sampling to physical sample extraction

What is the relationship between the pharma/NIR/PAT powder and powder mixture worlds briefly described above — and
the traditional TOS realm of sampling of aggregated particulate materials of geological, biological a.o. origin over a very
wide range of grain-sizes, say from decimeters to micrometers? Despite all the drastic intrinsic differences, from the point
of view of process sampling it is all the same - only the scale changes.

Key distinction

Perusing the relevant literature, one often comes across a misunderstanding concerning the distinction between a “sample
cell” and a “sampling cell”. The difference is very much not just a semantic difference — it constitutes the essential insight
for full understanding of the role of the process sampling interface.

A “sample cell” (noun) (think of a sample holder, a sample cup, a sample vial, a ‘petri dish’ ... ... ) presupposes that
‘the sample’ has been sampled before being put into this container. All the thorny issues regarding sampling have been left
in the analytical ante-room, the realm ‘before analysis’. For good order it is noted that this realm is typically comprised by
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an integral series of sampling stages: primary -, secondary, tertiary sampling ... the last of which produces the analytical
sample. The primary characteristic of a sample cell is that it is passive; it ‘merely’ is filled by the already-sampled analytical
aliquot. “Someone else is responsible for the sampling” — heard this before?

A “sampling cell” (noun) is an active devise that serves a dual purpose (think of a ‘flow through’ cell). A sampling cell
is designed to delineate the operative volume support (sensor increment) from which spectroscopic signals is obtained,
thus effectively determining the analytical sample mass - while simultaneously facilitating the spectroscopic interaction with
the moving material (sensor field-of-view, analytical duct window opening a.o.). The former function has everything to do
with TOS’ concepts of IDE and IEE. A broader view is needed than the basic truism: all sampling cells enclose a specific
volume, determined by the design of the sampling interface. Here is the most important distinction:

The dynamic analytical support volume delineated by the process sampling interface — must be equal to the volume of
a ‘full slice’ increment, in the sense of Fig. 2. Indeed, physically it must be the same volume. No exceptions are acceptable,
if representativity is the objective.

Graphics — a picture tell a thousand words

The following figures are presented as principal sketches and generic renditions; they only serve the purpose of illustrat-
ing the characteristics of an installed process sampling interface. No identification of instrument brand, OEM, plant, com-
pany, corporation, or persons is intended. On the contrary every effort has been made only to present schematic didactic
information pertaining to how to perform proper process sampling.

Figures 5-13 below all focus on the role of the sampling interface. The examples shown cover a wide and dominating
range of contemporary process technological implementations and PAT installations.

It is highly significant that nearly all the illustrations are telling the story of how not to perform process sampling! The
reason is sobering — there are not many practical process sampling equipment and system solutions found on the market
today, or in contemporary industrial installations, that factually comply with TOS’ requirements for representative process
sampling. Unless the gamut of all the world’s materials correspond to infinitely diluted chemical solutions or to perfectly
mixed composite materials. Not many do (see also the compositional caveat below). For all of these, the following will be
a dramatic eye-opener,

=
2 %000
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Diffuse reflectance probe
sampling

Cross-section Cross-section

Fig. 5. Principal sketch of process sampling interfaces for analytical techniques purporting to deliver sensor sig-
nals that are representative of the streaming matter in conveyed flows, ducted pipes or from reactors. The flow
intersecting volumes, depicted in red in cross-section views of the flow, do not comply with the imperative demand
for a full cross-sectional slice, cfr. Fig. 2. lllustration copyright KHE Consulting teaching collection, used with
permission.
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Cross-section Cross-section

Fig. 6. Principal sketch of process sampling interfaces for analytical techniques purporting to deliver sensor sig-
nals that are representative of the streaming matter in conveyed flows, ducted pipes or from reactors. The flow
intersecting volumes, depicted in red in cross-section views of the flow, do not comply with the imperative de-
mand for a full cross-sectional slice, cfr. Fig. 2. lllustration copyright KHE Consulting teaching collection, used

with permission.

Cross-section

Fig. 7. Principal sketch of process sampling interfaces for analytical techniques purporting to deliver sensor sig-
nals that are representative of the streaming matter in conveyed flows, ducted pipes - or from reactors. The
flow-intersecting volumes, depicted in red in cross-section views, do not correspond to the imperative demand
for a full cross-sectional slice, cfr. Fig. 2. lllustration copyright KHE Consulting teaching collection, used with

permission.
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Fig. 8. Principal sketch of process sampling interfaces for analytical techniques purporting to deliver sensor sig-
nals that are representative of the lot material residing in storage containers and similar. The realized analytical
support volumes, depicted in red in cross-section views, do not correspond to the imperative demand for a full
cross-sectional slice, cfr. Fig. 2. A series of containers or drums, for example from a production line or forming

an incoming raw product line, also constitute a process sampling situation, whether sampled by an installed sen-
sor (left) or a handheld device (right). lllustration copyright KHE Consulting teaching collection, used with permis-
sion

Fig. 9. Principal sketch of process sampling interfaces purporting to deliver physical increments that are repre-
sentative of the streaming matter in conveyed flows, ducted pipes or from reactors. The realized analytical sup-
port volumes, depicted in red in cross-section views of the flow, do not correspond to the imperative demand for
a full cross-sectional slice, cfr. Fig. 2. Inserting probes and screw samplers makes no difference, despite many
claims to the contrary in the marketplace. The deliverable is a far cry away from a correct, full slice of the stream,
cfr. Fig. 2. lllustration copyright KHE Consulting teaching collection, used with permission.
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Fig. 10. Principal sketch of process sampling interface purporting to deliver physical increments that are repre-
sentative of the streaming matter in conveyed flows, ducted pipes or from reactors. The realized analytical sup-
port volume, depicted in red in cross-section views of the flow, do not correspond to the imperative demand for a
full cross-sectional slice, cfr. Fig. 2. Process control samplers, including pressure pipe and poppet samplers,
make no difference, despite many claims to the contrary in the marketplace. lllustration copyright KHE Consulit-
ing teaching collection, used with permission.
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Fig. 11. Principal sketch of process sampling interfaces purporting to deliver physical increments that are repre-
sentative of the streaming matter in conveyed flows, ducted pipes or from reactors. The realized analytical sup-
port volume (“sample inlet”’) does not correspond to the imperative demand for a full cross-sectional slice, cfr.
Fig. 2. Poppet samplers makes no difference, despite many claims to the contrary in the marketplace. lllustration
copyright KHE Consulting teaching collection, used with permission.
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Fig. 12. Principal sketch of process sampling interface purporting to deliver physical increments that are repre-
sentative of the streaming matter in conveyed flows and ducted pipes. The realized analytical support volume, here
depicted in green in cross-section view of the flow, do not correspond to the imperative demand for a full cross-
sectional slice, cfr. Fig. 2. This illustration shows the famous ‘shark fin’ sampler. It fails to extract a complete slice
of the moving matter but delivers only a narrow central ‘part of the whole stream all of the time’. The cross-sectional
areas indicated in red are structurally never available for sampling and will therefore never be able to comply with
TOS’ Fundamental Sampling Principle (FSP) resulting in a highly significant sampling bias. Despite many claims in
the marketplace, it is obvious that the shark fin sampler is not representative. lllustration copyright KHE Consulting
teaching collection, used with permission.

Fig. 13. Principal sketch of a process sampling interface purporting to deliver sensor signals that are representative
of the streaming matter in conveyed flows. The realized analytical support volume (red) does not in any way corre-
spond to the imperative demand for a full cross-sectional slice, cfr. Fig. 2. Many hopeful suggestions involve sen-
sors, or cameras, capturing views (narrow-angle, or broad-angle) of moving steams of matters, which fall under the
category process sampling. It is obvious however, that such solutions will always fail w.r.t. the imperative slice
rule, at best delivering sensor grab samples. The duality with traditionally extracted physical grab samples from
the top of the conveyed matter only is striking. Grab sampling is never a solution, neither in TOS’ domain, nor in
the PAT sensor domain. lllustration copyright KHE Consulting teaching collection, used with permission.
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Underlying assumption of cross-sectional homogeneity

Upon reflection, all the non-representative exemplifications presented above, would to some degree be able to function — if
only all instantaneous flow cross-sections were homogenous. This underlying assumption is widespread in very many pro-
cess technology contexts where TOS literacy has not been obtained.

A warning, also part of the process sampling interface discussion, concerns the by-pass valve, often used to try to mass-
reduce (sub-sample) a streaming flow of matter on the fly. While this objective is highly desirable, it is also very difficult to
realise in practice, because of a fundamental misunderstanding. Not any by-pass valve follows TOS’ demands for correct
increment cutting. In fact, of the five alternatives shown in Fig. 14, only one is TOS compliant! Check out your next blueprint
showing ‘by-pass streams’. Exactly how is this by-pass diversion effectuated? There are many examples in which use is
made of one of the non-compliant stream diversion options shown in Fig. 14, the effect of which can be of varying importance,
but never neglectable. For full description, see?513.

b .
7 T

Fig. 14. The by-pass valve enigma. How to divert a moving stream in a representative fashion? Of the five alterna-
tive designs for diverting a mass- and flow-reducing by-pass stream, only one is TOS-compliant (top rightmost
example). lllustration from KHE Consulting teaching collection, used with permission.

A (very small) compositional caveat

To be fair, many of the process sampling system solutions depicted above actually do work according to their fundamental
objectives of securing representative process samples — but this only applies to one-phase material systems, e.g. infinitely
diluted solutions (‘fluids’) or mono-disperse particulate materials (uniform materials) a.o. in which there by definition are no
compositional heterogeneity, no untoward grain-size distributions variability, and no grain size-grade heterogeneity issues.

Upon reflections, these latter constitute the overwhelmingly dominating proportion of the kind of materials treated with
process sampling. Thus, the sampling difficulties illustrated in this paper concerns what in TOS parlance is known as ‘sig-
nificantly heterogeneous materials’, which comprise the by far overwhelming proportion of materials targeted for process
sampling and analysis in science, technology, industry, trade, commerce, environment ... and society.

An ongoing concern is that solutions devised for ‘easy’ chemical or physical systems have led to a various process sam-
pling interfaces that do a fair job within their quite specific restricting limits, but only here. Great problems ensue when such
system solutions unwittingly are being carried over to other types of materials of the significantly heterogeneous type —
because here they are bound to fail, as the intrinsic heterogeneity of such systems (compositional heterogeneity (CH),
distributional heterogeneity (DH), grain-size distribution heterogeneity and grain-size-grade heterogeneity obviously devi-
ates from easy-to-sample ‘uniform’ material systems.

So, unfortunately, as a caveat, this one is very, very small and it cannot be used as justification for carrying-over of any
process sampling solution from the ‘easy’ realm.
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How to gauge the performance of a process sampling solution?

All process system solutions, in which the sampling interface interacting with a specific moving material has not been previ-
ously characterized, must be subjected to a complete system’s performance validation. It is necessary to validate all sam-
pling systems for its status w.r.t. an a priori decided TSE variance threshold, which would qualify the sampling system as
‘fit-for-purpose’ representative, or not. There is no space here to go into detailed descriptions of the well-known quality
assessment approaches just listed below; but full details can be found in very many references within the TOS realm. Suffice
here to mention™S,

Full system sampling performance facilities:

e Interleaved sampling (IS)
e Replication Experiment (RE)
e Variographic characterization (VC)

So, what to do, then?

TOS calls for compliance validation of all existing designs not previously characterised and for innovative compliance in all
future designs of process sampling interfaces. Validation in the view of the above presentations is of critical importance
regarding representativity, especially concerning already installed systems that are “too expensive to fail”. For all such cases,
the key issue is simple: does the existing, or the newly designed sampling solution, capture the entire cross-section of
flowing streams of matter in an TOS-appropriate manner, or not. It cannot be stated simpler ...

The hopeful quest for a universal process sampling interface will probably go on — regarding both sensor sampling and
physical sample extraction. But is there a universal interface design? Whatever the answer to this question, TOS must serve
as the guiding framework for all future developments with Fig. 2 outlining the principal, extremely simple, yet apparently so
difficult demand: “Obey the slice rule — or representativity is lost”. However, there is no other way!
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Even though devices to perform online and inline elemental analysis are widely available, they are
generally under-utilised in the mineral processing industry. Instead, information obtained from labora-
tory analysis of material samples is used for process control, despite of sample analysis being time-
consuming, expensive and error prone. Thus, in this paper, we demonstrate that online elemental
analysis is a viable alternative to sampling-based material monitoring. To this end, we present the re-
sults of field-studies performed in a controlled environment, as well as at a flotation cell of the GTK
Mintec mineral processing pilot plant. In both studies, we analyse the copper concentration in a sus-
pension using the FLORIDA XRF device and report relative errors as low as 4% under controlled con-
ditions, and 6% at the processing plant.

Introduction

Froth flotation® is one of the most common techniques in the mineral processing industry, during which the fine-grained
minerals are separated by taking advantage of their hydrophobicity. To maximize target material yield, the process param-
eters need to be continuously optimized, which is typically achieved by manual sampling of the extracted material followed
by laboratory analysis of the samples’ chemical composition®. This method of process control is, however, very time-con-
suming, expensive, and error prone.

In this paper, we demonstrate the viability of inline and online elemental analysis as an alternative to the sampling-based
approach for process control. Specifically, we evaluate the FLORIDA XRF analyser?, which adapts the X-ray fluorescence
(XRF) principle to determine the elemental composition of slurries and suspensions without direct sampling. The device can
be mounted directly on pipes at a mineral processing plant for reliable continuous monitoring of the concentration of chemical
elements with an atomic number greater than 20. When used for process control, it has the advantage over sampling-based
approaches, that it allows for an immediate response during process optimization while eliminating some errors arising from
sampling.

It should be noted, however, that due to the underlying measurement principle, the analyser does not measure the ele-
mental composition of the whole product stream, but only of a fraction thereof, and thus still suffers from some errors asso-
ciated with sampling. For instance, we can only hope that turbulent flows cause the measured material to be sufficiently
homogenized to result in representative samples. Thus, we do not claim, that online elemental analysis leads to more rep-
resentative results than laboratory analysis of periodically extracted samples, but rather that it is a viable alternative.

To support this claim, we have conducted a field study on-site at a flotation cell of the GTK Mintec pilot plant' and in this
paper we evaluate the performance of the inline elemental analyser for process optimization and compare the results with

[ il

Figure 1. FLORIDA XRF analyser that has been installed at a flotation cell of the GTK Mintec plant for our experi-
ments. The upper box of the device is the sensor head consisting of an X-ray tube, an SDD detector, and a cooling
system. It is fed by the attached pipe. The lower box contains the control cabinet of the device.

doi: https://doi.org/10.1255/tosf.142 Published under a Creative Commons BY Licence
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F

igure 2 Left: FLORIDA sensor with attached spool piece. Right: A typical 40 mm spool piece with a measuring
window in its centre. To ensure that the pipe is always filled with slurry, it is ideally installed in a vertical position.
If only a horizontal position is possible, the window should be placed in a 03:00 or 09:00 position to make sure that
the slurry is measured instead of rising bubbles or settling sediments and thus increase the representativeness of
the measurement.

in the FLORIDA XRF device which continuously recorded XRF spectra of the slurry. Simultaneously, the device’s outflow

h

as been sampled for laboratory analysis of the slurry chemical composition. We compare these laboratory results with the

measurements of FLORIDA and show a relative measurement error of 6%, which can mainly be attributed to sampling errors

a

p

nd statistical uncertainties that are inherent to XRF analysis.
We conclude the paper with a qualitative evaluation of a long-term measurement of the slurry during which the process
arameters were altered several times and thus show that capability of online and inline elemental analysis to delineate

trends that likely can be used for process control in the mineral processing industry.

Online elemental analysis for process control in the mineral processing industry
The goal of process control in mineral processing is to optimise the recovery of valuable minerals, while maintaining the

q

uality of the concentrates delivered to the processing plants® After the minerals have been liberated from the ore by com-

minution and sizing processes, they are separated from the gangue using methods that depend on the materials’ relative

p

hysical and surface chemical properties, such as hydrophobicity, specific gravity, magnetic susceptibility, and colour. This

separation process is highly complex since it is influenced by a high number of parameters that require to be tuned to

9

uarantee optimal yield.
To control the effect of the parameter adjustments, the quality of the concentrate needs to be constantly monitored. Typ-

ically, this monitoring is performed by sampling the material and analysing the samples in a chemical laboratory. This pro-
cess is not only expensive but also time consuming, which has been shown to result in negative economic impacts’. Fur-
thermore, any sampling process of heterogeneous materials generates errors which result in inaccuracies of the laboratory

a
e
a
a

nalysis*. According to Gy’s Theory of Sampling (TOS)? 4, these sampling errors can be divided into three main classes:
rrors that are caused by material heterogeneity, errors that are inherent to the sampling process, and analytical errors that
re encountered during laboratory analysis of the samples. Note, that beside of the identification of sampling errors, TOS
Iso provided tools for their evaluation, minimisation, and/or elimination; however, in practice the utilization of this toolset is

still rare, despite TOS being a gold standard for many decades.

An alternative to sampling-based methods for process control are inline and online elemental analysers, which have the

advantage of forgoing the error-prone manual material sampling step for offline analysis,. Instead they offer immediate
information about the process and can be continuously operated 24/7 for material monitoring. However, even though such
devices are widely commercially available, they are generally under-utilised in the mineral processing industry due to the

p

lant operators’ distrust in the online information given by estimation models®. These devices are typically based on the X-
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Figure 3. Typical sample spectrum recorded with an XRF analyser, such as FLORIDA XRF.
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ray fluorescence principle or Prompt Gamma Neutron Activation Analysis (PGNAA). Among XRF-based devices are the
Courier 5X/6X8, PERI Online Slurry Analysis System®, Boxray 24'°, and FLORIDA XRF?, while the GS Omni'" uses the
PGNAA technique. While all the aforementioned devices are aimed at the online analysis of slurries and suspensions, similar
solutions for the analysis of solids like coal or ores exist as well, such as the XRF-based CON-X'3 andTEXAS'* analysers,
and the PGNAA-based GEOSCAN'? series.

FLORIDA inline and online X-ray fluorescence analyser

The FLORIDA XRF analyser for liquids and slurries has been developed by J&C Bachmann GmbH and adapts the industry-
proven X-ray fluorescence analysis used in chemical laboratories for plant conditions. The device enables continuous mon-
itoring of the physical composition of the material in the process and can be installed directly on a process pipe, as shown
in Figure 1. A dedicated spool section with an application-specific measurement window is installed (c.f., Figure 2). Spool
and window are specified to meet the chemical and physical conditions and to protect the sensor system against damage.
The systems do not require continuous or regular sampling for its calibration and can be used in a large variety of applica-
tions.

The XRF technique'® relies on generation of fluorescent X-rays by bombarding a sample with high-intensity X-rays pro-
duced by an X-ray tube. The fluorescent X-ray photons are then detected by an energy discriminating detector. This detector
further sorts the registered photons into one of a predefined number of channels and reports the particle counts in each
channel as a spectrum (c.f., Figure 3 for an example XRF spectrum). The mapping between a channel and the photon
energy is achieved by means of an energy calibration step with a defined sample of known composition.

Each chemical element produces a signal et its characteristic energies, which is represented as a peak in the spectrum.
Thus, to quantify the concentration of the target element, first the area of its corresponding peak is determined which is then
mapped to the elemental concentration by means of a calibration curve whose parameters are learned from a reference
sample set with a known concentration, which is determined by a laboratory. Since the relationship between the areas of
characteristic peaks and the elemental concentration is usually linear, in most cases, linear regression is used for the un-
derlying calibration model, and any deviation from this linear curve (primarily due to absorption of emitted lines by other
elements in the sample) can easily be corrected by influence coefficients or other methods.

Elemental analysis for process control

To demonstrate the suitability of online elemental analysis as a viable alternative to laboratory analysis of periodically sam-
pled produce, which is typically performed for process control in a mineral processing plant, we have conducted several
measurements with the FLORIDA XRF analyser under varying environments. Specifically, we have conducted two meas-
urement campaigns which will be discussed in detail in the following subsections. The first measurement campaign has
been conducted in a controlled environment to establish a baseline that is independent of any errors introduced by the
material sampling process, whereas the second one has been done at the GTK Mintec pilot plant. To increase comparability
of the measurement campaigns, both campaigns performed under similar conditions, regarding the measurement parame-
ters.

Throughout the experiments, we report as evaluation metric the mean absolute error (MAE) and the mean absolute per-
centage error (MAPE). In this context, the MAE is a measure of errors between the elemental concentration reported by a
chemical laboratory and the FLORIDA XRF. When using online elemental analysers, this error typically increases with an
increase of the target element concentration, which is caused by physical phenomena, such as absorption and scattering'”
of the radiation, in-homogeneity of the measured material, or other random fluctuations associated to the process of meas-
urement of X-ray peak intensities'®. Nonetheless, the MAPE being the relative deviation between both measurements is
usually independent of the concentration, which is why it is reported as well. Furthermore, calibration curves (e.g., Figure 3)
are used to illustrate the error between the XRF measurement (“Calibrated value”) and laboratory result (“Lab value”).
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Figure 4. Cu calibration curve obtained from the measurements performed in a controlled environment of
CuSO04(H20)5 solutions of different concentrations (MAPE = 4 %, MAE = 170 ppm).
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Figure 5. Cu calibration curve obtained with the training set of the measurements of ore slurries at GTK Mintec
(MAPE = 5%, MAE = 0.36%).

Baseline experiment in a controlled environment

To demonstrate the reliability of elemental concentration measurements with an XRF analyser when sampling errors can be
ruled out, we have conducted a measurement campaign under strictly controlled conditions. To this end, we have used the
FLORIDA device to analyse a solutions of Copper(ll) sulphate pentahydrate, i.e., CuSO4(H20)5, with Cu concentrations in
the range of 1000 ppm to 20000 ppm. During all measurements, the spectrum integration time was equal to 60 s and each
solution has been measured at least ten times.

The resulting calibration curve of this baseline experiment can be found in Error! Reference source not found.. It can
be observed that all measurements follow the trend of a straight line without any outliers. This is not surprising, since the
measurement were unbiased by a material sampling process. It can, however, be further observed, that with increasing Cu
concentration, the absolute deviation of the measurements from the ideal curve increases as well, which explains the re-
ported mean absolute error (MAE) of 170 ppm and a mean absolute percentage error (MAE) of 4%. As previously explained,
this behaviour has been expected due to errors introduced by statistical uncertainties'®. In theory, this statistical error could
be reduced by increasing the spectrum integration time, which in turn might make the measurements temporally too far
apart to allow for a smooth control of the process parameters. Nonetheless, this experiment underlines the accuracy and
robustness of XRF-based online elemental analysis for process control in the mineral processing industry. It must be noted
that due to the saturation of the solution at Cu concentrations greater than ~2%, this experiment does not fully correspond
to the in-situ experiments at the Mintec plant, where the analysed slurry had a Cu concentration ranging from 5% to 13%.
However, this does not mean that the results of this baseline experiment cannot be generalized, since previous experiments
with different target elements have shown that the calibration curve continues to stay linear when analysing suspensions
with much higher elemental concentrations. The only exception to this statement occurs, when measuring slurries with a
very high ore concentration, in which case X-ray absorption effects transform this line into a curve.

Copper ore measurements at the GTK Mintec mineral processing plant

The goal of the second measurement campaign was twofold: to highlight the stability of XRF-based online elemental analysis
in an in-situ application and to empirically demonstrate the errors introduced by material sampling for process control. This
measurement series has been performed at the Mintec pilot plant of the Geological Survey of Finland (GTK) from August
26 to 31, 2021.

GTK Mintec' is comprised of a mineral processing pilot plant as well as process mineralogy and bench-scale processing
laboratories for minerals, ores, geomaterials, and circular economy materials, and belongs to the Circular Economy Solu-
tions unit, which is the largest unit within GTK. Its main purpose is to develop innovations for mineral grinding and benefi-
ciation processes and to provide research services for different industries.

Our experiments took place in a flotation cell of GTK Mintec, where we performed online measurements of the product
stream with a FLORIDA XRF analyser, as shown in Figure 1. There, copper ore slurries were prepared and pumped through
a pipe segment installed in the FLORIDA XRF device, which obtained a spectrum of the slurry every 60 seconds. At selected
intervals, slurry samples were taken from the device’s outflow. To ensure comparable results, the sampling procedure was
as close as possible to the one that is usually employed at the plant to sample material for laboratory analysis whose results
are then used for process control. The spectra corresponding to the sampling times were then used to construct all the
calibration curves, which are discussed in the following.

Following the principles of proper validation (PPV)'8 two sample set were collected: a training (i.e., calibration) set, and a
test (i.e., validation) set. The calibration set spectra were used to teach the calibration model, which in turn has been used
to construct the calibration curve depicted in Figure 5. This calibration model was then applied to the samples in the valida-
tion set to determine its validity (c.f., Table 1).

As in the calibration curve in previous baseline experiment (c.f., Figure 3), the calibration measurements mostly lie on the
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Figure 6. Evolution of the measured Cu concentration in a copper ore slurry over the course of an hour. The
observed changes over time indicate the parameter changes of the process parameters performed during the
flotation test, demonstrating the capability of online and inline monitoring of an elemental analyser for mineral
preparation.

perfect calibration curve, this time however, two outliers (i.e., training sample 2 and 5) can be clearly registered. We attribute
these outliers to the physical sampling process and not to measurement errors, since in the previous experiment, we have
already established the accuracy of the XRF analyser in a setup when sampling errors can be ruled out. Obviously, these
ideal measurement conditions of the baseline experiment cannot fully be transferred to the real-world conditions of a mineral
processing plant, where an inhomogeneous produce stream, as well as an inappropriate sampling design not accommodat-
ing to the material inhomogeneities are always to be expected. Nonetheless, having validated the analyser under perfect
conditions decreases the likelihood of the outliers having been caused by the sensor setup and thus increases the confi-
dence to improve the representability of the calibration by dropping the outliers from the training set. However, despite the
existence of outliers in the calibration set, the overall accuracy of the analyser is in line with the baseline results, with a
MAPE of 5% on the calibration set and 6% on the validation data.

To ensure that these results were not caused by a coincidental assignment of samples to both sets (i.e., calibration and
validation data), we have further analysed the effect of data set assignment of these samples, as shown in the calibration
curves in Figure 7. Even though both curves are impacted differently by the outliers that were introduced by the sampling
process, the measurement statistics are still consistent with the statistic of the original training set (c.f., Figure 5), which
highlights the robustness of the calibration procedure to sampling errors. Nonetheless, it should be noted, that this experi-
ment only indicates that an in-line elemental analyser produces results that are robust to sampling errors that occur when
assembling a calibration set, however, an appropriate sampling procedure is still of utmost importance, when selecting the
calibration samples.

In a final experiment, we have conducted a longer-term measurement with FLORIDA XRF to qualitatively demonstrate
its capability. To this end, we have applied the previously described calibration model to the spectra obtained from the
copper or slurry to measure the copper concentration within the slurry and plotted the evolution of the Cu concentration over
the course of one hour, during which parameter changes of the flotation process were performed. This plot can be found in
Figure 6, where the impact of the parameter changes on the Cu concentration can be clearly observed, which further un-
derlines the viability of online and inline elemental monitoring as an alternative to the error-prone and time-consuming la-
boratory analysis of samples regularly taken from the product stream.

Table 1. Accuracy achieved when the calibration model is applied to the samples in the calibration set (left) and
validation set (right). The accuracies on both sets are similar implying the generalization capability of the model.
The two outliers, i.e., training sample 2 and validation sample 1, have most likely been caused by errors introduced
by the sampling process and not by the measurement, since the measurement error of the remaining samples is
consistently much lower.

calibration [Cu] measured abs. rel. er- validation [Cu] measured abs. rel. er-
sample No (%) [Cu] (%) error __ ror (%) sample No (%) [Cu] (%) error __ ror (%)
1 10.5 10.59 0.09 1 1 4.9 5.87 0.97 20
2 6.05 7.00 0.95 16 2 11.9 11.35 0.55 5
3 12.9 12.88 0.02 0 3 9.89 10.70 0.81 8
4 8.77 8.48 0.29 3 4 6.74 7.14 0.40 6
5 8.63 9.6 0.97 11 5 7.72 7.90 0.18 2
6 9.64 9.69 0.05 0 6 9.3 9.47 0.17 2
7 7.69 7.48 0.21 3 7 8.73 8.04 0.69 8
8 6.6 6.33 0.27 4 8 7.29 7.51 0.22 3
9 7.78 7.37 0.41 5 9 8.31 8.2 0.11 1
10 7.22 6.82 0.21 6 10 6.45 6.24 0.21 3
Mean calibration error 0.36 5 Mean validation error 0.43 6
Conclusions

The aim of this work was to highlight the advantages of inline and online elemental analysis of suspensions and slurries for
process control in the mineral processing industry. To this end, two measure campaigns have been conducted with the
FLORIDA XRF analyser. The first campaign took place under controlled conditions that removed the necessity of material.
Its goal was mainly to establish a baseline for the second campaign, which has been undertaken in situ at the Mintec mineral
processing plant. The major results of the presented experiments were threefold. Firstly, we have demonstrated the
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Figure 7. Cu calibration curves when changing the calibration set assignment of the GTK measurements (left MAE
= 0.43%, right MAE = 0.26%). Even though both curves are impacted differently by the outliers that were introduced
by the sampling process, the measurement statistics are still consistent with the statistic of the original training
set (c.f., Figure 3), which highlights the robustness of the calibration to sampling errors.

qualitative and quantitative accuracy of inline elemental analysis which highlights its usefulness for process control. The
calibration curve obtained based on slurries with precisely generated concentrations show excellent correlation between the
inline measurement and the laboratory results. Secondly, we have shown the device’s robustness to outliers arising from
errors introduced by sampling and probably in the laboratory process reference data that was used for calibration. Lastly,
we have highlighted the problems which are related to the use of more or less representative samples from a fluid process
stream. Obviously fluid sampling is frequently accompanied by some bias; therefore, the calibration samples show significant
differences to the inline analyses. This result also indicates that an analysis in the main stream (inline) should be preferred
compared to an analysis in a bypass stream since even continuously working automatic sampling stations cannot guarantee
to be free of sampling errors. Overall, our results demonstrate that online and inline elemental analysis a viable alternative
to the laboratory analysis of periodically drawn material samples that is commonly used for process control in the mineral
processing industry, since it yields sufficiently accurate results, provides immediate, continuous 24/7 measurements, and
eliminates some error sources that are inherent to laboratory sampling.
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Following years of development and testing, in-situ chemical assay by Pulsed Fast and Thermal Neu-
tron Activation (PFTNA) has been implemented in mining grade control at BHP Western Australian
Iron Ore as a world first. Demonstrating the technical capability and aptness of a new methodology,
however, is not sufficient to ensure the sustained quality of reported assay data. The success of mov-
ing from testing stage to implementation in active mining grade control, is chiefly dependent on the
robustness of ongoing quality control and quality management.

This paper shows the steps undertaken to achieve end to end monitoring of data acquired by
Blasthole Assay Tools (BHAT) using PFTNA methods. The main challenge for in-situ chemical assay
by the BHAT is to design a quality assurance/ quality control program (QA/QC) without a physical
sample being collected, and in consequence, without the conventional separation into the focus areas
sample collection, sample preparation and laboratory analysis. In this context, the BHAT combines all
in one instrument, and different ways to monitor data integrity, repeatability and accuracy need to be
established as outlined below.

After the validity of a BHAT calibration has been verified and a tool is in operation, data is monitored
on a daily basis to check that relevant operational parameters inside the tool are working within de-
fined acceptance limits. Measurement error in the field is monitored with repeat logs in Blastholes,
and inter-instrument error by replicate logs of different BHAT units in the same Blastholes. Accuracy
and instrument drift over longer periods are monitored by repeated logs in Reverse Circulation (RC)
drill holes. Operational parameters, such as neutron output and spectral resolution of the instrument
detector are monitored by scheduled logs in dedicated testing facilities. Also, duplicate manual sam-
pling in Blastholes is used to compare grade populations obtained by different sampling methods in
mining pits to aid grade reconciliation from mining to production. By routine application of these
QA/QC steps, in conjunction with close communication of results to mining teams, the new BHAT
technology has been successfully embedded in day to day mining operations.

Introduction

Chemical assay data in near real time from non-destructive methods has gained much attention in the minerals industry in
recent years. In this context, the implementation of in-situ chemical assay by Pulsed Fast and Thermal Neutron Activation
(PFTNA) methods' in mining grade control at BHP Western Australia Iron Ore (BHP WAIO) signifies a momentous change
in data acquisition. At present, a small fleet of Sodern FastGrade™ 100 units, internally labelled Blasthole Assay Tools
(BHAT) is mounted on downhole geophysical logging trucks and collecting assay data in Blastholes in semi-automatic op-
eration.

A big hurdle to clear for new technology is to move from research and testing to production. And even if a new method to
acquire chemical assay data passed production tests and is considered fit for implementation, the work to safeguard ongoing
quality has just begun. The process of building a calibration model for BHAT instruments? that use PFTNA methods, and
the validation steps to establish acceptable error and accuracy prior to implementation are not discussed here. Rather, this
paper describes how adequate quality is sustained through continuous monitoring of control data. In this context, environ-
mental changes, instrument drift and auxiliary operational parameters are key areas that need to be monitored.

Field controls in production logging

During production logging in grade control on mining blast patterns, the BHAT units are required to collect one repeat log
per shift. The main objective here is to define and monitor repeatability of the process. Because no physical sample is taken
and consequently no material is processed at a lab, the repeat logs combine field error and lab error. Major factors to
consider as sources of error are the alignment of the instrument in the borehole and environmental conditions. To capture
instrument drift, the two logs of the repeat are not acquired directly after one another, but at the start and end of each twelve
hour shift. An example of summary results of the field error for the BHAT method in comparison to manual blastcone sam-
pling and in-pit Reverse Circulation (RC) drilling as well as individual results by BHAT unit over a three months period at a
mine site are shown in Figure 1. For simplicity, only the main elements with the biggest impact on grade control are included.

Differences between instruments are monitored by replicate logs by a second BHAT unit operating in the same mining
doi: https://doi.org/10.1255/tosf. 143 Published under a Creative Commons 7?77?77 Licence
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area. For these, the same borehole is used as for repeat logs, which means that the borehole is logged overall four times,
twice by each instrument. If required, differences between instruments are managed through planned calibration releases.

Field Error by Method Field Error by BHAT unit
Shape by Shape by
METHOD BHAT code

o ® BHAT [ FG100D-001

S i 4 Manual Blastcone 4 FG100D-005

i, # RC A FG100D-007

2

<

5 o >

(%) <

Fe Si02 Al203 Fe Si02 Al203

Figure 1. Summary results for different methods of assay data acquisition at a mining site (left). Note the high error
for manual blastcone sampling using shovels and the lowest error for the BAHT method. The plot on the right
shows field error for three BHAT units operating at the mine site, showing consistent results. Note: One Standard
Error is given as the standard deviation of the absolute difference between sample pairs.

Accuracy drift monitoring and matrix changes

In general, monitoring of analytical accuracy of a laboratory is fairly straight forward by using Certified Reference Materials
(CRM). For the BHAT method, however, determination of accuracy is more difficult due to the absence of a material that
can be used as a true value and the absence of a controlled laboratory environment. The accuracy of a BHAT unit is
assessed using a large dataset including at least 7,000 RC drill samples and 3,000 in-pit blastcone samples. After this initial
validation process is completed and a BHAT unit is approved for production logging, accuracy is monitored by repeated logs
in selected RC holes and by manual twin sampling in Blastholes.

Although individual sample intervals in RC drill holes show large variability and cannot be used as a true value, the re-
peated logs are appropriate to monitor performance over time and drift from the initial, validated state. The focus here is on
monitoring relative changes from log to log, rather than the difference between original assay by XRF methods in the RC
drill hole and the BHAT assay for individual sample intervals.

In addition to drift monitoring using RC drill holes, the suitability of an instrument calibration in different matrices needs to
be checked in changing operational environments. In particular, moving production logging from one mining pit to another
requires an assessment of accuracy in a different matrix. The main differences between mining pits are changes in miner-
alisation styles, moisture and porosity in the ground among others. The accuracy check is completed by manual twin sam-
pling with a shovel of 20% of the blastcones on a mining pattern (Figure 2). The assay data acquired by manual sampling
and subsequent laboratory XRF analysis is compared to the BHAT assays on a mining pattern level and assessed for
likeness.

Grade populations by method

Series by
Method

o0l BHAT
~ Manual Blastcone

% of Total (Row Count)

Fe Al203 Si02

Figure 2. lllustration of grade populations of main elements on a mining blast pattern. The histograms show assay
data collected by BHAT logs in Blastholes and manually twinned blastcone samples.

Spectral health
The spectral data acquired by PFTNA methods is processed into chemical assays and the assessment of error and accuracy
can be used to communicate QA results for mining grade control. However, monitoring the spectral health of BHAT instru-
ments gives the opportunity to identify potential problems at their onset before issues become apparent in the processed
assays. Thus, monthly checks are completed in an artificial calibration hole. A key parameter shown as an example in Figure
3 is the spectral resolution of the instrument detector that conversely influences the ability to process spectra into assays
correctly. Further, regular tests in calibration blocks monitor the output of the neutron generator which has an effect on signal
strength.

Also, in day to day operations, requirements for spectral health are routinely checked for each reported data file. If prede-
fined limits of spectral peaks are not met, the data is automatically rejected and removed from processing. Minor issues,
such as unusual logging depths are flagged for review, but the data can be processed.
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Spectral health check in calibration hole
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Figure 3. Monthly test logs in the artificial calibration hole at BHP WAIO facilities. For simplicity. only a selection of
parameters is shown. In this example, performance over time is considered acceptable.

Operational parameters
A crucial part of safeguarding data integrity is checking the reported data formats, borehole logging locations and the per-

formance of auxiliary systems. Incorrect logging locations that do not match planned borehole locations are flagged and
raised with the operating company for validation. Also, the processing environment of the signal detector is monitored for
temperature, voltage and current (Figure 4). These operational controls are important because all collected data is reported
raw by the logging operators and is then processed using in-house propriety programs?. This is a major difference compared
to laboratory assays that are generally subjected to internal checks before the data is reported to clients.

Auxiliary systems
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Figure 4. Temperature data from a BHAT instrument's Photo-Multiplicator Tube (PMT). Voltage and current are not
included in this example. The plots show two 24 hour periods that include day and night shifts. In the example on

the left, the critical temperature limit inside the instrument was exceeded.

Discussion
Implementing a QA/QC program for a new technology can be challenging because it is difficult to sufficiently define all

sources of error in a test environment alone. Once the technology is embedded in full production, the focus of data monitoring
can change based on newly identified gaps, and solutions need to be found quickly. An example of this is that changes in
environmental conditions can have a significant impact on spectral health. Specifically, at temperatures above 50 degrees
Celsius in the detector environment, the spectral resolution deteriorates. This has been observed in pairs of repeat logs
where the first log is collected at the start of a shift in the cool early morning hours and the second log on a hot afternoon.
Countermeasures are now put in place to prevent overheating in a pro-active manner. This highlights the importance of
continuous monitoring of auxiliary system parameters and regular revision of control parameters based on learnings in the
field. Compliance with operation procedures is monitored on a weekly basis and potential issues are raised with field teams.
What is important here is good communication between client and contracted operating company to clarify changing re-
quirements and improve on previous results.

Local differences in environmental conditions between mining blast patterns are also identified as contributors to misa-
lignment of the applied calibration. In particular, moisture and porosity in the formation can influence the captured BHAT
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spectra and thus the conversion to chemical assays. Also, areas with an unusually high number of ground cavities or other-
wise widened borehole diameter, have an effect on spectral results and give rise to problems with signal processing. Manual
twin sampling on new mining patterns provides a practical check to see if results have changed compared to the approved
calibration model. It needs to be considered though that due to the very high variability of this sampling method, individual
sample pairings have limited meaning. However, at a mining pattern level, the grade populations observed in manual
blastcone sampling are expected to largely overlap with grades reported by the BHAT. Thus, the mining pattern population
analysis can identify these problems should they arise.

Validation of instrument accuracy while in production logging is challenging due to the absence of CRM. Carefully sampled
and assayed Diamond drill holes, otherwise regarded as the best case for sampling, are not suitable because the measure-
ment footprint of the instrument extends up to 40 cm distance into the wall rock beyond the borehole and homogeneity of
the material cannot be assumed. However, based on previous test work using RC Bulk Sampling and direct comparison of
the BHAT method in Diamond and RC drill holes in cross-reference tests, the RC method is considered overall unbiased.
Consequently, if the variability of RC samples is taken into account, the mean grades of the reference method (RC) and the
test method (BHAT) in relevant element concentrations can be used to establish acceptable accuracy.

A key factor in promoting confidence in chemical assay data by the BHAT method instead of physical sampling methods
and laboratory XRF assays, is regular reporting of QA/QC results and good communication with stakeholders. In this way,
opportunities to improve can be identified and actions put in place to further build on the consistent quality of results.

Conclusions

Grade control by PFTNA methods in mining operations at BHP WAIO is now successfully implemented. This has been
supported by establishing a QA/QC program that monitors field error, instrument performance over time and operational
parameters. Importantly, changes in the logging environment and the rock matrix are also considered. It is emphasized that
the work on developing and refining QAQC routines is not finished. Rather, operational procedures and control requirements
are regularly updated based on new findings and the growing experience with this new technology.
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Abstract: Industrial and technological processes are very difficult to manage when the quality of feed
and product or discard are not measured with confidence. Effective control can occur when process
analytical technologies are chosen that provide representative, precise, and timely measurements. For
the measurement technique to be representative it must comply with the Theory of Sampling (TOS)
and provide an equal chance of any component in the streaming material to be included in the support
for the measurement. This generally precludes technologies that measure only the surface of materi-
als, or biased measurements stemming from a limited portion of the material only, particularly in the
minerals processing and recycling sectors, which usually display high compositional variability. The
location of the analytical technology should relate to the benefit being targeted and allow for enough
reaction time to respond to the quality in some way; diverting short increments based on composition
and decision parameters based on process impact, blending with other quality materials, or feeding
information backwards or forwards. Feed forward options can include flow rate control, reagent con-
trol, operational process variables that impact recoveries, etc. Major benefits have been achieved in
measuring coarse conveyed flows with high specification Prompt Gamma Neutron Activation Analysis
(PGNAA) over short increments (thirty seconds to two minutes) for most elements, or over five to ten
minute increments for trace elements, such as gold. PGNAA applied to conveyed flows allow the full
flow to be measured continuously and composition averaged for each increment in real time. The use
of penetrative and continuous moisture measurement using transmission microwaves has also
proved effective for moisture monitoring and management. Precisions between laboratory samples of
the flow and analysis data from analysers can be sufficient to have high confidence in resulting pro-
cess control decisions. This paper explains the benefits in more detail and includes case studies to
highlight actual benefits derived from the application of such systems. It should be noted that sam-
pling of the materials is still required for calibration and adjustments for the process analytical tools.

Introduction

In order to obtain optimal efficiency gains in a process, it is imperative that process control is acting on the best quality data
available. By measuring various properties of a process, control can be implemented based on relevant data to obtain
improvements to the process. Measuring the quality of the feed or product and discard of a process can enable decisions
to be made based on the measured quality and the economics of the day. For these decisions to be effective, it is critical
that the measurements are made with confidence and thus that any process analytical technologies employed are able to
provide results that are representative, precise, and timely for the process. Satisfying the need for measurements to be
representative is a fundamental requirement from the Theory of Sampling (TOS), which requires that all material has an
equal probability of influencing the measurement outcome without preference to any specific component'. This implies that
any measurement system that preferences one aspect of the measured material, such as a surface measurement, or a
measurement of a small part of a flow cross-section only is by definition not representative than one that is able to measure
without bias.

In addition to being able to make representative measurements, it is also important that measurements are made in a
timely way to allow proper process actions to take place. It has often been seen that being able to provide representative
analysis is traded off against being able to provide timely analysis. Sensors may be fast, but not representative; optical
sensors are typically able to provide rapid analysis, but are a surface-only measurement technique, and are affected by
variations in particle size and weathering, flow height variation, or even dust. By contrast, techniques such as prompt gamma
neutron activation analysis (PGNAA) utilise radioactive interactions and are fully penetrative of the material flow, however
being a statistical analysis technique, they require that a sufficient integration period lapses to make a confident measure-
ment?34, Despite such perceptions, there have been various developments with Scantech’'s GEOSCAN PGNAA analyser
that has allowed for drastic reductions in analysis times, which has been an enabler for the GEOSCAN to be utilised as a
tool in bulk diversion applications®®. The use of PGNAA has been well established as providing representative and precise
measurements of conveyed flows in a variety of industries including cement’, iron ore®, manganese®, copper'?, lead zinc',
phosphate’?, and even gold'®, with the demonstration of rapid analysis providing the final demonstration of comprehensive
effectiveness for process analytical technology to supply optimal analysis of the quality of conveyed flows of material. The
technology has been demonstrated to lead to gains in material handling and processing and economic gains, particularly on
highly variable or heterogeneous material flows* 15,
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This paper seeks to demonstrate how the use of the GEOSCAN’s PGNAA technology can lead to optimised outcomes for
process control. A brief summary of the technology and how it works is provided, followed by examples of analysis perfor-
mance in key industries of copper and gold, where very different measurement metrics are necessary. An outline of how the
technology can be employed to lead to economic benefits is presented, contrasted with outcomes in the case of where a
faster but less precise measurement system is employed. An outline of future possibilities concludes the paper.

PGNAA Technology

Scantech’s GEOSCAN on belt analyser utilises prompt gamma neutron activation analysis (PGNAA) to determine the ele-
mental composition of conveyed bulk materials in real-time. Also referred to as thermal neutron capture, the technology
utilises a californium-252 radioactive source located within the instrument below the belt to generate a flux of neutrons.
These neutrons are then absorbed by the conveyed material as it passes through the tunnel of the GEOSCAN. The neutrons
are captured by the nuclei of the atoms in the material flowing on the belt, and gamma-rays are instantaneously produced
with a unique energy distribution for each element. The gamma-ray spectrum is captured by an array of high performance
detectors located at the top of the GEOSCAN, where Scantech’s signal processing algorithms resolve the signal into a set
of individual elemental results.

The measurement technique is completely penetrative allowing for analysis of the full material stream, figure 1. The phys-
ics of measurement and geometry of the GEOSCAN spectrometer allow for the entire bed-depth and belt-width to be meas-
ured. It is independent of ore mineralogy, particle size, segregation or layering in the flow and belt speed, thereby allowing
for fully representative analysis of the conveyed material. Obviously not every single atom or every element present in the
increment of conveyed flow is measured due to limitations of the physics involved, but the many gamma emissions detected
within each measured increment has been demonstrated to result in acceptable precisions for the purposes of the meas-
urement data and responses to it356.11.1213.16 Radioactive decay of the source is occurring continuously, such that all ma-
terial is analysed all the time. Thus GEOSCAN measurements do not suffer from delimitation nor extraction sampling errors
(IDE, IEE), contrary to what is often the case with other approaches, such as measuring only from the top surface of the
moving matter, or is only interacting with a longitudinal strip, or small section, of the cross-section of the flow. Results are
produced for a suite of elements calibrated for the specific requirements of the particular application, which can vary from
installation to installation, and is tailored to account for variation due to changes in the belt load and material composition.

Multi-detector array

Example I 9'

of results: NeutronSource Neutrons (approx. 115 Million/second)
Cu% S$% Fe % Ca0 % Cr ppm Ni ppm
0.24 0.75 13.18 1.06 72 24

Figure 1. Cross-section through the GEOSCAN analyser showing the components of the system illustrating why it
delivers representative measurements. The technique is continuous, penetrative and measures elements randomly
with a penetration depth >0.5 metres. The conveyed flow passes through the tunnel where neutrons are dispersed
to cover the full width and depth cross section.

Additionally, moisture measurement can be made using a through-belt moisture (TBM) analysis system. The TBM utilises
a microwave transmission measurement technique to directly measure the moisture content of the conveyed material, and
is typically installed alongside the GEOSCAN, therefore providing both elemental and moisture results. The TBM has un-
dergone scrutiny for use within the iron ore industry and has become widely accepted for its high level of accuracy’® in this
and the majority of commodities in the minerals industry.

Results from the GEOSCAN and TBM are output to the plant control system typically every two minutes in the majority of
installations. This analysis period has been traditionally selected as it allows for sufficient time for reliable and repeatable
results while minimising inherent randomness from radioactive decay. In the majority of cases, this analysis period is also
fast enough to provide results that can be acted upon in downstream process control (feed-forward control) or upstream
material management (feedback control) as required. In 2016, Scantech recognised a need to increase the speed of analysis
so that the GEOSCAN data could be used to determine process control decisions on small material flow increments, and
thus to enable the concept of bulk sorting based on representative and accurate analysis. Scantech undertook research to
satisfy this requirement and has since been able to have analysis performed rapidly in as short as 30-seconds while main-
taining the repeatability statistics (precision) expected over longer integration periods.
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Case Studies

This section aims to outline several examples in key commodities where analysis of the conveyed flow has been demon-
strated to be representative, precise and timely. The concept of bulk diversion of feed presents a useful example to demon-
strate this capability, as it necessarily requires analysis to be sufficiently fast for the process, while requiring results to be
representative and accurate to be able to derive economic benefits.

Scantech has had a long history with over 35 years of experience in bulk sorting'”. The earliest examples involve meas-
urement in coal and diversion based on ash measurement using a flop-gate diverter, and longer analysis increment diversion
has been implemented successfully in iron ore. In more recent times, the approach has focused on rapid analysis in base
and precious metals commodities, with some results outlined below. It has been observed at multiple sites that high precision
measurement provides a significant reduction in misallocation of material than lower precision measurement, even when
the latter measurement occurs over shorter time increments.

Base Metals

One of the key areas of interest in bulk sorting has come from base metals commodities such as copper and nickel. Scantech
has implemented many copper bulk diversion projects around the world, including two in Canada, two in Chile, one in Peru,
and two in Australia, plus two projects in nickel at sites Brazil and Australia respectively. Each site has taken a different
approach depending on local requirements, but in all cases, a similar process has been undertaken in the development of
successful bulk diversion.

The first steps involve successful and reliable calibration of the GEOSCAN, calibrated against samples collected and
subsequently verified using the same method. The next step involved characterisation of the material variability by collecting
30-second GEOSCAN analysis over a period and evaluating the variability considering the economics of diversion. From
this study, suitable analysis periods have been selected (usually 30-seconds, but in some cases, 1 minute or 2 minutes),
and the bulk diversion regime implemented accordingly. Customer feedback has suggested improvements in ore grade from
10% to 30%. Paramount to this success is the GEOSCAN'’s analysis performance, with figures 2 and 3 below showing
results for copper and nickel respectively.
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Figure 2. GEOSCAN and laboratory results for Cu %
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Figure 3. GEOSCAN and laboratory results for Ni %

Precious Metals

Recent developments in analysis capability have allowed for the direct measurement of precious metals in ore using
PGNAA'3, Due to the typically low concentration of precious metals in ore, analysis of these elements is typically required
over longer measurement timeframes than for other elements. A longer integration time allows for adequate measurement
statistics so that sufficient confidence in any result can be attained. This means that direct measurement of elements like
gold, silver, and platinum cannot be used in a typical bulk diversion system, where 30-second analysis is usually required.
However, for many sites, there are strong correlations between elements like gold or platinum and other elements that can
be readily measured on a 30-second basis. This has formed the basis for a number of installations of bulk diversion for
precious metals, including two in Africa, one in Canada and three in Australia where precious metals are reported by proxy
measurement of other elements including sulphur, copper, and nickel. It should be noted that the calibration of the analyser
and its reporting of the calculated element from the proxy is based on establishing useful correlations from laboratory data
for each rock/ore type. The degree of correlation is therefore a limiting factor in determining the precision between calculated
values and those derived from representative sampling and laboratory assay. Figure 4 below highlights the GEOSCAN'’s
performance in such proxy measurement for gold. Such performance is possible over a longer period of direct measurement,
say 5 or 10 minutes, and can be observed in figure 5.
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Figure 4. GEOSCAN and laboratory results for Au ppm using proxy measurement
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Figure 5. GEOSCAN and laboratory results for Au ppm using direct measurement. Laboratory results are based on
very small sub-samples which lead to relatively high sampling variability due to the nugget effect, while GEOSCAN
senses all the conveyed flow continuously providing an average analysis over a longer increment interval.

Benefits of representative, precise and timely measurement

Modelling of data based on 2,000 sequential 30-second measurements of copper in a copper-gold ore stream at a rate of
approximately 1,200 tonnes per hour demonstrates the benefit of more precise measurement over less precise measure-
ment. The measured data from the GEOSCAN was assumed to be the actual grade data and then estimated measured
quality was determined by randomly varying the error applied so that the average error to model the GEOSCAN measure-
ments were similar to the actual 0.03% Cu precision determined based on RMSD between analyser and laboratory data at
the site for samples removed from the belt. The distribution of results is plotted (figure 6) and expected cut-off grade shown
for the “actual” results and those of the modelled measured results. Increments are considered misallocated if the classifi-
cation of that increment is not consistent between actual and measured values relative to the cut-off grade. Increments that
have a measured grade below cut-off but an actual grade above cut-off are ore misallocated as waste. Increments that have
a measured grade above the cut-off but an actual grade below cut-off are waste misallocated as ore.
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Figure 6. Modelled actual vs modelled GEOSCAN results for %Cu based on 2,000 measurements each representing
average copper content of each 30 seconds on a 1,200t/hr conveyed ore flow at an existing copper-gold mine

Less precise increments were assumed to have a precision 0.05%Cu larger than the GEOSCAN precision in the modelling
exercise. This difference may be very conservative when considering that the common techniques marketed against high
specification PGNAA are surface analysis methods, such as x-ray fluorescence (XRF), laser-induced breakdown spectros-
copy (LIBS), hyperspectral and near-infrared (NIR), and hence results shown here should be considered as a minimum
difference in recovered values of contained copper metal to the ore stream. Surface analysis techniques either extrapolate
the measurement to the full volume based on some artificial intelligence applications (i.e. assumptions on grade deportment,
particle size distribution, etcetera), or simply assume the surface of the flow is representative of the full volume (which is
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known to be almost never the case for primary crushed conveyed rock). Conveyed flows are often seen to segregate by
particle size through the conveying action and surface analysis techniques may effectively limit penetration to the dust
coatings on the rocks in the analysis area. Natural heterogeneity present in the conveyed material may further vary for
different material types as changes in the mineralogy will also affect fragmentation and hence segregation.

When modelling measurements with a poorer precision we look to what the mining industry has been implementing to
understand the consequences of applying various sensor technologies and resulting data quality. To assess the differences
in outcomes between measurement precisions we model data with poorer precisions and combine results to model differ-
ences in increment size. Figure 7 effectively models the different between a shovel sized increment and a 30 second con-
veyed flow increment with respective measurement precisions based on sensing techniques applied (XRF and high speci-
fication PGNAA respectively) using a conservative difference in precisions.
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© " Each point (sorting decision) 0.80
represents 57tin shovel bucket Each point (sorting decision)

represents 9.5t on conveyor

0,50 Dilution
(waste toare)

o.50 Dilution
(waste as ore

Oreloss

(AT e i 0
0.20 Rt ta— s fretoss 0.20
= (ore sentas waste)

‘o7 | (oresentaswaste)

0.00 0.20 0.40 060 0.B0 100 120 140 160 180 200 0.40 060 08O 100 120 140 160 180 200

Figure 7. Each dot on the left graph represents the equivalent of a shovel load from 57 t using a best case precision
estimate and the dots on the right are 9.55 t using a 30 second conveyed analysis period at worst case precision
estimate. The same initial total tonnage and grade variation is used in both.

Mining shovels (excavator buckets) used in open pit mining operations are large capacity equipment, commonly in the 50
t to >100 t range. For the purposes of this paper, we used six increments of the measured conveyed flow to represent the
equivalent of a shovel. Larger shovel sizes would have to be represented by a higher number of smaller increments and
would have provided a less conservative comparison. Data in Figure 7 was used to determine the differences in expected
copper metal recovery when decisions were based on the different estimates of the material quality. Larger increments
measured at poorer precision than the conveyed increments using better precisions, resulted in larger proportions of waste
misallocated as ore and ore misallocated as waste as demonstrated in Table 1. This supports the conclusion that more
precise analysis provides better outcomes in ore and waste designation and therefore leads to improved outcomes in bulk
ore sorting.

Table 1. Modelled allocation of rejected and recovered proportions comparing a short conveyed increment to six
times decision increment. The shorter more precise measurement recovered a net 3.5 per cent more Cu metal to
the mill, valued at approximately USD21 million per annum (assuming a copper metal price of USD 10,000 per

tonne).
30 seconds conveyor flow Bulked up to shovel bucket size
No. of 9.55 t Tonnes %Cu No. of 57 t Tonnes %Cu
increments increments

Waste as waste 241 2299 0.181 30 1812 0.199
Ore as waste 28 269 0.335 22 1265 0.419
Total to waste 269 2569 0.197 52 3077 0.290
% Reject 13.4% 16.1%
Ore as ore 1699 16 227 0.691 275 15 647 0.692
Waste as ore 32 303 0.275 6 354 0.210
Total sent to mill 1731 16 529 0.683 281 16 001 0.681
% Recovery 86.6% 83.9%
% Cu metal to mill 95.8% 92.3%

To test that the misallocation was simply not due to the larger increment size being considered less selective, the modelling
was repeated using a comparison of smaller increment size (representing 10 second measurements) at a poorer measure-
ment precision compared with the 30 second analysis increment at better precision. Results are summarised in Table 2.
Again the more precise measurement provided the better outcome primarily because increments covering a larger overall
tonnage were correctly allocated.
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TABLE 2. Modelled allocation of rejected and recovered proportions comparing a short conveyed increment to
increments one third of the size. The more precise measurement (despite being a larger increment) recovered a net
2.5 per cent more Cu metal to the mill, valued at approximately USD15 million per annum.

30 seconds conveyor flow 10 seconds conveyor flow
No.of 9.5 tin- Tonnes %Cu No.of 3.2 tin- Tonnes %Cu
crements crements

Waste as waste 210 2009 0.187 617 1976 0.175
Ore as waste 35 333 0.325 333 1067 0.414
Total to waste 245 2342 0.207 950 3043 0.259
% Reject 12.3% 15.9%
Ore as ore 1727 16 494 0.681 4822 15429 0.704
Waste as ore 25 242 0.271 196 626 0.246
Total sent to mill 1753 16 736 0.675 5018 16 055 0.686
% Recovery 87.7% 84.1%
% Cu metal to mill 95.8% 93.3%

Comparison of more precise analysis results with less precise results demonstrate that the less precise measurements
result in higher proportions of ore and waste misallocations than for more precisely measured increments irrespective of
increment size's.

It can be concluded that more precise, representative and timely measurement will result in greater confidence in decisions
when appropriate to the context in which decisions are required. The benefits are seen in many of the bulk sensing and
diversion (bulk ore sorting) applications in which such analysers have been supplied. Furthermore, as a process analytical
technology these systems provide high levels of confidence in any decision-making based on the measurement data. Op-
erators at mine sites can, and do depend on the real time measurement data to monitor conveyed material quality and are
prompt to respond when corrective actions are needed. These can include ore blending control, additive proportioning, feed
forward to downstream operations to improve process performance including metal recovery, and automating responses
where needed.

The measurement data can be confidently used for feedback to mining operations, ore reconciliation and metal accounting
as it is considered by metallurgical and process