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Editorial

T
his issue number 5 of TOS forum 
is dedicated to publishing the Pro-
ceedings of the 7th World Con-
ference on Sampling and Blend-

ing, WCSB7. The process that ends with 
the publication in your hands (or on your 
PC/tablet screen) started at the previous 
WCSB6 (2013, Lima, Chile) when it was 
realised that the world economic depres-
sion would likely mean that sponsorship 
would be much more difficult to obtain 
(something that was an under-estimate as 
the last two years have proved). So, a radi-
cally different strategy for the publication of 
the proceedings was called for. The present 
Editor offered to shoulder this responsibility, 
aiming at a dramatically small, but effective 
production setup (an editorial staff of two, 
and IM Publications).

The entire editorial process—abstract 
submission, grading (naturally this was the 
job for the full scientific committee) and 

subsequent ranking of the 56 submissions, 
peer reviews, revisions, rebuttals, second 
reviews... ending with 38 finally accepted 
manuscripts—had to be conducted under 
severe time pressure due to the 2015 Easter 
holiday season interacting with an unmerci-
ful vengeance, and was for these reasons 
very intense. THANK YOU VERY MUCH to 
Claas Wagner for keeping meticulous order 

in the organisation of this complex process 
(from his remote “web post office” in Athens). 
Most importantly, the Editorial staff extends 
a very big THANK YOU to ALL the review-
ers involved: Francis Pitard, Rolf Steinhaus, 
Richard Minnitt, Pentti Minkkinen, Stéphane 
Brochot, Dominique  François-Bongarçon, 
Ana Carolina Chieregati, Claudia Paoletti, 
the Editors themselves, Simon Dominey, 
Ralph Holmes. The Editor would like to 
acknowledge the excellent collaboration 
with IM Publications. THANK YOU VERY 
MUCH, Ian, Sara, Katie!

As soon as the conference is over, the 
WCSB7 Proceedings will be the main last-
ing physical documentation that will be 
available to posterity. In this context, we 
owe a great debt of gratitude to IM Publica-
tions for the creative suggestion to publish 
the proceedings both as the conventional 
printed issue, as an accompanying USB 
stick, as well as freely available on the Inter-
net as an Open Access publication. The 

latter is likely to be the most important dis-
semination option in the broader historical 
view. With all of the above the Editor can 
be fully satisfied with these contributions to 
the evolution of the by now well-established 
WCSB tradition.

doi: 10.1255/tosf.81

TOS f o r u m

Historical comparison: Another small organising committee: WCSB1, 19–22 August 2003, Esbjerg, 
Denmark.
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15:40  Poster Session and Coffee Break, Espace BAMAKO 
 

Thursday, June 11 
Session 8 – Sampling and in‐situ analysis 

Amphithéâtre BRISBANE 

Chair:  
16:20  The application of an integrated software library for controlling and monitoring ISO 

sampling systems 
Adams, Craig S.W.; Neidel, Tore T., FLSmidth 

16:40  PFTNA logging tool and its contributions for boreholes in situ elemental analysis 
Jeanneau, Philippe; Flahaut, Vincent, Sodern 

17:00  General information about Conference Dinner 
 

Thursday, June 11 
Conference Dinner 

Museum 

18:30  Cocktail and Conference Dinner 
  Pierre Gy’s gold medal ceremony 
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Friday, June 12  Amphithéâtre BRISBANE 
08:50  Program update and general information 
 

Friday, June 12 
Session 9 – Theory of sampling  

Amphithéâtre BRISBANE 

Chair:  
09:00  Keynote 

The first ever rigorous derivation of liberation factor – a problem finally solved 
François‐Bongarçon, Dominique, Agoratek International Consultants Inc. 

09:40  A multi‐parameters approach for process variograms 
Dehaine, Quentin; Filippov, Lev O., GeoRessources, Université de Lorraine 

10:00  Comparison of sampling methods by using size distribution analysis 
Minkkinen, Pentti, Lappeenranta University of Technology; Auranen, Ilpo, IMA 
Engineering; Ruotsalainen, Lari; Auranen, Jesse, Mine On‐Line Service 

10:20  Poster Session and Coffee Break, Espace BAMAKO 
 

Friday, June 12 
Session 10 – Sampling and geostatistics 

Amphithéâtre BRISBANE 

Chair:  
11:00  Geostatistical Comparison Between Blast and Drill Holes in a Porphyry Copper Deposit 

Séguret, Serge Antoine, Paris School of Mine 
11:20  Sampling considerations for characterization of radioactive contamination using 

geostatistics 
Desnoyers, Yvon, Geovariances 

11:40  Conference conclusion and presentation of the next WCSB 
12:00  Closing Ceremony 
12:20  Lunch, Salle JEFFERSON 
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Analysis of granite’s roughness using stratified random sampling for the evaluation of radon gas 
emanation 
El Hajj, Thammiris; Delboni, Homero; Chieregati, Ana Carolina, University of Sao Paulo; Gandolla, 
Mauro, Università della Svizzera Italiana 
Handheld XRF Analysis (hXRF) ‐ Field sensor sampling representativeness and development of a 
prototype FRAT (Field Rotary Abrasion Tool) 
Esbensen, Kim H., Geological Survey of Denmark and Greenland (GEUS); Holding, Martin, 
Copenhagen University; Mehors, Munim, Telemark University College 
Proper field sampling and laboratory processing for archæometric discrimination between 
cultivated and fallow Bronze‐age fields on Bornholm, Denmark – TOS meets Chemometrics meets 
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Germundsson, Bastian, Copenhagen University; Pihl, Anders, Bornholm Museum; Esbensen, Kim 
H., Geological Survey of Denmark and Greenland (GEUS) 
Improved counteracting soil heterogeneity sampling designs for environmental studies – TOS 
meets chemometrics 
Kardanpour, Zahra, Aalborg University; Jacobsen, Ole Stig; Esbensen, Kim H., Geological Survey of 
Denmark and Greenland (GEUS) 
Distributional assumptions in food and feed commodities: how to develop fit‐for‐purpose 
sampling protocols? 
Paoletti, Claudia, European Food Safety Authority (EFSA); Esbensen, Kim H., Geological Survey of 
Denmark and Greenland (GEUS) 
Practical Case: Representative Sampling for Full‐scale Incineration Plant Test 
Pedersen, Peter Bøgh; Jensen, Jan Hinnerskov, Danish Technological Institute 
Sample System Designs for the new NSPS Standards 
Ponthieu, Dewey, TRIAD Control Systems 
Sampling for Food and Feed materials’ safety 
Thiex, Nancy, Thiex Laboratory Solutions LLC; Paoletti, Claudia, European Food Safety Authority 
(EFSA); Esbensen, Kim H., Geological Survey of Denmark and Greenland (GEUS) 
A European Standard for sampling of waste materials: EN 14899 
Wavrer, Philippe, Caspeo; Morvan, Bernard, Traidema; Louis‐Rose, Sébastien, AFNOR 
Innovative Sampling Solutions for the Mining Industry 
Wicks, Maurice, IMP Group P/L 
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The advantages and pitfalls of conventional heterogeneity 
tests and a suggested alternative
Francis F. Pitard
Francis Pitard Sampling Consultants, 14800 Tejon Street, Broomfield, CO 80023, USA. E-mail: fpsc@aol.com

Heterogeneity Tests have been very popular for the last 30 years and there are several versions of them such as the method of 
choice used by François-Bongarçon to quantify and minimize QFE1 which is a combination of the Fundamental Sampling Error and 
the Grouping and Segregation Error and sometimes Analytical Error. A more recent version called “segregation free analysis for 
calibrating the constants K and x” is used by Minnitt, and an older, obsolete version using fragments collected one by one at random 
from several size fractions to calibrate the constant K was used a long time ago by Gy and Pitard. All these methods have their merits 
and pitfalls. The common pitfall is that they all depend on the collection of a representative composite sample consisting of about 
half a ton of material. In Mineral Processing it is well known how difficult it is for geologists to provide a representative sample from 
a given geological unit to perform reliable metallurgical testing; the same difficulties are encountered in performing Heterogeneity 
Tests. Furthermore, experience clearly shows that for trace constituents such as gold, many tons should be collected to obtain a 
reliable composite. Perhaps there is a more representative way to collect the information necessary to calculate the variance of the 
Fundamental Sampling Error FSE, which can support and complement the method of choice referred to earlier. This paper suggests 
that all the necessary information can be obtained by slightly modifying the logging practices of geologists. From such observations, 
reliable histograms of the size distribution of particles of the mineral of interest can be made representing the properties of an entire 
geological unit. Such information can be obtained at an early phase of exploration leading to an unmistakable definition of the 
sampling constant K, and possibly an accurate definition of the mathematical model of the liberation factor leading to the constant x; 
using modern microscopy the mineralogist can define the evolution of the liberation factor as a function of increasing comminution 
better than anyone else. Furthermore, this paper suggests that the determination of the liberation factor is no longer a critical factor, 
though most certainly useful, if using the information from modified logging practices and two old formulas suggested by Gy in the 
50’s instead of his famous formula using the liberation factor.

Introduction

T
he following material should not be perceived as a replace-
ment for the method of choice to estimate constants K 
and x in a formula suggested by François-Bongarçon to 
quantify the variance of the short-range Quality Fluctua-

tion Error QFE1 affecting splitting processes in routine sampling and 
subsampling protocols. The suggested calibration was approved 
as a method of choice in a common publication by Pitard and Fran-
çois-Bongarçon (2011)1 and should remain so as far as sampling 
practitioners are concerned. However, Heterogeneity Tests are far 
from perfect and no matter how careful practitioners are, there are 
pitfalls that can be prevented by paying attention to arguments pre-
sented in this paper. Therefore the only objective is to suggest to 
geologists and mineralogists that early on they can provide valuable 
information by adding the necessary observations on the drilling 
log and by making simple mineralogical tests. The added informa-
tion can help to prevent great mistakes in the ways exploration and 
grade control data are looked at. But first some paradigms that are 
well accepted by sampling experts should be eliminated.

Poisson Processes and liberation issues
In the mind of many people a Poisson Process cannot take place 
unless the constituent of interest particles (e.g., gold particles) are 
liberated from their rock matrix; there is nothing that can be so far 
from the truth. Such belief is based on the fact that gold particles 
should be randomly distributed, but obviously they are not. There 
are plenty of geological explanations for in-situ gold particles to be 
distributed in a certain area of a small ore block (e.g., 15 × 15 × 15 
meters). Therefore, someone may rightly object to using a Poisson 

model which is the simplest possible and most random way in 
which we may explain why the gold particles are where they are. 
However, all this assumes some a priori knowledge of the regionali-
zation within that little block. We may have some of that knowledge 
between blocks, but not necessarily within any given block.

Therefore, before going any further, we must elaborate on the 
paradigm of being an observer, since the observer has no idea 
where the gold in that block is. He may know there is gold, but he 
does not know where. The resulting effect is that when he drills that 
block, and within that block there may be 1, 2, 3, or more clus-
ters of gold particles somewhere, the location to drill chosen by the 
observer who knows nothing ahead of time is a random process 
of its own, even if the gold is not strictly distributed at random. So, 
the resulting gold content of that core, within that block, can be 
assimilated to a random process, not because of the way it is dis-
tributed in the deposit, but because of what the observer is doing 
with the selected location and selected basic volume of the support 
of observation as he becomes a participant; there is a subtle differ-
ence. It is exactly the same thing for coarse fragments in which the 
gold is not necessarily liberated.

For the purist who rightly insists that random variables be defined 
by reference to an appropriate probability block it is not much of 
a loss to take the Poisson model as a good tool to help us, espe-
cially when the observer is personally responsible for introducing the 
Poisson Process in the first place (i.e., no a priori knowledge and an 
extremely small support volume).

For anyone who may have the desire to better understand what 
is meant by “Poisson Process” Kingman’s book, 1993, is an excel-
lent one2.

doi: 10.1255/tosf.47
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With this knowledge in mind it is not difficult to demonstrate that 
collected data for most trace constituents, and gold is one of them, 
are affected by a Poisson Process of some kind that was originally 
introduced because of the limited volume of the drilling support. 
This has huge implications in the collection of representative sam-
ples to perform Heterogeneity Tests and ultimately calibrate con-
stants K and x.

Poisson Processes and trace constituent size-
grade trends
To simplify the discussion let’s take the example of gold as a trace 
constituent, keeping in mind it is applicable to any trace constitu-
ent. When there is a large in-situ nugget effect combined with a 
clustering effect of the gold particles that don’t like to be alone, 
the distance between clusters within mineralization increases. Many 
samples do not contain coarse gold as they should. Later on, when 
split duplicates are taken, and ultimately fire assay duplicates are 
taken, since they had no coarse gold to begin with, they give the 
illusion that low grade samples represent areas where no coarse 
gold is present, even though it is true for samples coming from 
areas where indeed there is no coarse gold. Again, the observer 
will not know the difference. So, let’s not feel safe by saying the 
low grade material does not contain coarse gold; it most certainly 
will in a substantial amount of cases! This deserves further thinking 
from geologists, grade control engineers, and geostatisticians. The 
author became sure of such a property in several projects where 
grade control vastly underestimated the gold grade going to the 
plant for no apparent, good reason. The same problem was clearly 
observed for arsenic, molybdenum and cobalt minerals. It was even 
observed for impurities such as silica and aluminum in iron ore, for 
sulfur in coal, for silica in bauxite, etc… Basically, the problem is 
not rare.

Indirect implications for heterogeneity tests
The appropriate approach for conducting Heterogeneity Tests for 
major and some minor constituents has been well established and 
the objective of this paper is not to question this at all. However, for 
low grade gold deposits for example, the conventional approach 
may indeed work well for deposits with finely disseminated gold, but 
it may be misleading when gold particles are large (e.g., superior to 
a few hundred microns, or when fine gold or any other trace con-
stituent is clustering). The author witnessed many such cases and 
clearly there is a need to suggest a strategy to make sure sampling 
practitioners are not reaching over-optimistic conclusions. Again, 
without understanding how Poisson Processes may take place, the 
following material may seem bizarre for the reader.

In a letter criticizing François-Bongarçon’s work Smee and Stan-
ley (2005)3 said “Gy’s formula is based on and derivable from the 
binomial theorem. Consequently, Gy’s formula doesn’t apply to 
samples containing very low concentrations of elements contained 
in rare grains (e.g., Au, PGE, diamonds, etc.), where a Poisson rela-
tion is applicable. Our avoidance in referencing Gy stems directly 
from the fact that we consider samples containing nuggets to be 
a scenario that is inconsistent with Gy’s approach.” This statement 
shows sampling practitioners in the world of Measurement Uncer-
tainty vastly misunderstand Gy’s work and have no idea about the 
many subtleties of his propositions and therefore they are in no 
position to criticize those who apply his work in a wise and knowl-
edgeable way.

First, the Poisson model is a limit case of the Binomial Model use 
by Gy, and therefore a close “cousin” and Gy was perfectly aware 
of nugget problems. Nobody who is knowledgeable enough would 
use Gy’s general formula to calculate the variance of FSE for a sam-
ple mass that is too small by several orders of magnitude. However, 
anyone can turn the formula around and calculate the necessary 
sample mass that is required to prevent the introduction of a Pois-
son Process, a domain for which the formula is perfectly applicable. 
This is exactly what Gy always did and it is what is suggested in 
this paper.

Cardinal Rule #1 in sampling
Biases in sampling are the worse misfortune that may take place, 
and were the driving force to establish the many rules of sampling 
correctness, so theoretical developments of equi-probable sam-
pling made by Gy and Matheron could apply in practice. This led to 
the many advances to minimize Increment Delimitation Error, Incre-
ment Extraction Error, Increment Preparation Errors and Increment 
Weighting Error which are the biggest contribution of Gy’s theory 
by far according to his own words. Is this sufficient to prevent sam-
pling biases? The answer is no. For example, it is well known that 
the content of a constituent of interest may drastically change from 
one size fraction to another. Then, plain logic would suggest the 
following Cardinal Rule in sampling should never be broken up: a 
sample mass that is too small to well represent all size fractions 
cannot provide a sample representative of anything else; this has 
huge implications for any kind of Heterogeneity Test.

Successive stages of sampling and sub-sampling may each 
require compliance with a pre-established limit that highly depends 
on the practitioner’s objectives as suggested by Pitard (2013)4. But, 
the most difficult size fraction to properly represent in the sample 
is obviously the one containing the largest fragments. This strongly 
suggests some long forgotten formulas from Pierre Gy should be 
brought back to the rescue and a careful discussion should follow. 
Let’s be clear, without a good understanding of these formulas there 
is no possible understanding of Gy’s subtle work.

Gy (1971)5 and Pitard (1993)6 derived the following formula to 
calculate the variance of Fundamental Sampling Error to be used 
to make sure a given size fraction is well represented in collected 
samples.
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Notations are:
LC a size fraction of interest
aLc the proportion of LC in the lot L
MS the mass of the collected sample
ML the mass of the lot to be sampled
FLc the average fragment of the size fraction LC

dFLc the size of the average fragments in the size fraction of interest
dFLx the size of the fragments in the other size fractions besides the 
one of interest
f a fragment shape factor
r the average density of the fragments

This formula can often be simplified for many applications:
 ■ If ML > 10 MS

 ■ If dFLc is not much different from d defined as the size opening of 
a screen that would retain 5% of the material by weight.
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 ■ If aLc is small, then
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and if dFLc = d
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This convenient formula provides a filter to make sure the expo-
nent x for d is not abused when used in a formula like one sug-
gested by François-Bongarçon:
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where:

K = f · g · c · (dl)
r and x = 2 – r

K and x are the key factors to quantify in various experiments. If 
x < 3, clearly it is not an issue when the values for d are below 1 cm, 
however it can indeed become an issue for large values of d such 
as for sampling run off mine material.

Example of application
If a run off mine material has a value of 10 cm for d and a 1-ton sam-
ple is required to represent the coarsest fragments with an uncer-
tainty of 15% (1s), it would be unfortunate to recommend a much 
smaller mass on the basis that x is much smaller than 3. Obviously, 
the value used for K has a big influence on the outcome of this dis-
cussion; indeed if K is very high it is likely that there is no problem.

Cardinal Rule #2 in sampling
The size dM of the grains of mineral of interest, liberated or not, 
must play an important role in the necessary sample mass. dM can 
also be a cluster equivalent when several of those grains are very 
close to one another within a core sample or within a larger frag-
ment. Gy corrected for this problem in an elegant way, not always 
well understood by practitioners, with his liberation factor. In other 
words, in his original formula with x = 3, both concepts d and dM 
were preserved; be aware it is no longer the case with formula [4].

Often, especially for trace constituents, it is difficult and impracti-
cal to determine the liberation factor with sufficient accuracy, and 
this makes some formulas vulnerable. Enormous literature has been 
written on this subject, the best one by François-Bongarçon (2000, 
2001)9,10. However, it is not a must to use the conventional, favorite 
approach suggested by Gy’s general and well-known formula. The 
following suggestion is pragmatic, accurate, and falls in line with 
Ingamells’ approach; it is summarized in the three following state-
ments:

 ■ Use Gy’s suggested approach for liberated gold when dM , which 
is dAu in formula [5], becomes the dominant factor; it can be gen-
eralized to many other components of interest.
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 ■ Verify that the sample mass suggested by the generalized ver-
sion of equation [4] is compatible with the mass necessary to 
represent all size fractions in the lot by using equation [1], or [3].

 ■ The largest required sample mass for a pre-selected precision, 
obtained by equation [1] or [3] (i.e., using d) and equation [5] (i.e., 
using dM defined below) necessarily takes priority on deciding 
what the sampling protocol should be.
Generalization of equation [5] by defining new notations:

fM the shape factor of the constituent of interest
gM the particle size distribution factor of the constituent of interest
rM the density of the constituent of interest
dM the maximum size of the constituent of interest particle, liberated 
or not, or cluster of such particles contained in a single fragment 
of the surrounding matrix; dM is defined as the size of a screen that 
would retain no more than 5% by weight of all the particles of the 
constituent of interest.

Thus, we obtain the very useful simplified formula:
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Useful sampling nomographs can be calculated with the following 
formula:
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The great advantage of this approach is its accuracy and the 
easiness to collect the relevant and necessary information through 
microscopic observations, and it should somewhat reconcile Gy, 
Ingamells, and François-Bongarçon. In the event reconciliation is 
not possible it should be a clear indication some heterogeneity 
properties of the constituent of interest are still unknown and further 
investigation is needed. This debate naturally leads to Cardinal Rule 
#3.

Another advantage of equation [7] is for subsampling finely 
ground material, as some constituents such as soft ones like gold, 
molybdenite, galena and many more do not comminute well. Very 
hard minerals like chromite may show the same problem. For exam-
ple a sample pulverized to 99% minus 106 microns may still contain 
a 300-micron gold particle making all other formulas weak and per-
haps misleading.

Cardinal Rule #3 in sampling
As Pierre Gy said many times, especially when criticizing the work 
of Richard (1908)15, when deciding what the exponent of d should 
be, and therefore the constant x, there is a confusion between FSE, 
QFE1, and even the Analytical Error AE poorly defined by non-chem-
ists and TOS experts. This confusion has been responsible for over 
a century for total chaos, and still remains an issue today. Problems 
are:
1) For very fine material the variance of FSE rapidly becomes a neg-

ligible factor unless unrecognized delayed comminution takes 
place for the constituent of interest.

2) The segregation error can be huge as the constituent of interest 
is liberated and possibly of a very different density than the rest of 
the material.

3) Taking the optimistic assumption that analytical increments are 
taken perfectly at random (an absolute requisite for Gy’s definition 
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of GSE), which is rarely the case at the balance room of a labora-
tory, the variance of GSE can become small indeed; however it 
takes work an analytical chemist is not willing to spend the time 
on. As a result, the segregation error which is no longer GSE, 
may become vastly underestimated because it no longer obeys 
rules set by the TOS.

4) The Analytical Error AE cannot be estimated by doing replicate 
assays that include the last FSE and last GSE. Let’s assume the 
chemist takes a 30-g analytical subsample for fire assay; the tak-
ing of that sample has nothing to do with the Analytical Error 
which includes fusion, cupellation, acid digestion of a bead, con-
tamination, losses, spectrometer calibration or use of a precision 
balance, additive and proportional interferences, etc… In other 
word it is very hard, if not impossible in some cases to appreciate 
what AE really is. Furthermore, AE is extremely operator depend-
ent. There is no such things as a bad analytical method, there are 
only incompetent analysts who apply it for the wrong conditions.

5) There is no such thing as a segregation free analysis when taking 
replicate samples in a given size fraction as particles segregate 
even if they are all the same size. They will most certainly seg-
regate because of density, shape, electrostatic property differ-
ences, etc…
All this is clearly summarized in the sketch illustrated in Figure 

1 and very familiar to Visman, Ingamells and Gy through verbal 
conversations, and many others who were wise enough to admit 
that what they measured with replicate samples or replicate assays 
may have nothing to do with the variance of FSE. It can be noticed 
as well that in this figure when segregation is mentioned it is not 

necessarily referring to GSE as defined in the TOS; the subtle dif-
ference depends on what the operator may do. The only thing the 
author asks is not much to comply with: call variance sources by 
their respective name instead of calibrating x to compensate for 
things that are not clearly defined or understood. An example is 
appropriate: an operator shakes a laboratory pulp to collect a tiny 
analytical sample, then makes the assumption there is no longer 
any significant segregation in the pulp, and finally takes one or two 
tiny increments with no respect to the TOS. The resulting variance, 
after guessing what the analytical variance should be and remov-
ing it is found to be large. The operator put the blame on a large 
variance of FSE when it is clear that he was introducing a massive 
segregation variance because of the way he collected the incre-
ments. In this particular case he was introducing a variance that has 
nothing to do with FSE, nor GSE, because all the subtle principles 
clearly defined in TOS were completely ignored therefore prohibit 
the segregation variance to be a random one as it should be.

Suggesting a new integrated iterative approach
Iteration is the word of wisdom in sampling. The following three 
steps are not necessarily suggested in chronological order. Rather, 
each step can be taken simultaneously which ultimately will provide 
confidence that no stone has been left unturned.

Step #1: The mandatory calibration of K and x
The calibration of constants K and x in equation [4] as suggested 
by François-Bongarçon is a mandatory step that is non-negotiable; 
please notice notations in that formula very carefully. Indeed, the 
use of the notation QFE1 is valid only if the operator has been col-
lecting many increments in full compliance with sampling correct-
ness, which is a very optimistic assumption as experience proves. If 
not in full compliance, then the resulting variance is anyone’s guess 
because there is no longer any theoretical development possible as 
demonstrated by Gy and Matheron. Such calibration allows mini-
mizing the variance of the Fundamental Sampling Error and also 
measures the leftover effect of the Grouping and Segregation Error 
depending on the equipment used to split samples at the sample 
preparation room and at the laboratory, and on the operator’s train-
ing which can be a huge factor. For the details of such procedure 
the reader is referred to François-Bongarçon’s publications (2000 
and 2001)9.10.

Step #2: The geologist to the rescue
It is necessary to better log the properties of gold in each geologi-
cal unit. With minor modifications the same list may easily apply to 
other constituents of interest in iron ore, in coal, in porphyry cop-
per deposits, and others, gold being only a convenient example. 
For each core sample within substantial mineralization the following 
information should be carefully logged:

 ■ Where is the gold?
 ■ What are the associations of gold?
 ■ How much gold is finely disseminated within sulfides, such as 
pyrite or other minerals?

 ■ How much gold is coarse and perhaps nearby other minerals?
 ■ Are gold and pyrite or other mineral occurrences associated 
with narrow or large quartz veins? If so, are there several quartz 
events?

 ■ Study size distribution of gold particles. A good histogram is 
needed for each geological unit. After observing several thousand 

Figure 1. Replicate assays variance and its components.
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samples within mineralization it should be possible to roughly es-
timate the size dM above which only 5% of the gold can report.

 ■ Equally important, study the size distribution of gold particle clus-
ters; in other words when you see one gold particle (measure 
it), how many more gold particles are in the immediate vicini-
ties? e.g., 10 or more within 100 cm3? After observing several 
thousand samples within mineralization it should be possible to 
roughly estimate the size d¢M above which only 5% of the gold 
can report as cluster equivalents.

 ■ Etc…

Step #3: The mineralogist to the rescue
Suarez and Carrasco (2011)13 demonstrated in an unambiguous 
way that careful mineralogical studies can provide valuable infor-
mation to model the variability of the liberation factor as a function 
of comminution stage. It is very unfortunate such study does not 
generate more interest. The same study suggests that the maxi-
mum content model suggested many years ago by Gy is a very 
reliable model that was used all the time in a mineral processing 
research laboratory (Minemet); see Gy (1956)11 and Pitard (19936 

and 200914).

Step #4: The selected sample or subsample 
mass must fairly represent the coarsest 
fragments
This task is easily done by using formulas [1] or [3].

Step #5: The selected sample or subsample 
mass must fairly represent the largest particles 
of a given constituent of interest
This task is done by using formula [7]. This is critically important for 
constituents showing delayed comminution. Usually, soft minerals 
such as gold, galena, molybdenite and very hard minerals such as 
chromite can show such problem. As a good example, the coarse 
gold case shown by Pitard and Lyman (2013)12 clearly shows that 
a Heterogeneity Test performed by using conventional 30-g fire 
assays would most likely have led to very misleading conclusions; 
the test is not the problem, but the completely inappropriate 30-g 

subsample is the issue, in other words the operators would have 
used the wrong tools.

Step #6: A logical flow sheet to perform 
Heterogeneity Tests
Figure 2 summarizes the necessary steps to perform a reliable Het-
erogeneity Test for various constituents of interest during explora-
tion and grade control; the approach can easily be extended to 
other materials in other industries. The reconciliation box has a very 
important mission in cases where conclusions are grossly differ-
ent: a logical explanation must be found that may lead to important 
decisions concerning the selection of fully optimized sampling and 
subsampling protocols.
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Good sampling is good business: reconciling economic 
drivers of productivity and quality using fundamentals of 
sampling theory
O. Domingueza and K. Smithb

aOscar.R.Dominguez@bhpbilliton.com 
bKathleen.Smith@bhpbilliton.com

Iron Ore supply is outpacing global demand, reinforcing the importance of product quality and reliability as critical factors that 
distinguish Iron Ore producers in a competitive market. This expectation calls for a shift in industry attitudes toward sampling in 
bulk commodities, beginning with a greater emphasis on optimisation of sampling processes from Exploration to Port. Business 
initiatives aimed at optimising processes often call upon technological innovation, such as mobile sampling and analysis modules 
at the drill rig. Such technologies indeed represent an exciting frontier in the business of minerals exploration; however their merits 
must be critically compared to existing sampling protocols before implementation if sample quality is to be maintained. Quantifying 
the Fundamental Sampling Error (FSE) of the sampling protocol is a minimum requirement to achieve this and should be preceded by 
experimental calibration of the sampling constant K and the exponent alpha. Here, we present a case study in which the Segregation 
Free Analysis (SFA) calibration methodology proposed by Minnitt et al.3 was used to determine K and alpha for a Channel Iron Deposit 
(CID) and a Brockman Iron Formation-hosted Bedded Iron Deposit (BID) from the Pilbara region of Western Australia. Following three 
experimental calibrations of K and alpha, liberation size was calculated for iron oxides and deleterious minerals using Gy’s formula. 
Validation of liberation size is critical if the resulting FSE calculation is to inform business decisions. Electron beam instruments such 
as QEMSCAN have been proposed as a relatively quick and low cost way to estimate liberation size2. An “off-the-shelf” QEMSCAN 
analysis was trialled as a validation method against the SFA calibration results. Good agreement was achieved between liberation 
sizes determined by the SFA calibration method and the QEMSCAN analysis. Furthermore, the QEMSCAN results proved to be a 
beneficial source of supplementary information, in the form of particle size analysis, which indicates the degree of aggregation that 
persisted in the calibration material despite best efforts to eliminate it, as well as mineral abundance analyses, which either confirmed 
or highlighted uncertainty around critical mineralogical assumptions made in the calibrations. These observations emphasise the 
importance of validation when assessing FSE. The case study presents an industry perspective on the applications of sampling theory 
in response to an increasingly competitive Iron Ore market. 

Introduction: economic drivers of technology, 
productivity and product quality

C
ommodity prices have fallen in recent times, leaving 
mining companies with an imperative to cut costs, 
improve productivity, innovate technological solutions, 
all whilst improving the quality of their product. Iron Ore 

in particular is an increasingly competitive market as global supply 
outpaces demand; thus product quality and reliability are becom-
ing increasingly relevant factors that distinguish iron ore producers 
in the marketplace. Such economic conditions indeed necessitate 
challenging the status quo and looking to optimisation of processes 
aimed at lowering cost and raising productivity; however this must 
be done with great care where technical considerations such as 
sampling protocols are involved. Furthermore, adopting new 
technologies designed to streamline processes – such as mobile 
sample preparation and analysis equipment at the drill rig – must 
be carefully measured against traditional sampling and analytical 
methods; otherwise mining companies may find initiatives geared 
towards productivity in direct conflict with initiatives geared towards 
improving product quality.

To critically compare a conventional sampling protocol against 
a novel, technologically innovative protocol, one must first deter-
mine some measure of error which can be critically compared. Gy’s 
Theory of Sampling (1979)1 suggests that the single most influential 

error is the Fundamental Sampling Error (FSE) of the sampling 
design, and application of Gy’s formula to calculate FSE must be 
preceded by experimental calibration of the sampling constants K 
and alpha for the particular ore type (Minnitt et al., 2011)3. Here we 
present a case study in which the BHP Billiton Iron Ore Explora-
tion group, in collaboration with Dominique Francois-Bongarcon of 
Agoratek International, conducted three experimental calibrations 
of K and alpha in order to quantify the FSE of our sampling protocol. 
The determinations of K and alpha were ultimately used to calcu-
late the liberation size of deleterious materials present in iron ores, 
chiefly alumina, silica, and phosphorous. For proprietary reasons, 
iron results will not be published.

As an influential variable in the FSE calculation, it was critical to val-
idate the liberation sizes generated by the calibration experiments. 
QEMSCAN technology has been suggested as a novel approach to 
heterogeneity in the past (Lyman, 2011)2 and was trialled  as a vali-
dation technique using an “off-the-shelf” suite of analyses provided 
by Bureau Veritas Australia. The use of QEMSCAN proved to be a 
beneficial source of supplementary information, including particle 
size distribution analyses, which appear to confirm that aggregation 
persisted in the material used in the calibration experiments despite 
best efforts to eliminate it. Furthermore, the QEMSCAN work con-
firmed some mineralogical assumptions, which influences the 
FSE calculation as the density input associated with the sampling 
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constant K. In light of achieving good agreement between experi-
mental and QEMSCAN liberation sizes, the QEMSCAN analysis is 
considered to be worthwhile. 

Experimental calibration of k and alpha
Three calibration experiments were conducted according to the 
Segregation Free Analysis methodology proposed by Minnitt et al.3. 
These experiments will be referred to as Experiment 1, Experiment 
2 and Experiment 3. Each experiment utilised high-grade iron ore 
sourced from BHP Billiton exploration projects or active mines. Two 
calibrations were conducted for Brockman hosted bedded iron for-
mation; the first sourced bulk sampled material from Reverse Cir-
culation (RC) drilling and the second sourced material from coarse-
crushed diamond core, previously used for metallurgical test work. 
The third experiment assessed blasted Channel Iron Deposit (CID) 
material sourced directly from an active pit at the BHP Billiton Yandi 
mine. Details of sample collection and preparation for each experi-
ment are presented below. All samples were assayed by XRF at the 
SGS Newburn Laboratory in Perth.

Experiment 1: RC sourced Brockman ore
The first calibration experiment utilised approximately 100 kg of high-
grade Brockman ore generated by Reverse Circulation (RC) drilling 
from a BHP Billiton exploration project in the Pilbara. RC sourced 
bulk material was chosen for the initial trial for its easy availability 
and low cost. The bulk material was de-aggregated using a steel 
roller and split into four lots using a rotary splitter for easier handling. 
Approximately one half of the original 200 kg lot was run through a 
nest of sieves in geometric progression (r = 2); however, due to the 
destructive nature of the RC drilling method, the maximum grain 
size was smaller than anticipated with a dmax of 0.95 cm. This con-
strained the first calibration experiment to four size fractions and a 
pulp series, which is used to approximate analytical variance (Min-
nitt et al., 2011)3. A total of 30 samples were collected from each 
fraction by spooning approximately 100 g of sieved material into a 
sample bag. Each sample weighed approximately 100 g.

Experiment 2: Diamond sourced Brockman Ore
The second calibration experiment utilised approximately 100 kg of 
high-grade Brockman ore sourced from coarse-crushed diamond 
core from a BHP Billiton exploration project in the Pilbara. Par-
tially mineralised shale material contained within the lot was highly 

subject to aggregation. Following de-aggregation using a steel 
roller, the diamond sourced material yielded a dmax of 1.9 cm. The 
material was then rotary split for easier handling, and run through 
the nest of sieves as per experiment 1, resulting in five size fractions 
and a pulp series. Between 16 and 32 samples were collected from 
each size fraction as per experiment 1, depending on the volume of 
material generated in that fraction during sieving. Each sample was 
approximately 120 g.

Experiment 3: Mine sourced CID
The third calibration experiment utilised approximately 100 kg of 
high-grade CID ore sourced from an active pit of the BHP Billiton 
Yandi mine. Aggregation was not apparent upon visual inspection; 
however the material was subject to de-aggregation with the steel 
roller as a precaution, followed by rotary splitting and sieving as per 
experiments 1 and 2. The mine material yielded a dmax of 3.8 cm, 
resulting in six size fractions and a pulp series. A total of 32 samples 
were collected from each size fraction as per experiments 1 and 2 
at approximately 130 g per sample. 

Data processing
Data processing was conducted according to the procedure out-
lined by Minnitt et al.3; thus the data reduction process by which a 
single-stage variance is calculated for each series will not be dis-
cussed in detail here. Perhaps of greater interest to the calibra-
tion is the removal of outliers. Outliers were removed according 
to the “Outlier Modes” method discussed in Minnitt et al.3, under 
the supervision of Agoratek International. Using this approach, a 
total of 46 outliers were removed from a data-set of 584 assays; 
over half of these were observed in Experiment 2, perhaps due 
to the substantial aggregation observed in this material. Following 
outlier removal, calibration curves with slope alpha and intercept 
K were compiled according to the procedure outlined by Minnitt 
et al.3 (Figure 1).

Liberation size was then calculated according to the formula 
(from Minnit et al.3, p. 144):
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Where K is given by the intercept of the calibration curve, compo-
sition factor c is given by the density (as grade has been normalised 

Figure 1. Al2O3 calibration curves for each SFA experiment
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to 1 according to the data processing procedure), shape factor f 
is assumed to be 0.5 and granulometric factor g’ is equal to 0.44 
according to the relationship of g’ and the ratio of sieve sizes dmax/
dmin (Minnitt et al.3, p. 139). Experimental alphas and calculated 
liberation sizes are given in Table 1. 

Results validated by QEMSCAN
QEMSCAN analysis was conducted primarily as means of validating 
liberation size, but also as a supplementary source of information 
regarding mineral abundance, particle size distribution and mineral-
ogical associations related to liberation and locking. The QEMSCAN 
package also incorporated QXRD work as an additional validation 
method. Three samples from the calibration experiments were 
selected for QEMSCAN analysis, each representing a different size 
fraction. Two were selected from Brockman ores used in Experi-
ment 2 and one was selected from the CID ore used in Experi-
ment 3.

Fundamental to the work was validating mineralogical assump-
tions. The initial assumption considered alumina as kaolinite, which 
was confirmed to be the norm in the Brockman ores (Figure 2). 
However the QEMSCAN analysis, in addition to QXRD, suggests 
that no kaolinite is present in the CID material used in Experiment 3, 
but rather is entirely hosted by Goethite as intergrowths (Figure 3). 
Likewise, all silica was initially assumed to be quartz, however silica 
was found to be hosted primarily by kaolinite, and to a lesser degree 
in goethite, in the Brockman ores. While the QEMSCAN package 
was effective in definitively confirming some assumptions, it raised 
uncertainty around others; such was the case with Phosphorous 
hosting minerals. First, the presence of Xenotime (YPO4) as a phos-
phorous-host in the Brockman ores, as detected by the supple-
mentary QXRD work, was not anticipated. Second, the presence of 
phosphorous was largely underestimated by QEMSCAN. While this 
is partly due to the fact that the system had not been programmed 
to detect Yttrium, it is surprising that Phosphorous hosted in Goe-
thite was not detected; at 5x5 µm resolution, the bulk of phospho-
rous containing pixels were found to contain <20% Phosphorous, 
suggesting that either Phosphorous is present in very fine grained 
minerals or in mixture with other phases.

Further to this, particle distribution size analyses appear to indi-
cate that aggregation persisted in some size fractions of the sieved 
calibration material, despite best efforts to remove it. For example, 
material from the 1.18 mm to 2.36 mm size fraction was found to be 
80% passing 0.94 mm according to the QEMSCAN analysis, sug-
gesting that the majority of material was actually smaller in size than 
the minimum sieve size. Size distribution analyses were conducted 
both on heterogeneous particles and individual mineral grains.

The QEMSCAN analysis reported liberation data for iron oxides, 
silicates (primarily existing as kaolinite) and intergrowths, or intimate 
mixtures of iron oxides and Al and Si. Liberation data for quartz was 
not provided. A mineral is considered liberated where area percent 
is greater than 90%; therefore liberation in this context is reported 
as the mass percent of mineral grains between 90% and 100% 

Figure 2. QEMSCAN image from a Brockman ore particle from Experiment 2 showing kaolinite grains (dark yellow) intermixed within siliceous intergrowth 
(light orange), interlocked with hematite grains (dark orange)

Table 1. Experimental alpha and liberation size (dL) for key analytes as deter-
mined by the SFA calibration experiments 

SFA 
Experiment

Analyte alpha dL SFA (µm)

Experiment 1

Al2O3 2.3 8

SiO2 2.3 17

P 2 2

Experiment 2

Al2O3 2.5 14

SiO2 2.4 21

P 1.8 16

Experiment 3

Al2O3 1.8 25

SiO2 2 2

P 1.8 3
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liberated at a given P80, as determined by the size distribution anal-
yses. In this way, an exact liberation size is not given, but can only 
be inferred based on the degree of liberation at a certain grain size. 
In spite of this constraint, the QEMSCAN results did not conflict 
with the liberation sizes calculated in the SFA calibration experi-
ments except in a single instance. Combined results of the SFA 
experiments and the QEMSCAN analyses are compared in Table 
2. Given that phosphorous bearing minerals were not detected at 
a 5x5 µm resolution in the QEMSCAN analysis, here we assume 
phosphorous is liberated at <5 µm. For proprietary reasons, iron 
results have been excluded. 

Discussion
The purpose of this work was to determine the Fundamental Sam-
pling Error of the exploration sampling protocol, firstly because it is 
an essential metric to confidently ensure product quality, and sec-
ondly, as a measure of comparison against future at-rig sampling 
technologies. It is therefore critical that the calculation of FSE is 
done correctly as it may ultimately inform business decisions. The 
QEMSCAN validation was found to be beneficial to ensuring that 
the mineralogical input parameters are as accurate as reasonably 
possible.

None of the experimental liberation sizes were in direct conflict 
with the QEMSCAN analysis, except in a singular instance with the 
phosphorous calibration in Experiment 2. The persistent aggrega-
tion confirmed by the particle size analyses may indeed point to 

a lesser degree of confidence in this experiment, however it must 
also be noted that phosphorous liberation is only assumed from 
the QEMSCAN analysis; a slight disagreement between SFA and 
QEMSCAN is not overly surprising given this degree of uncertainty.

As a mining company focused on productivity and cost, it is per-
tinent to discuss some practical matters associated with this work. 
Despite generating fewer size fractions and, consequently, fewer 
points with which to fit the calibration curve, we found that the RC 
sourced bulk material produced an experimental result which was 
no less reliable than the diamond core or mine sourced material. 
Given that most iron ore exploration primarily relies on RC drilling, 
this material is likely to be readily available, in addition to being low 
cost. Furthermore, a bulk sample can be taken from an RC rig with-
out interrupting the standard collection of a primary sample, and it 
does not require interrupting production activities to collect mate-
rial from an active pit. It is therefore suggested that RC sourced 
material is a reasonable place to start when conducting calibration 
experiments for K and alpha using the SFA method.

This work was conducted as the conversation about product 
quality, and therefore sample quality, becomes increasingly wide-
spread in our business. In the context of this economic environ-
ment, the authors consider this most basic understanding of one’s 
sampling protocol invaluable. With this, BHP Billiton Iron Ore rein-
forces the market imperative to deliver a consistent and high quality 
product to its customers by optimising sampling processes through 
the entire supply chain.

Figure 3. A. QEMSCAN image from a CID ore particle consisting primarily of goethite (dark pink) B. Intergrowth with quartz (light pink) from a CID ore show-
ing typical size difference between goethite grains and intergrowths

Table 2. Comparison of SFA and QEMSCAN calibration results, including assumed mineralogy as per QEMSCAN

SFA 
Experiment

Analyte alpha dL SFA (µm)
dL QEMSCAN 

(µm)
Assumed 
Mineral

Density (g/cm3)

Experiment 1

Al2O3 2.3 8 <30 Kaolinite 2.4

SiO2 2.3 17 <30 Kaolinite 2.4

P 2 2 <5 Xenotime 4.75

Experiment 2

Al2O3 2.5 14 <30 Kaolinite 2.4

SiO2 2.4 21 <30 Kaolinite 2.4

P 1.8 16 <5 Xenotime 4.75

Experiment 3

Al2O3 1.8 25 <25 Al-Goethite 3.3

SiO2 2 2 Unknown Quartz 2.6

P 1.8 3 <5 Unknown Unknown
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Proper sampling, total measurement uncertainty, 
variographic analysis & fit-for-purpose acceptance levels 
for pharmaceutical mixing monitoring
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Process monitoring in technology and industry in general, in pharmaceutical batch and continuous manufacturing in particular, is 
incomplete without full understanding of all sources of variation. Pharmaceutical mixture heterogeneity interacts with the particular 
sampling process involved (by physical extraction or by Process Analytical Technology (PAT) signal acquisition) potentially creating 
four Incorrect Sampling Errors (ISE), two Correct Sampling Errors (CSE) in addition to the Total Analytical Error (TAE). In the highly 
regulated pharmaceutical production context it is essential to eliminate, or reduce maximally, all unnecessary contributions to the 
Total Sampling Error (TSE) to the Measurement Uncertainty (MUtotal) in order to be able to meet stringent regulatory blend and dose 
uniformity requirements. Current problems mainly stem from inadequate understanding of the challenges regarding sampling of 
powder blends. In this endeavor the Theory of Sampling (TOS) forms the only reliable scientific framework from which to seek 
resolution. We here present the variographic approach with an aim to conduct TSE error variance identification and to show how to 
develop fit-for-purpose acceptance levels in critical powder blending process monitoring. The key issue regards the nugget effect, 
which contains all non-optimised [ISE, CSE] plus TAE contributions to MUtotal. A large nugget effect w.r.t. the sill is a warning that 
the measurement system is far from fit-for-purpose, and must be improved. Regulatory guidances have hitherto called for physical 
sampling from within blenders, leading to significant ISE associated with the insertion of sample thieves (sampling spears). Instead 
of self-crippling spear sampling we here call for a paradigm shift, very much from the TOS regimen, in the form of alternative on-line 
variographic characterisation of 1-D blender outflow streams. Practical illustrations and case histories are described in parallel 
contributions to WCSB7.

Introduction

P
rocess monitoring in technology and industry in general, 
in pharmaceutical batch and continuous manufacturing 
in particular, is incomplete without full understanding of 
all sources of variation. Pharmaceutical mixture heteroge-

neity interacts with the particular sampling process involved, either 
by physical extraction or by PAT signal acquisition, potentially cre-
ating four Incorrect Sampling Errors (ISE), two Correct Sampling 
errors (CSE), and two process sampling errors (PSE) – in addition 
to the analytical error (TAE). In the highly regulated pharmaceutical 
production context it is essential to eliminate, or reduce maximally, 
all unnecessary contributions to the total measurement uncertainty 
MUtotal when developing scientifically justifiable monitoring proce-
dures. For the present overview, focus is on the effectiveness of 
mixer blending which is the last active processing step before tab-
leting, i.e. how can it be ascertained that a particular blend has 
reached a mixing level that complies with the required ‘homogene-
ity’ and uniformity limits. The specific pharmaceutical manufacturing 
background was introduced to the TOS community by Romañach 
& Esbensen.1 TOS provides the necessary tools to separate sam-
pling errors from process variation, critically needed for full under-
standing of all sources of the sum-total of process, sampling and 
analytical variation.

Heterogeneity – also at the endpoint of mixing
Blending of fine-grained powders may be considered at both macro 
and micro-mixing scales. The proportion of a single Active Phar-
maceutical Ingredient (API) may, or may not, be well distributed 

throughout the blend. The blend also includes other components, 
called excipients, that are important for various reasons. The 
blending process seeks to break up drug aggregates present at 
the beginning of the process. However, there is always a possibil-
ity that some aggregates will not respond completely if they are 
mainly located in an “inactive” location within the blender. Sampling 
methods have been developed to try to target material from such 
“dead spots” with an aim to protect patients from a potential drug 
overdose. Thus, differences in drug distribution within blends have 
been extensively investigated in the pharmaceutical industry, using 
a wide variety of analytical techniques (but largely without proper 
understanding of the associated sampling errors effects), and all 
have shown a significant scale-hierarchy of blend heterogeneity, 
ranging from a single dose (e.g. tablet) to the entire blender volume 
(mg-g-kg realm).

Heterogeneity in the framework of TOS focus on the central 
notion that all types of materials are heterogeneous at two fun-
damentally different scales, which gives rise to the two essential 
features: Constitutional Heterogeneity (CH) (heterogeneity between 
the fundamental compositional units) and Distributional Heteroge-
neity (DH) (heterogeneity between all virtual sampling increments 
throughout the lot). In the pharmaceutical realm, the focus has been 
to achieve “homogeneity” after the blending process (e.g. an API 
and several excipients) is completed. The term “homogeneous” is 
here not used to indicate when all units making up the lot are identi-
cal (TOS’ definition), but refers to a blend with an acceptable low 
level of drug distribution variability, i.e. a fit-for-purpose homogene-
ity. The acceptable threshold drug distribution variability has been a 

doi: 10.1255/tosf.68
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relative standard deviation (RSD) of less than 5% in many contexts. 
It is worth noting that this is identical to the demand in material bal-
ance operations, but considerably lower than requirement for com-
mercial sampling (1%).

When a sampling process interacts with a lot with a specific 
heterogeneity, two sampling errors arise, the Fundamental Sam-
pling Error (FSE) and the Grouping and Segregation Error (GSE) 
which influences the total MU. This is of course a trivial concept 
in TOS, but not in pharma: it bears noting that the differentiation 
into CH and DH is virtually unknown here, which is one of the 
reasons that a fully comprehensive theory of mixing has been 
very long in the making (50-60 years), and first is beginning to 
show a final conceptualization in the two first decades after the 
millennium. Sampling errors have been recognized in pharma-
ceutical studies, although not characterized in the same way and 
to the same level of comprehension as within TOS. A recently 
withdrawn guidance on sampling of powder blends indicated: 
“Sampling errors may occur in some powder blends, sampling 
devices, and techniques that make it impractical to evaluate 
adequacy of mix using only the blend data. In such cases, we 
recommend that you use in-process unit data in conjunction with 
blend sample data to evaluate blend uniformity.”2 The same doc-
ument also indicated that: “If blend sampling error is detected, 
more sophisticated, statistical analyses should be applied to 
assess the situation”.

However, such statistical evaluations are post fact, complex and 
do not give indications of how to eliminate the causative problem(s). 
The best approach, in pharma as everywhere else in science, tech-
nology and industry, is to completely avoid unnecessary and con-
trollable sampling errors in the monitoring of manufacturing pro-
cesses in the first place as stipulated by TOS. We here outline a 
radical way out of the blender sampling predicament in pharma, 
which amounts to a paradigm shift with respect to the current tra-
ditional situation.

Theory of mixing – does it help reducing MUtotal?
A mixing theory is all very well – but does it help in reducing the 
adverse effects of sampling errors, the latter a notion that has just 
begun to be acknowledged in the pharmaceutical realm? The his-
tory of the evolution of a theory of mixing is presented elsewhere; 
only a few key aspects are necessary for the present overview.
1) It has always been assumed that effective mixing will lead to a 

perfect random mixture, and most theoretical analysis has been 
carried out on this background. This has a serious impact on 
how to address real-world mixing end-products however. It turns 
out that this is not a realistic end-point understanding (see further 
below regarding residual heterogeneity).

2) A very influential misunderstanding is that there has been only 
very little recognition that sampling processes suffer from sig-
nificant errors inflicted by the processes themselves, i.e. Incor-
rect Sampling Errors (ISE). The one notable exception is that of 
Muzzio et al.,3 which analysed in considerable detail the effects 
of using thieves for sampling of pharmaceutical mixtures, and 
which must be credited for pointing out the highly adverse 
effects resulting from forcing thieves through an in-homogenous 
medium (‘clumped’, segregated, layered) as well as casting a 
first empirical light on differential flow characteristics for API’s 
and excipients respectively. API’s and excipients are often of sig-
nificantly different crystal/particle size and forms which can lead 
to markedly different flowability with resulting different mixability 
consequences, significantly hindering terminal mixing efforts.

How to sample from within a container – that is 
the question!
Pharmaceutical companies are extracting powder mixtures directly 
from blenders to check blend uniformity, and this is almost univer-
sally carried out using sampling thieves (sampling spears).

Figure 1 shows the recommended approach for what is currently 
considered to be adequate sampling from a V-blender. Note that 

Figure 1. Traditional thief sampling (spear sampling) from within pharmaceutical mixing blenders (here a tumbling V-blender) recommends using 10 fixed 
locations organised in a certain order intended to minimize ‘drag down’ of powder from higher locations.4 The fundamental assumption is that these loca-
tions (including replication at a few locations) represent the “most in-homogenous” parts of any blend, for all types of mixtures, in all types of blenders. Alas 
this assumption is untenable in the industrial practice.
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each sample obtained from this geometrical scheme is analysed 
individually, there is specifically no requirement to aggregate these 
10 singular samples into composite samples, because the objec-
tive is to estimate the residual heterogeneity present after mixing. 
This scheme is therefore forcing what is fundamentally a grab sam-
pling approach, which has resulted in numerous difficulties w.r.t. 
the accuracy and precision of the desired quality check of the final 
blended mixtures. The sample thieves employ small, pre-set cavi-
ties to assure that the samples extracted has approximately the 
mass of a single dose unit, which from a ‘consumer’ point of view 
is a reasonable demand and a cogent solution: the analytical result 
must pertain to the dose unit the patient receives. The operation 
of pharma sampling thieves is otherwise standard: the cavities are 
closed when the metal rod is inserted into the blender and first 
opened for powder to flow into the cavity when reaching the appro-
priate location in the blender, and then closed again to remove the 
extracted material from the specific location targeted. However 
such a small sample size unavoidably forces the attending FSE to 
be at a maximum.

It is on this basis that a recommended geometrical set of fixed 
locations is assumed to be able to render a reliable quantification of 
the residual heterogeneity in the entire blender volume. From a TOS 
perspective, this is clearly an unsustainable assumption however. 
Sample thieves are unable to furnish representative samples under 
almost all circumstances – except regarding exceedingly uniform 
mixtures, which is of only little help when trying to monitor an ongo-
ing mixing process, or trying to verify whether a mixing endpoint 
satisfies a regulation threshold, i.e. most of the times this sampling 
approach is used, the mixture will not be at its lowest heterogene-
ity near ‘uniformity’. The fixed geometrical scheme sets the order 
in which the mixture is to be sampled with an aim to minimize the 
effect of disturbance of the powder bed (N.B. not to eliminate, but 
only to minimize this disturbance). Thief sampling is not an easy 
task in practice since blenders are quite large and accessibility is 
often restricted in the industrial practice. Thus, typically only 6 to 
10 grab samples are removed from blenders following only minor 
variations of the master plan as illustrated, Figure 1.4 Also, recent 
publications indicate that regulatory agencies want to understand 
the local sample-sample variation at specific locations, e.g. Refer-
ence 5. Multiple insertions of the sample thief at a specific, or a few 
pre-selected location(s) will only complicate the evaluation of mixing 
– this is just more disturbance of the final product caused by biased 
sampling unit operations.

Any set of fixed locations will not be able to target the worst “hid-
den zones” that is supposed to be associated with maximum varia-
tions in drug concentration in a comparable manner - for all types of 
compositionally different mixtures, for the range of different dimen-
sions in current industrial and experimental blenders (very serious 
scale-up issues abound). TOS’ Fundamental Sampling Principle 
(FSP) is systematically broken in all fixed location sampling plans, 
e.g. six fixed locations,6 or 10 fixed locations in the conventional 
V-blender geometry,4,7 resulting in a virtual certainty for non-repre-
sentative sampling, DS 3077.8 Thief sampling is very nearly always 
unable to deliver “correct sampling” in practice, which forces one to 
accept a sampling bias, as has been demonstrated in many practi-
cal studies in the TOS realm and also within pharma.3 But no sam-
pling bias can ever be estimated, nor can it ever be corrected for 
- with any means. In other words, the current paradigm in pharma 
is structurally and fatally flawed.

This state of affairs is critically serious but may not necessarily be 
unavoidable – TOS to the fore.

The starting task is therefore to discontinue efforts to demon-
strate the adverse effects from biased sampling processes; the 
objective is directly the opposite: to embark on a program with an 
aim to eliminate all bias-prone sampling procedures, equipment 
and programs within pharma, i.e. to eliminate all that has to do with 
ISE. TOS offers a suite of practical solutions on how to eliminate 
or reduce the effects from the full complement of sampling errors 
[ISE, CSE] not in need to be iterated in detail here, suffice to point 
to References 9–12 and further references herein.

An iconoclastic solution – Do not sample from 
within a container!
We here propose a radical way out of the current situation in pharma 
- do not sample from within blenders!

All mixing products (with or without sampling-for-quality control) 
will eventually be discharged from the mixing container and trans-
ported to the tableting/encapsulating equipment immediately upon 
termination of the mixing stage. This process will unavoidably add 
to the material heterogeneity due to an assured impact of flow-
segregation (pouring segregation); it is only a matter of how much 
additional flow/pouring segregation is heaped upon the carefully 
mixed product. This added heterogeneity will not be observed, or 
accounted for, until quality control of the final product units (tablets, 
capsules), i.e. any such heterogeneity is left unobserved. If the final 
product variability is found to be exceeding the pertinent regulatory 
threshold the whole batch will have to be discarded. It would have 
been far better if this case had been established before tableting 
and packaging, i.e. en route to the tableting unit, preferentially just 
before this last unit operation commences.

Romañach & Esbensen indicate an alternative, indeed optimal 
quality inspection location is on the blender output stream (obvi-
ously after the added outflow segregation impact).1 For the sake of 
argument, picture the flow en route to the tableting unit as a mini 
conveyor belt, or similar.13–16 The argument is that the length exten-
sion of this flow is a linear mapping of the entire container volume 
now allowing complete insight into the residual material heteroge-
neity after termination of mixing (plus whatever level of added flow-
age segregation variability) – in stark contrast to today’s situation 
characterized by the impossibility of adequate sampling from within 
the blender.

This proposal is a simple rectification that eliminates all errors 
associated with sampling thieves while acknowledging that the 
mixture is always also impacted by some level of segregation upon 
leaving the blender vessel. Blender sampling is to be discontinued 
and replaced by on-line process sampling of the output stream at 
a suitable location. With TOS competence, it is an easy matter to 
establish an effective, un-biased sampling and/or PAT signal acqui-
sition situation on a flowing stream of matter with a small cross-
sectional dimension and thus reap the full benefits of process sam-
pling.9–11,17,18

Variographic characterisation of mixing 
processes – a new twist
Perhaps the most important issue in current pharmaceutical blend-
ing is: How to be able to recognize, identify and estimate the magni-
tude of the sum-total of sampling + analytical error effects influenc-
ing the total Measurement Uncertainty (MUtotal) in current system 
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implementations? TOS shows that there are many opportunities 
for process monitoring through the use of variographic analy-
sis a.o. providing estimates of the nugget effect (n.e.) and the sill 
(MUtotal).

8–12,17 The only necessary-and-sufficient condition is to be 
able to set up a TOS-correct variographic experiment, a task that 
will be easy to perform in the well regulated manufacturing and pro-
cessing environments in pharma. N.B. All variograhic characterisa-
tion must be based on unbiased sampling processes and data (see 
further below).

All variograms are characterised by three principal parameters: 
the range, the sill and the nugget effect.

A powerful TOS insight concerns the variogram nugget effect as 
the magnitude made up of the sum-total of all sampling and analy-
sis error effects contributing to the MUtotal, i.e. [TAE, CSE, ISE]. Thus 
the degree to which efforts have not been fully successful in either 
eliminating the incorrect sampling errors, or reduce them optimally 

[leaving only CSE], will unavoidably show up as factors increasing 
the magnitude of the nugget effect.

TOS outlines that the nugget effect variance can also be viewed 
as the Minimum Possible Error (MPE), and how it is always possible, 
in principle as well as in practice, to reduce MPE either by sampling 
at an increased rate and/or by compositing more increments. If/
when MPE is found to be “high”, this is a sign that the current meas-
urement system is marred by unacceptably high error contributions 
and that something must be done about it.

While these facts regarding the variogram are well-known in the 
TOS realm, they are virtually unknown in pharma! There is here a 
very fertile opportunity to introduce variographic analysis.

The variogram monitors the mixing process and at the same time 
characterizes the measurement system. Regarding the latter objec-
tive, it is only necessary to relate the nugget effect to the sill both as 
estimated by the experimental variogram. The sampling standard, 
DS 3077 (2013) a.o. established a generic measurement system 
quality index, termed RSV1-dim, defined as the n.e./sill (expressed as 
a %-age). The smaller the RSV1-dim index, the better the measure-
ment system will allow insight into the true process variation, as 
unencumbered by MUtotal as possible.

Figure 3 shows the principal difference between an accept-
able measurement system RSV1-dim ~30% (while appearing high 
this measurement system will still be able to “see” all pertinent 
process/product variations) and its unacceptable counterpart 
(RSV1-dim > 85%) as revealed by these simple variogram character-
istics.8

For a perfectly mixed material, the variogram must appear flat. 
Any vestiges of imperfect mixing will be revealed by the form and 
level of the sill of the output variogram. Any significantly irregular sill 
‘morphology’ will signify less than perfect mixing. The more a vari-
ogram represents the final state of a well-mixed blend, the smaller 
the overall sill.

It is never an issue to ascertain significant deviation from a flat 
variogram; neither is locating the lowest sill level, as shown in Figure 
4 where, as an example, four alternative mixing processes variants 
are compared. Note that even for the lowest of the four variograms 

Figure 3. Principal difference between an acceptable measurement system (left) and its unacceptable counterpart (right); RSV1-D is ~30% (left), but >85% 
(right). The situation illustrated represents variographic analysis of a pharmaceutical blender output streams with identical sill levels for comparison, i.e. with 
similar total process variability. Resolving adverse sampling issues (reducing the nugget effect) may result in a significantly lower overall sill as well, see 
Figure 4.

Figure 2. Generic variogram characterized by its three principal param-
eters: range, sill and nugget effect
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there is a minor, residual deviation for intermediate lags. Figure 
4 also shows how the variograms relate to a regulator threshold 
translated into a variance level. As soon as when the sill is below 
the threshold, the mixing/blending process can be declared “fit-for-
purpose”.

For a blender output variogram (indeed for all process variograms) 
the ‘true’ process variation, i.e. the effective material residual varia-
bility after termination of mixing, is not the sill itself but the corrected 
sill: silloutput – n.e.output, arrived at by subtracting the effective MUtotal. 
Thus a flat variogram does not necessarily signify a perfect, ideal 
mixture. Non-zero corrected sill levels: silloutput – n.e.output represents 
residual mixture heterogeneity which never vanishes completely for 
all naturally occurring or technological mixtures, e.g. Reference 19. 
Thus it is the flat, low-level variogram with a non-zero corrected sill: 
silloutput – n.e.output that represents the realistic, real-world end-point 
of all mixing processes.

Once embarking on a process using variographic characteriza-
tion, the road is open, also for pharma, for progressing rapidly to 
be able to make use of the more advanced facilities, e.g. complete 
identification, decomposition and estimation of all process variance 
contributions, V(0), V(1), V(cyclic),V(trend), e.g. Pitard.10

Discussion
It would appear that current Federal Drug Administration (USA) 
demands, which has led to extensive thief sampling, to a large 
degree is in contradiction to its own objectives. The bias incurred 
by thief sampling will always cover up a non-trivial fraction (perhaps 
a significant, or a fatally large) fraction of the product heterogeneity 
manifestation (or process heterogeneity), thus effectively disallow-
ing it to be validly observed and interpreted.

In the case of the critical pharmaceutical blending process this 
is an unacceptable situation. What is needed is guaranteed full 
observability giving optimal possibility for critical compliance testing.

Esbensen & Romañach are currently developing the variogram 
approach for pharmaceutical mixing quality control directed at the 
blender output stream in full detail.16,20 Focus is both on the overall 
sill level as well as on the corrected sill: silloutput – n.e.output. This 
opens up for addressing regulator threshold compliance based on 
a dynamic, self-correcting measurement system. When a blender 
output variogram lies below this threshold, e.g. Figure 4, the blend-
ing product can be declared fit-for-purpose, which is all that is 
needed in the given regulation context. It is then not necessary to 
carry on with further mixing – the product is verified ready for tablet-
ing.

In the situation where it has been demonstrated that no fur-
ther heterogeneity is added during tableting, variographic char-
acterization of the blender output stream may in fact be all that is 
needed in order to prove to the regulator’s satisfaction that also 
the dual final product inspection is in fact already tested and found 
acceptable.21

The proposed variographic outflow approach provides a clear 
alternative to current and other proposed methods that involve 
sampling from within the blender.22

The authors are in the process of outlining the present new con-
cept in an official whitepaper format.

For the record: all valid variographic analysis must be carried out 
on unbiased process data. TOS is replete with warnings, elucida-
tions and solutions regarding this stipulation.8–12,17–19

Conclusion—a call for a paradigm shift
There are many opportunities for TOS to be involved in significant 
TSE improvements in pharma, notably w.r.t. eliminating sampling 
bias in the primary blender sampling stage. It is here proposed to 
introduce a systematic variographic approach on blender outflow 
streams for determining the characteristics of both the product and 
the monitoring system itself, whether based on physical sampling 

Figure. 3. Principal difference between an acceptable measurement system (left) and its unacceptable 
counterpart (right); RSV1-D is ~30% (left), but >85% (right). The situation illustrated represents variographic 
analysis of a pharmaceutical blender output streams with identical sill levels for comparison, i.e. with similar 
total process variability. Resolving adverse sampling issues (reducing the nugget effect) will result in a 
significantly lower overall sill as well, see Fig. 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4. Schematic illustration of variograms of four alternative mixing process variants in pharmaceutical 
formulation development. The process represented by the bottom variogram is optimal because of its lowest sill 
level and least deviations from a flat variogram. All variograms reveal one form or other of feeder periodicity 
inheritance, only sufficiently dampened in the bottom one. Note regulator threshold criterion (horizontal line). 
Even though the optimal variogram is not flat the fact that it falls exclusively below the regulator threshold 
allows the blending process to be declared fit-for-purpose. 
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Figure 4. Schematic illustration of variograms of four alternative mixing process variants in pharmaceutical formulation development. The process repre-
sented by the bottom variogram is optimal because of its lowest sill level and least deviations from a flat variogram. All variograms reveal one form or other 
of feeder periodicity inheritance, only sufficiently dampened in the bottom one. Note regulator threshold criterion (horizontal line). Even though the optimal 
variogram is not flat the fact that it falls exclusively below the regulator threshold allows the blending process to be declared fit-for-purpose.
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or on on-line PAT analysers. All that is needed is the availability of 
relevant blender output data. Variography is a highly favourable 
alternative to today’s practice because of its self-checking MUtotal 
features, i.e. the RSV1-dim [%] quality index, and because it can be 
based on routine monitoring outflow data which can be obtained as 
part of the on-line manufacturing process monitoring anyway.

For measurement systems in which a successful effort has been 
made to eliminate ISE, i.e. unbiased systems, the nugget effect 
(MPE) is a reliable estimate of the remaining MUtotal precision. In 
the situation where the bias issue has not been fully resolved, an 
increased nugget effect compared to the sill is a critical and reliable 
warning of an inferior or a degraded measurement system. Even 
in this case the corrected sill: silloutput – n.e.output may still be able to 
characterize the mixing end-result although with decreased fidelity 
as this difference shrinks (for worse and worse total measurement 
systems).
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The decision unit—a lot with objectives
Charles A. Ramsey
EnviroStat, Inc., PO Box 657, Windsor, CO 80550, USA chuck@envirostat.org

Sampling is more than shoveling material into a bucket. It is even more than using adequate mass, increments, and tools. Sampling 
is a systematic process that incorporates everything from development of objectives through final decision-making. Many sampling 
protocols currently in use focus only on the physical sample collection and ignore the preceding steps in the sampling process. The 
ignored steps include development of the critical decision objectives, integration of sufficient quality control, inferences from test 
portions to lots, and final decision making, statistical or otherwise. Without this supporting framework, it is impossible to ascertain 
the validity of the sampling protocols when needs or objectives change. Often, the same sampling protocol is implemented year after 
year without any consideration to its appropriateness.Proper Sample Quality Criteria (or Data Quality Objectives) are determined from 
the objectives of the project and must be an integral part of any sampling campaign. The major components of the Sample Quality 
Criteria are: 1) Question, 2) Decision Unit, and 3) Confidence. The Decision Unit is the specific material to which an inference from the 
analytical result is made and ultimately to which a decision is made. If the Decision Unit is not precisely determined and integrated 
into the development of the sampling protocol, the resulting decisions will be incorrect or, at a minimum, will not be cost effective. This 
contribution addresses development and integration of the Decision Unit into the sampling protocol framework.

Introduction

T
he physical process of sample collection is a very com-
plex endeavor. It entails the consideration of appropriate 
mass, number of increments, correct tools, randomness, 
maintaining sample integrity, etc. However, physical sam-

pling is only a part of the entire process of making decisions with 
analytical data regarding a specific unit of material. The complete 
process includes developing objectives, understanding the nature 
of the material sampled, developing the sampling protocol, physi-
cal sampling (including sample processing and subsampling in the 
laboratory), interpreting the data, and final decision-making regard-
ing the material in question, Figure 1.

The steps in the process (Figure 1) are briefly described below:

Sample quality criteria
There are three parts of the Sample Quality Criteria (SQC)1

 ■ Determination of the analyte(s) of interest and analyte concentra-
tion of concern. This is required to maintain analyte integrity and 
ensure proper care is taken during the sampling process not to 
contaminate the sample.

 ■ Determination of the Decision Unit(s)2—the scale of decision-
making. This will be addressed below.

 ■ Determination of the confidence that the final decision is correct. 
This is a function of the error from the sampling process, how the 

analytical data will be used to make inference, and the conse-
quences of an incorrect decision.

Material properties
There are two primary material properties

 ■ The nature of the elements. The elements may be finite (com-
mon with attribute type sampling schemes) or infinite (sometimes 
referred to as bulk materials). The Theory of Sampling (TOS) cov-
ers both types of elements though most effort is on the infinite 
element materials.

 ■ The nature of the heterogeneity. This includes both the constitu-
tional (compositional) heterogeneity and the distributional hetero-
geneity (in time and space).

Theory of sampling (TOS)
The scientific principles that must be followed to develop a sam-
pling protocol to ensure the samples meet the SQC.

Quality control
The specific samples collected for the determination of error. Rep-
licate samples are generally collected to measure precision (repro-
ducibility). A variety of other quality control samples are collected 
(e.g., blanks to measure contamination) to ensure the sampling pro-
cess is not introducing error.

Sampling protocol
The specific instructions that must be followed to collect a rep-
resentative sample (i.e., a sample that meets the SQC). It would 
address, among other items, sample mass, number of increments, 
selection and use of sampling tools, randomness, quality control, 
sample containers, necessary sample preservation, holding times, 
etc.

Data assessment
The process of analyzing the data to determine if the criteria in the 
SQC are met—if the data is useful for decision making. A major 
component of data assessment is the estimation of the actual sam-
pling error (from the quality control samples) and comparison of this 

Figure 1. The comprehensive scientific, systematic process for defensi-
ble decision-making.

doi: 10.1255/tosf.75
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error to the error that can be tolerated. This is inversely proportional 
to the confidence desired.

Correct and defensible decision
Once the data meets the SQC, they can be used to make inference 
(estimate the true concentration) to the Decision Unit. Once the 
true concentration is estimated, decisions can be made regarding 
the Decision Unit(s). These decisions could be to accept the Deci-
sion Unit as within specification, dispose of the Decision Unit (e.g. 
because it is contaminated), evaluate the Decision Unit further, etc. 
The list of potential decisions is almost infinite.

The objectives are as critical to the decision-making process as 
the physical sampling itself. Establishment of objectives is often 
overlooked. While Pitard addresses objectives3,4 they are seldom 
developed by practitioners (at least in a manner suitable for the pro-
cess of sampling). The objective that is most often overlooked and 
least understood is the scale of decision-making. The scale of deci-
sion-making, or the scale of observation, determines the specific  
material that needs to be included in the sample and the specific 
material the analytical results apply to. This scale of decision-making  
or observation is termed the Decision Unit (DU).

However, not all sampling objectives are related to making deci-
sions regarding specific Decision Units. For instance, some sam-
pling is performed for process control. However, in many fields 
including environmental, food, feed, pharmaceutical, chemical etc., 
testing products to determine if they meet specification or regula-
tory limits is very common. For this type of testing the Decision Unit 
must be established prior to sampling to determine if a limit is met. 
The Theory of Sampling uses the term “lot” to identify the material 
being sampled. Some common TOS definitions of the term “lot” 
are:

 ■ The object to be evaluated5

 ■ Batch of material from which increments and samples are 
selected 3

 ■ Sampling target, the specified material subjected to the sam-
pling6

 ■ All the material of interest7

Terminology is the cause of many disagreements and much 
frustration. It is therefore critical that terminology be very spe-
cific and precise so there is no room for misinterpretation. In 
the Theory of Sampling, the term “lot” is used to describe the 
material under investigation. However, this term (and the term 
population8) may not always be precise enough for development 
of sampling protocols and effective decision-making. In some 
cases, lot (and population) describes all the material under inves-
tigation, not the smaller amount of material that the decision is 
actually based on.

While these terms (lot, population, Decision Unit) appear very 
similar and descriptive, the following examples are given to dem-
onstrate the limitation of how the term “lot” can be misused when 
making decisions.†

Dog food example
A small pet food manufacturer is making dog food by mixing ingre-
dients in a vessel (batch) that can hold 2,000 kilograms (kg) of dog 
food. The pet food is formed into kibbles. The manufacturer makes 
five such batches each day they produce this type of dog food. 
This type of dog food is manufactured approximately 20 days each 
year; therefore, approximately 100 batches of dog food are pro-
duced annually. The batches of dog food are placed in 10 kg bags 
for sale to retail customers. Depending on the size of the dog (and 
how many treats she gets!), a single bag of dog food may last one 
month.

In this scenario what is the lot? Is it the 100 batches, individual 
2,000 kilogram batches, individual 10 kilogram bags, individual 
serving size or something else? The reader may already have an 
idea of what the lot is or may state: “that depends.” If so, what does 
it depend on? The lot cannot be determined until the reasons for 
sampling (objectives) are developed. Incorrectly identifying the lot, 
or not indentifying a lot prior to sampling at all, are two very com-
mon sampling mistakes that must be discontinued!

The question that begins the Decision Unit discussion is the rea-
son for testing the dog food. One reason may be to determine if the 
actual nutritional value of the dog food is the same as the nutritional 
value listed on the bag of dog food. In this case, the Decision Unit 
would be a bag of dog food. Another reason may be to determine 
if each batch has the same concentration (within a specified error) 
of some specific ingredient. In this case, the Decision Unit would be 
individual batches of dog food. Yet another reason may be expo-
sure to potential toxins in the dog food. If one serving of dog food 
contains toxins above a certain level, the dog may develop a health 
issue. In this case the Decision Unit is a serving of dog food. In all 
cases it is the same dog food, but the scale of decision-making 
is different and therefore the sampling protocol would be different. 
What can complicate this even more is that not all analytes have the 
same Decision Unit. It could be for some analytes that an average 
over a 10 kilogram bag is compared to a nutritional limit and for a 
prohibited toxin, every piece of dog food (kibble) must be safe. The 
lot (or population) may thus be quite different than the Decision Unit.

The discussion of why the dog food needs to be tested deter-
mines what analytes to analyze the dog food for and what levels 
may be of concern, the Decision Unit, how the data will be used in 
the decision-making process, i.a. It is imperative that these discus-
sions take place before the sampling protocol is developed, not 
after (which is common).

While the material in question may be a single 2,000 kilogram 
batch (should the batch be accepted or rejected), it may not be 
the average of the entire batch that is of concern but the percent of 
bags from the batch that have a specific characteristic. For instance, 
the batch may be deemed acceptable if 95% of the individual bags 
are within a certain specification limit. In this case, the Decision Unit 
is the individual 10 kg bags because decisions are made on the 
individual bags. This obviously has a large impact on the sampling 

†The author is not advocating a change in terminology but rather an 
awareness of the use of the term in compliance (regulatory, speci-
fication, etc.) sampling. If the term lot is used with the same mean-
ing as the term Decision Unit there is no conflict. In some indus-
tries, however, the term lot is used to define a specific amount of 
material with similar characteristics produced under like conditions. 
The lot number is very important for identification and trace-back 

of unacceptable goods in the food and feed realms for example. 
When working in such industries, it is very important to have a term 
different than lot for the material being sampled as the term lot has 
already been defined (many times in actual regulations). If not, con-
fusion will result. The term this author and others have adopted for 
clarity and distinction from other terms is Decision Unit.1,2,9
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protocol. Any sample collected must represent an individual bag. 
If a sample is collected that represents the entire batch, it would 
be impossible to determine if the batch is acceptable because the 
percent of individual bags that meet the specification limit cannot 
be determined. In this case the 2,000 kg batch (material in ques-
tion) may be viewed by some as a lot or population, but it is not the 
proper Decision Unit.

For a toxin, it may be a serving size (or daily amount) of dog food 
that is of concern. In other words, if a dog eats a serving of dog 
food that contains a toxin above a certain concentration, the dog 
may suffer some undesirable effect. In this case each and every 
serving of dog food must have a concentration of the toxin of con-
cern below a certain level. In many cases this level would be the 
analytical detection limit. The Decision Unit is therefore each serving 
and there are many servings in each 10 kg bag. A sample that rep-
resents the entire 2,000 kg batch or even the 10 kg bag would not 
be sufficient to make a decision regarding the serving size.

Noise level example
The US Occupational and Safety Health Administration has devel-
oped noise guidelines for worker exposures10. These guidelines 
state permissible average noise levels for specific length of expo-
sure. For noise guidelines, the time of exposure is the Decision 
Unit. As with most exposure scenarios, the longer the exposure 
the lower the amount to which a receptor can be exposed. The 
eight-hour limit is 90 dBA, but the 30-minute limit is 110 dBA (Table 
1). There are different Decision Units with different limits for each. 
If a reading is 100 dBA, is there a problem? There is no way to 
know unless the Decision Unit (time in this example) is specified as 
part of the measurement. Without a specification of the Decision 
Unit, it is impossible to interpret the data. If the value of 100 dBA 
represents a 30-minute Decision Unit, there is not a problem. If 
the value of 100 dBA represents a 4-hour Decision Unit, there is a 
problem. Would it be possible to determine worker safety unless 
information is known about all the Decision Units (nine of them) 
that exist?

Coffee bean example
Coffee beans for import to the United States are regulated for mold. 
The current process to determine acceptance (conformance to the 
mold requirement) is to take 300 individual beans at random from 
the “lot” of coffee beans (usually beans are shipped in large sacks 
or containers). These beans are visually inspected individually for 

mold. If more than 25% of an individual bean is covered in mold, 
the bean is counted as moldy. If 21 or more of the 300 beans are 
moldy, the “lot” is submitted to the laboratory for further analysis. 
Otherwise the “lot” of coffee beans is accepted11. In this case, the 
Decision Unit is the individual bean and there are millions of these 
Decision Units. The analytical data (in this case a visual observation) 
applies to the individual bean. If a certain number (percentage) of 
these individual bean Decision Units meets a criteria, then the entire 
“lot” can be accepted.

The distinction of Decision Units and lot in this case is critically 
important. What if we have exactly the same testing and compliance 
scenario above, but the analyte of interest is not mold (attribute) but 
is some toxic compound (concentration)? This compound cannot 
be analyzed visually in the field, and a sample of 300 beans (mini-
mum) is sent to the laboratory for analysis. Suppose the concept of 
Decision Units is ignored (forgotten, or never determined), and the 
laboratory decides to grind the entire sample so that a small portion 
can be selected for analysis (following the principles of TOS). In this 
case the analytical result represents the average of all 300 beans. 
This data could not be used to determine the percent of beans that 
have a certain threshold concentration, correct TOS or not. The 
result will be that a decision cannot be made, or the data will be 
used to make a decision, but that decision will be wrong (perhaps 
the correct decision will be made by dumb luck, but it would not be 
defensible). Determination of compliance is impossible without the 
concept of Decision Units.

Exposure to toxic analytes
Exposure to toxic chemicals must also specify a Decision Unit (or 
Exposure Unit). Sometimes an upper concentration limit is stated 
for toxic analytes, and this limit is incorrectly used to determine 
future health risks without consideration of Decision Units (a very 
common scenario). An example may be lead exposure. Limits for 
lead in soil for residential areas are typically in the hundred parts per 
million range. For this example, we will assume a limit of 100 mg/
kg (part per million) as the limit to determine if the soil is “safe” (the 
specific language varies from agency to agency) for residential use. 
The obvious question should be “what Decision Unit does this 100 
mg/kg apply to?” Is the Decision Unit every gram of soil in the resi-
dential area, or all the soil the receptor is exposed to? The scale of 
the Decision Unit has large consequences in the design of the sam-
pling protocol and the interpretation of the analytical results. In order 
to determine the scale of the Decision Unit, the model that was 
used to develop the 100 mg/kg limit must be understood. Does 
lead exposure come from a single gram that is over the limit or from 
all the soil the receptor is exposed to on a daily or annual basis. In 
the case of long term (chronic) exposure, it would be all the soil the 
receptor is exposed to during that time. For the case of short term/
one time (acute) exposure, the Decision Unit would be smaller.

The sampling protocol must consider the Decision Unit or erro-
neous decisions will be made regarding the exposure of lead. For 
example, what if the sampling protocol is to collect one or more 
discrete (grab, specimen) samples and then subsample 1.0 gram 
for metals analysis? Can this approach determine the daily or 
annual exposure of lead to the receptor? The answer is obviously a 
resounding NO. The correct sampling protocol would be to collect 
increments (following the principles of TOS) across the same expo-
sure area (could be space or time or both) used to develop the 100 
mg/kg limit. Collecting samples from Decision Units that are smaller 

Table 1. OSHA permissible noise levels.

Duration per day, hours Sound level dBA slow responses

8  90

6  92

4  95

3  97

2 100

1.5 102

1 105

0.5 110

0.25 or less 115
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than or larger than the Decision Unit used to establish the 100 mg/
kg standard would be inappropriate.

Summary of lessons from examples
 ■ Decision Unit must be specified prior to the development of a 
sampling protocol.

 ■ The Decision Unit may be specified in the case of compliance 
determination (regulatory or specification limits), or it may have to 
be developed (or determined) as in the case of exposure.

 ■ The Decision Unit is the scale of decision-making which may be 
different than all the material in question. The material in question 
may be comprised of only one Decision Unit or many Decision 
Units.

Conclusion
Development of the Sample Quality Criteria is critical for effective 
decision-making. Of all the components of the SQC, the determina-
tion of the Decision Unit is the least understood, yet it has the larg-
est impact on the design of sampling protocols. The Decision Unit 
determines the scale of sampling, the scale of inference, and how 
data will be used to make decisions. Without a specified Decision 
Unit (which may or may not be synonymous with how the term “lot” 
is used), it is impossible to develop a defensible sampling proto-
col or to correctly interpret analytical data. Without knowledge and 
proper application of Decision Units, many incorrect decisions will 
be made.

The concept of Decision Unit is critical for the development of 
proper sampling protocols used to determine compliance (e.g., 
specification limits, regulations) as has been illustrated in the 
examples  above. There are other terms used to identify the material 

under investigation, including lot, population, target material, etc. 
Sometimes these terms are not specific enough to indentify the 
specific material that the decision must be made on. The term Deci-
sion Unit identifies the specific material the increments are collected 
from and the specific material the results and decisions apply to.
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The use of pre-crusher stockpiles to store ore and buffer short-term fluctuations in production processes is generally well recognised 
and accepted. However, the potential to reduce short-term grade variation of ore entering the crusher is rarely recognised and 
generally poorly understood. Pre-crusher stockpiles are commonly built and reclaimed in an ad-hoc manner whereas well-designed 
and disciplined build and reclaim procedures can reduce variability into the crusher at low cost. Design options for pre-crusher 
stockpiling should consider the four competing roles of storage, buffering, blending and grade control, to produce predictable and 
uniform crusher feed grades. The selection of alternative grade allocation methods requires careful consideration, as decisions at this 
early stage of the production process have been shown to flow on to shipping and to the customer. This paper reports conclusions 
from studies simulating the reduction of grade variability for a range of alternative pre-crusher stockpiling configurations and grade 
allocation methods. The benefits achievable in reducing grade variance by systematically building stockpiles of appropriate dimension 
are quantified.

Introduction

I
ron ore is used to feed blast furnaces to make steel. Steel-
makers purchase and blend ore from multiple suppliers to 
create a consistent feed to the furnaces. A reliable long-term 
supplier of ore must satisfy three criteria to be an acceptable 

contributor of quality ore to the furnace feed blend. First the ore 
must be of an acceptable quality with suitably low level of contami-
nants, such as silica, alumina and phosphorus: this depends on the 
in situ resource and any subsequent upgrading process. Secondly, 
the supplier must maintain consistent average grades over time. 
Thirdly, there must be minimum grade variability from shipment to 
shipment. If these criteria can be satisfied, an iron ore supplier may 
remain a long-term preferred supplier, subject of course to satisfac-
tory pricing .

Miners must therefore understand the grade variability of their 
delivered ore and have in place measures to control this variability.

Normally ore is hauled by haul trucks from the blasted mine 
face to an ore pad in front of a crusher, where it is dumped into 
some form of pre-crusher stockpile. When required for crushing, 
the stockpiled ore is picked up by a front-end loader and dumped 
into the crusher. Following crushing the ore is stacked onto post-
crusher stockpiles, storing it ready for transportation to the port, 
where it is again stockpiled by automatic stacking. Finally the ore 
is reclaimed and shipped to customers. On some occasions the 
ore is dumped from the train and goes direct to the ship. Figure 1 
shows a schematic of key steps in the mining process for reduc-
ing short-term grade variability4. The precrusher stockpiling step is 
highlighted.

In large operations the reduction of short-term grade variability 
can be achieved through capital intense methods, such as large 
stockpiles built by automatic stackers and reclaimers at the mines 
and ports. These stockpiles are essential for logistic purposes in 
large operations and so advantage is taken of their presence to 
reduce grade variability, for example by chevron ply stacking and 
pilgrim step reclaiming with bucket wheel reclaimers. Most of the 
effort put into understanding the control of short-term variability has 

been on these systems downstream of the crusher.1,2,3 To date there 
has been little detailed study on the effect of pre-crusher stockpil-
ing on short-term grade variability. These pre-crusher stockpiles are 
commonly built in an undisciplined manner and to a design that 
best suits the operations buffering requirements with scant regard 
for grade variation reduction and reconciliation.

A study has therefore been carried out into all aspects of the pre-
crusher stockpile operations and the effect on short-term grade 
variability control. Simulation has been used to study the most 
effective ways to maximise the reduction of variability during crush-
ing, through separating ore into various grade stockpiles and the 
design and manner of build and reclaim of these stockpiles.

The purpose of this paper is to highlight the importance of pre-
crusher stockpile design and operation and to demonstrate their 
potential effectiveness in reducing short-term grade variability if 
designed and operated correctly.4

Figure 1. A schematic of key steps in the mining process in reducing 
short-term grade variability8. The precrusher stockpiling step is high-
lighted.

doi: 10.1255/tosf.50
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Roles of pre-crusher stockpiles
Pre-crusher stockpiles carry out the usual roles attributed to stock-
piles, of buffering, storage and blending but they also have a role in 
grade control. Each role is summarised below:

Buffering
 ■ Maintain sufficient tonnages to adequately decouple the mining 
extraction and crushing operations to maximise production, i.e. 
no bottlenecking of production.

 ■ Allow ore to be stacked from the mine and recovered to the 
crusher simultaneously in a safe manner.
Storage
 ■ When necessary, hold ore with grade that does not fit into the 
monthly plan but is too valuable to dispose of as waste. These 
stockpiles are usually referred to as long-term stockpiles. This 
function is outside the scope of this paper except to say that if 
stockpiles are used for this purpose they should not be seen as 
part of the normal production process.
Blending
 ■ Break up as much of the grade serial correlation coming from the 
mine as practical (discussed in more detail below). It should be 
noted that, because of the nature of the building process, there 
is limited blending opportunity within the stockpile. Significant 
blending depends on the relationship between the stacking and 
reclaiming methods.

 ■ Provide a highly predictable and uniform grade when ore is re-
covered from the stockpile in relatively small quantities for crush-
er feed.
Grade Control
 ■ Contain adequate tonnage to allow compensation for natural 
grade fluctuations during a monthly plan.

 ■ Allow ore to be traced back to floorstocks for tonnes and grade 
reconciliation, to examine grade bias, enable truck factor calcu-
lations and allow algorithm generation in the case of lump and 
fines product.

 ■ Maximise grade separation of critical analytes to enhance the ef-
fectiveness of the daily scheduling system by providing diverse 
grade ore sources for the daily crusher plan (discussed in more 
detail below).
To satisfy all of these requirements a compromise in design is 

necessary. We suggest that the ideal pre-crusher stockpiling sys-
tem requires:

 ■ blended-in blended-out stockpiles (BIBO) which are paddock 
dumped from haul trucks in rows in one direction and then re-
claimed across the build direction by front end loader for feed 
into the crusher;

 ■ building to a width that facilitates full face reclaim over a period 
of 24 hours;4

 ■ always pairing stockpiles of comparable grade, with one being 
built while the other is reclaimed;

 ■ building sets of stockpiles (usually up to three pairs; high, me-
dium and low grade) with maximum grade differential (described 
in detail below);

 ■ adopting a grade separation method suited to the nature of the 
ore and the customer quality requirements to give maximum ef-
fectiveness when they are being blended back together to form 
the daily crusher product;

 ■ allocating uniform tonnages to each set of stockpiles over a 
month to maximise the tonnage capacity of the pre-crusher pad;

 ■ building to a maximum tonnage that can cover grade fluctuations 
within the month, so as to decouple delays in mining or crushing: 
i.e. maintain continuous sites for building and reclaiming;

 ■ building to a minimum tonnage that satisfies the above require-
ments so that ore can be reliably traced back to original floor-
stocks for reconciliation purposes;

 ■ building and reclaiming to completion: i.e. once a BIBO stock-
pile build commences it continues uninterrupted until it reaches 
the specified tonnage. It then changes to reclaim mode and is 
reclaimed until it is empty. This is essential to maintain grade 
knowledge of the stockpile as well as for reconciliation purposes.
Typical well-designed pre-crusher stockpiles are shown in Figure 

2 while the building and reclaiming method is shown in Figure 3 
and 4.

Grade correlations in iron ores
Iron ore being extracted from a pit exhibits two types of grade cor-
relations.

Figure 2. A well designed system of paired BIBO precrusher stockpiles.

Figure 4. Reclaiming of pre-crusher stockpile for transport to the 
crusher.

Figure 3. Building of pre-crusher stockpiles.
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Firstly, there is strong cross correlations between iron and the 
contaminants. Typical correlations of the analytes are shown in 
Table1.

As can be seen there are very strong correlations between iron, 
silica and LOI (loss of ignition) and to a slightly lesser extent alumina. 
The square of the correlation coefficient is the proportion of variance 
shared between two variables. The -0.868 correlation between sil-
ica and iron means that they share more than 75% of variance, 
so that low silica is a very strong predictor of high iron content, 
and vice versa. (Since each measurement includes random error 
variance, the true correlations are probably even larger). There are 
also weaker but statistically significant correlations between alu-
mina and silica, and between phosphorus and LOI. These types of 
correlations exist in most iron ores and must be considered when 
establishing a grade control system. Blending does not alter these 
correlations.

The second type of correlation is the serial correlation evident in 
ore sequentially extracted direct from a pit. For example if a haul 
truck of ore from the pit is high in silica then there is a high probabil-
ity that the next truckload from the same source will be similarly high 
in silica. This reflects the trends evident in floorstocks and again is 
dependent on the process used for mining. For example the serial 
correlation observed when one large digging unit is working on one 
floorstock will be much higher than the serial correlation observed 
when multiple small digging units are extracting ore from various 
parts of the same pit. Figure 5 shows the serial correlation in the 
major analytes in the data used for the simulations described later 
in the paper.

The grades for the analytes of interest (iron, silica, alumina and 
phosphorus) show strongly positive serial correlation, giving short-
term grade variations. This type of correlation can be reduced 
through the processing stream.

Mined ore variability
An example of typical grade variability of mined ore is shown in 
Figure 6.

To appreciate the role of pre-crusher stockpiles in controlling vari-
ability in mining it is necessary to understand the various types and 
associated concepts of variability.

Wills, Jupp and Howard 5 explain the two types of variability (long-
term and short-term), which are shown in Figure 6. We take their 
definition given to short-term variability and apply it to the variability 
in the run of mine ore that is delivered to the crusher for processing.

Long-term variability
Long-term variability (Figure 6) represents the trends that occur in 
average grade over extended time periods longer than a month 
and up to the life of mine. This is due to geological trends in the 
ore bodies as the mining progresses, or changes to the blend ratio 
between pits as resources are depleted and new pits come on line. 
The acceptable level of long-term variability is determined through 
the trade-offs between customer goals and the economics of the 
mine and resource. This type of variability is only controlled through 
the long-term planning process and, if unacceptable, necessitates 
potential changes to the mining sequence. It has no impact on the 
design and utilisation of pre-crusher stockpiles and as such is out-
side the scope of this paper.

Short-term variability
Short-term variability in the mining extraction process relates to the 
grade variation of the mined ore over time periods of up to a month. 
It is a reflection of the process capability that is embedded in the 
mining operations which includes the system of mining over the 
month and the natural variability of the ore deposit. For example, 
short-term variability coming from a single large digging unit that 
works its way through a floorstock and is then moved to another 
is very different from the short-term variability experienced from 
having multiple small mobile digging units moving around the pit. 
Short-term variability necessitates the design of the downstream 
process to reduce it to an acceptable level by the time the cargoes 
are produced.

Pre-crusher stockpiles play a critical role in the control of this 
short-term variability by one of two mechanisms. Firstly, some con-
trol is achieved by the allocation criteria on which extracted ore is 
directed to one of several grade separated pre-crusher stockpiles 
and then later blending back into the crusher blend. Secondly, 

Figure 5. Serial correlation of each analyte for extracted blast blocks up 
to a lag of 100 kt.

Figure 6. Typical variability coming from a mine.

Table 1. Typical correlations (r) values between key analytes in iron ore.

Correlations between the key analytes typical in iron ore

Fe Al2O3 SiO2 P LOI

Fe 1.000 -0.572 -0.868 -0.328 -0.699

Al2O3  1.000  0.429 -0.008  0.122

SiO2  1.000  0.219  0.357

P  1.000  1.000

LOI
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blending also occurs through the systematic building and reclaiming 
of pre-crusher stockpiles4. Both mechanisms play an important role 
in minimising the ship-to-ship grade variability seen by customers.

Short-term grade variability minimisation
Several simulation models were constructed in Excel using Visual 
Basic to examine different aspects of the short-term variability and 
its effect on variability of shipments.

The total data input for simulations was twelve months of data 
taken from the mining plan, based on the kriged block models of a 
planned iron ore mine located in Western Australia’s Pilbara region4. 
The data were from five individual ore sources (pits) over three sep-
arate mining hub areas where pre-crusher stockpiles were used to 
collect ore ready for transport to the crusher. The distance between 
the various pits necessitated this design. Long-term variability was 
removed from the data to avoid clouding the short-term variability.

Ore allocation methods for pre-crusher 
stockpiles using floorstock grades
As previously stated, the ideal pre-crusher stockpiling system sends 
similar tonnages through each set of paired stockpiles, maintaining 
a maximum spread of grade to allow flexibility in the grade control 
system so as to smooth mined grades over a monthly period. This 
was modelled using a simulation that took an annual mine plan and 
simulated the flow of ore from the pit into pre-crusher stockpiles 
and then through the process to shipping. The simulation collected 
data on the effects of the different allocation methods on daily 
crushing grades, and on mine, port stockpiling and shipping grades 
which were later analysed.

A crusher decision support system based on the Continuous 
Stockpile Management System was incorporated to create the daily 
crusher feed plan, taking ore from the three hubs to maintain the 
daily target grade.

Nine alternative grade allocation criteria were simulated and their 
effectiveness determined by comparing the standard deviation of 
grade into the crusher, into post-crusher stockpiles, and at shipping, 
both with and without direct ship-to-train unloading. The best ore allo-
cation criteria would achieve ore allocations generating pre-crusher 
stockpiles having maximum practical differences of all grades to give 
flexibility to smooth out the grades at crushing. The daily grade con-
trol system concentrated on smoothing silica and alumina: because 
of the high cross-correlations it also controlled iron.

A data set was developed for a twelve-month mining period 
that contained all of the typical ore characteristics evident in min-
ing operations. The long-term trend was removed from these data 
so the results would be directly comparable to a normal monthly 
production run, but with the statistical power provided by the extra 
data across the twelve-month duration. As is normal practice for 
iron ore, the daily grade control simulation software emphasised 
silica and alumina and to a lesser extent phosphorus, with only a 
slight emphasis on iron.

The following alternative allocation criteria were included in the 
investigation:
1) Principal components: the calculation of principal components 

of each floorstock grade6 takes into account all analytes in maxi-
mizing the separation of grades. Theoretically this method would 
provide the best compromise of maximum spread of all analytes 
over all stockpiles.

2) Each key analyte alone: individual analytes iron, alumina, silica, 
phosphorus and LOI were used as allocation methods.

3) Silica plus alumina: similar to above but representing the major-
ity of gangue in the ore.

4) Random: blocks were allocated in a totally random manner, 
independent of grade, to each of the pre-crusher stockpile sets 
available. The allocation of incoming ore was based on which 
paired build stockpile had the lowest current tonnage, with no 

Table 2. Distribution of grades achieved in the simulation for various separation criteria. Grey background indicates the analytes used to select in the particular 
allocation criteria. The absolute differences between the stockpiles (highlighted) are a proxy for the ‘most effective’ analyte grade separated in the stockpiles.
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correlations between the key analytes typical in iron ore
Fe Al2O3 SiO2 P LOI

Fe 1.000 -0.572 -0.868 -0.328 -0.699
Al2O3 1.000 0.429 -0.008 0.122
SiO2 1.000 0.219 0.357

P 1.000 0.457
LOI 1.000

Pile

Distribution Fe Al2O3 SiO2 P LOI SiO2+Al2O3 Fe Al2O3 SiO2 P LOI SiO2+Al2O3

Low 56.64 3.63 6.58 .113 8.06 10.22

High 58.29 3.14 5.04 .120 7.76 8.18

Low 56.55 3.56 6.48 .120 8.37 10.04

High 58.39 3.22 5.14 .113 7.44 8.36

Low 56.94 3.68 6.31 .109 7.85 10.00

High 58.00 3.09 5.31 .125 7.96 8.40

Low 56.65 3.61 6.61 .113 8.04 10.22

High 58.27 3.17 5.03 .120 7.77 8.19

Low 57.17 3.31 5.84 .142 8.30 9.15

High 57.77 3.46 5.79 .091 7.52 9.25

Low 56.86 3.36 6.00 .125 8.62 9.36

High 58.09 3.42 5.62 .108 7.18 9.04

Low 56.69 3.65 6.59 0.11 7.96 10.24

High 58.23 3.14 5.05 0.12 7.85 8.19

Low 57.45 3.39 5.83 .118 7.90 9.22

High 57.49 3.38 5.80 .115 7.91 9.18

Low 56.59 3.62 6.57 .117 8.16 10.18

High 58.34 3.16 5.06 .116 7.66 8.22
1.74 0.46 1.50 0.000 0.50 1.96

Random

Value

0.11 2.05

0.03 0.01 0.03 0.003 0.02 0.04

1.54 0.51 1.54 0.012

LOI

SiO2 + Al2O3

0.78 0.10

1.23 0.06 0.38 0.02 1.44 0.32

0.60 0.15 0.05 0.091

1.62 0.44 1.58 0.008 0.27 2.03Silica

Phosphorus

0.94 1.68

1.06 0.59 1.00 0.016 0.11 1.59

1.84 0.34 1.34 0.006

Principal 
Component

Fe

Alumina

Average BIBO Stockpile Grades Absolute Dif ference in Average Stockpile Grades

1.65 0.49 1.54 0.007 0.30 2.03

Allocation critria
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reference to grade. This would represent a practice of stockpil-
ing with no grade control objective or the ultimate situation for a 
poorly executed grade control regime.

5) Value: this criterion was developed to allocate the ore coming 
from the pits based on the “value” to customers; for example; 
high iron, low silica, alumina and phosphorus are of greater value 
than ore of low iron, high silica, alumina and phosphorus. The 
exact calculation is:

Value = ∑Stress[i] = P[i].∑(Grade[i]-Target[i])/Tolerance[i],

where: X[i] = the relevant number for Fe, Al2O3, SiO2 and P
P[i] = 1 for Fe and -1 for Al2O3, SiO2 and P, categorising their 

value to the customer.
The average grades achieved using the alternative allocation cri-

teria for two sets of pre-crusher stockpiles, i.e. low and high grade 
at one of the mine sites using the nine alternative criteria, are shown 
in Table 2. Note the cut-offs to each high and low stockpile set were 
determined so as to facilitate uniform tonnes into each stockpile set 
at each hub.

The results show the analyte specific allocation criterion gives 
the maximum separation of that analyte, as expected. The cross 
correlations complicate but also complement the allocation criteria 
based on a single analyte. While it appears that it is only one ana-
lyte that is being used to allocate ore, other analytes are also being 
separated, because of the cross correlations. For example when 
alumina is used as the separation criteria, a reasonable separation 
of iron and silica also occurs. This cross correlation is obviously not 
destroyed during the allocation criteria for single analytes and is the 
reason for success of these apparently simple allocation methods.

The principal components have an averaging effect on the grades 
in the stockpiles and are not as effective in utilising the natural cross 
correlations within the ore. Hence the principle component and 
value do not achieve as large a separation of any individual analyte 
overall when compared to the single analyte methods of separation.

Random allocation presented no significant grade separation, as 
expected.

These stockpiles from all pits were then run through the simula-
tion, allocating a constant tonnage to be crushed each shift. The 
standard deviations of the daily crusher grades for each analyte 
produced over the year are shown in Figure 7. However, the stand-
ard deviations do not provide comparable measures of quality, 
since each analyte has a different dimension.

Figure 8 shows the average daily total grade stress for the alter-
native allocation criteria. As we saw earlier, the stress for each ana-
lyte is its deviation from target grade, divided by the tolerance. Each 
analyte stress is dimensionless. Squaring each stress component 
and adding them together gives the total grade stress. The total 
grade stress is thus a dimensionless measure of overall departure 

Figure 7. Shows standard deviations of the daily crusher grades for 
each allocation alternative.

Figure 8. Average daily crusher total grade stress for alternative allocation criteria.
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from target grade, appropriately weighted for each analyte. A total 
grade stress of zero would mean that the target grade has been 
exactly met for each analyte.

The average crusher total grade stress can thus be used as a 
measure of success in achieving target on all analytes during each 
daily grade scheduling process. From Figure 8, it appears that the 
alumina allocation criterion gave near to the best result, i.e. lowest 
standard deviation overall for all analytes. For total grade stress, the 
value criterion was slightly better, but its complicated nature makes 
it less attractive for the normal production process.

The effects of various ore grade allocation 
methods on shipping variability
The reclaimed BIBO stockpile data from each allocation method 
were finally used as input data for the overall process simulation 
that took the ore from pre-crusher BIBO stockpiles through crush-
ing, onto 130 kt post-crusher stockpiles. The ore was then railed 
to the port and stacked onto 200 kt stockpiles, or as an alternative 
it was loaded direct to ship 33% of the time simulating the normal 
potential for such an activity (a method to reduce serial correlation). 
Finally the ore was loaded as 90 kt ship cargoes.

The standard deviations for each key analyte for a selected num-
ber of the allocation criteria are shown in Figure 9.

While there is a significant reduction in variability as a result of 
the post-crusher and port stockpiling, the influence of the allocation 
method for pre-crusher stockpiles is still evident with the alumina 
allocation criteria giving the lowest overall shipment standard devia-
tions. Even when direct to ship is employed to reduce variability, the 
effect of pre-crusher allocation criteria can still be seen.

Mechanism of grade reduction in grade 
separated pre-crusher stockpiles
The relationship between the variation in grade over a month com-
ing out of the pits and the ore movement tonnage in the pre-crusher 
stockpiles was studied in more detail at one of the mine hubs to 
better understand the mechanisms at play in the pre-crusher stock-
piles which are reducing the serial correlation and hence the vari-
ability. Alumina was used as the allocation criteria.

Note that ore was coming out of the pit at the grade shown but 
was moved from the stockpiles to the crusher so as to maintain the 
average grade for all the analytes, taking into account the other hub 
contributors as well. The results are shown in Figure 10 with the 
grades on the left for iron, alumina and silica and the percentage of 
the total tonnes on the pre-crusher pad in each of the high, medium 
and low alumina stockpile sets on the right. The red lines represent 
the average grade and percentage tonnes. What can be seen is the 
build-up of tonnes in the high alumina stockpile set when the pit is 
running high in alumina and decreasing when the pit is running low 
in alumina. The effect of the cross correlations are also evident in 
the fluctuations in iron and silica. In the early period of the month 
it is evident that the low alumina stockpile pair were fully depleted 
of ore because the pit was running high alumina and there were 
insufficient tonnes in the stockpiles. The resulting crusher grades 
cannot be shown because these stockpiles are blended with stock-
piles from other hubs as they go through the crusher to achieve the 
desired target grade, taking into account the variability coming out 
of these pits.

We can conclude that, if the pre-crusher stockpiles are managed 
correctly and built to the correct size, they can provide a signifi-
cant opportunity for reducing grade variability and serial correlation. 
However, this is dependent on using the correct allocation criteria 
to separate the stockpile pairs.

Conclusion
There is a low-cost opportunity to maximise the effectiveness of 
pre-crusher stockpiling to assist in controlling short-term grade vari-
ability. The benefit of variability reduction into the crusher will flow 
through the production process and eventually to the customer.

A significant reduction in short-term variability can be achieved by 
the use of adequately sized BIBO paired stockpiles using a grade 
differentiation system that best matches the grade and cross cor-
relations characteristics of the ore. The ideal size of the stockpiles 
is dependent on the serial correlation of the extracted ore as well 
as the crusher and shipping variability requirements on a monthly 
basis. Simulation modelling can assist in determining the most 
appropriate stockpile sizes and grade allocation methods to meet 
operational and organisational requirements.

Figure 9. The standard deviation of daily crushing and shipping showing 
influence of the various pre–crusher allocation methods on the finished 
product.



Issue 5  2015 41TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

References
1. Gy, P.M. A new theory of bed-blending derived from the theory of sam-

pling-development and full-scale experimental check, Int. J. Miner. Pro-

cess., 8/3, 201–238 (1981).

2. Benndorf, J. Investigating in situ variability and homogenisation of key 

quality parameters in continuous mining operations, Min. Technol., 

122/2, 78–85 (2013).

3. Robinson, G. K. How much would a blending stockpile reduce variation, 

Chemometr. Intell. Lab., 74, (1), 121–133 (2004).

4. Jupp K., Howard T.J. & Everett J.E The Role of Precrusher Stockpiling for 

Grade Control in Mining, Applied Earth Science, 122/4, 242-255 (2013).

5. Wills, A., Jupp, K.F. and Howard, T.J. The product quality system at Cliffs 

Natural Resources – Koolyanobbing Iron Ore Operations, Proceedings 

Iron Ore 2011, 563–574 (2011), Melbourne, The Australasian Institute of 

Mining and Metallurgy.

6. Everett, J.E., Howard, T.J. and Jupp, K. Simulation modelling of grade 

variability for iron ore mining, crushing, stockpiling and ship loading 

operations, Min. Technol., 119/1, 22–30 (2010).

Figure 10. Grades coming out of a pit on the left hand side and pre-crusher stockpile tonnage distribution in response to ore coming from pit and require-
ment to crush ore to attain target grade for all analytes. Red lines are average grade and average percent ore distribution.





Issue 5  2015 43TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

Placer gold sampling—the overall measurement error 
using gravity concentration on particle size ranges during 
sample treatment
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Placer deposits are generally characterized by low grade of free gold. This is the case in French Guiana where the main placer deposits 
are in the river bed. Most have already been exploited by very small mining companies using sluices. If this technology is efficient for 
coarse gold, it releases fine gold in the tailings. During the last years, studies have been performed on various sites and recoveries have 
been estimated between 40 and 60% depending on the size distribution of gold particles and of the quality of the sluice configuration. 
Many recent or ancient tailings are available with a non-negligible quantity of remaining gold, offering retreatment opportunities. They 
are generally found in the form of sand heaps with the shape of an alluvial fan originating at the sluice discharge. Due to the resulting 
large distribution heterogeneity it is necessary to take many samples at many strategically deployed locations. These samples have to 
be large enough to be representative of the local material. As gold is mainly liberated in this type of lot, traditional sample treatment 
with successive size reductions and sub-samplings is not efficient and can be very expensive. Another approach using sieving and 
gravity concentration per particle range is preferred and presented here. After presentation of the sampling and measurement protocol 
used, this paper focuses on estimation of the overall sampling error. Various tailing cases are presented for which retreatment decision 
depends on the level of confidence obtained for the estimate of the quantity of recoverable gold.

Introduction

M
ost of the historical gold production in French Gui-
ana came from placer deposits. It is still the situation 
case today even though more and more primary gold 
deposits are also exploited. The main technology used 

for gold recovery has been the sluice approach which is efficient for 
coarse free gold but less so for fine free gold and remaining embed-
ded gold associated with minerals coming from the primary deposit 
sources. This is why sluice rejection lots contains a non-negligible 
quantity of gold, which can be valuable when the gold price is high 
enough as it is the case today. During the years 2006 and 2007, 
measurement campaigns have been performed on several produc-
tion sites to estimate the remaining gold in the sluice residues and 
the technical and economic feasibility of their retreatment.

The objectives of the sampling campaigns were:
 ■ Estimate the quantity of gold remaining in sluice rejects;
 ■ Design of the retreatment process and estimation of its profit-
ability;

 ■ Design of a processing plant for placer gold deposit able to max-
imise the recovery and minimise the quantity of gold losses in 
the tailings.
Knowing the accuracy of the measurements (or, conversely, 

designing the measurement procedures to achieve the Data Quality 
Objective) is a key step in the financial risk assessment.

The preparation method of such placer samples using screening 
and gravity concentration has been used since the beginning of the 
gold deposit sampling. Ancient miners were just using the pan1. The 
last century has seen the emergence of heavier sample preparation 
plants using various technologies from sluice to centrifugal concen-
trators2. If these techniques have been mentioned in the theory of 
sampling4, 5, their advantage in terms of overall measurement error 
has been rarely treated.

This paper describes the sampling and measurement protocol 
with a detailed presentation of the procedures for sample collec-
tion, sample preparation and various measurements performed on 
it. From this well-structured process, it is possible to estimate the 
sampling and analytical errors through the moments of their cal-
culable components (such as fundamental sampling error, group-
ing and segregation error or direct measurement error linked to 
devices). In addition to the objective of material characterisation for 
processing, the results obtained from this sampling campaign are 
used to design a sampling plan for the sole measurement of gold. 
Then a general procedure is proposed for the measurement of the 
gold content of such placer deposits or tailings.

Sampling and measurement procedures
The set of studies presented here have been performed at the 
demand of several Small and Medium Enterprises (SME) producing 
gold from small alluvial placer deposits or primary gold ore bodies 
in the department of French Guiana situated between Brazil and 
Surinam. It mainly concerns permits of exploitation of small areas 
in the middle of the rain forest only accessible by air or river, rarely 
by road.

In this context, the means for sample collection and preparation 
are limited on mine site. It is why, in the following description of the 
procedures, we define four different locations:

 ■ The site: location of the sluice reject or placer deposit;
 ■ The camp: close to the site where the personnel is living and 
where some means are available for sample preparation;

 ■ The preparation laboratory: situated in the main city with available 
equipment for concentration, sieving and water management;

 ■ The analysis laboratory: subcontractor performing fine sieving, 
pulverisation and analysis by Fire Assay.

doi: 10.1255/tosf.65
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Some mine sites were sufficiently equipped to perform at the 
camp the work normally done in the preparation laboratory. In addi-
tion to the objective of obtaining accurate measurements, these 
campaigns allowed to optimise the procedures in order to minimize 
the material handling and to reduce the number and masses of 
samples and sub-samples to carry between the site and the camp 
and between the camp and the laboratory. Indeed, the cost of 
transportation by air can be too high and the risk of sample con-
tamination or losses is not negligible when carried by river or other 
land transportation.

The material characteristics required for this study are: the par-
ticle size distribution of sand and the gold content per size class, 
from which gold particle size distribution and global gold content 
are deducted. The measurements performed on each sample are 
then: mass of sample, masses of each size fraction after sieving, 
gold assaying on each size fraction for finest size classes.

Gold concentration process and rejection heap 
description
The mainly used concentration technique for alluvial placer deposit 
in French Guiana is the sluice. The sand is extracted from a produc-
tion cell by mechanical shovel feeding an inclined hopper where 
water is added for scrubbing. Some hoppers are equipped by a 
grate (20 to 35 mm opening) for scalping allowing a better concen-
tration efficiency of the sluice. The oversized particles are stored 
in a heap close to the sluice. The slurry is then feeding a nugget 
box where very coarse gold can be caught. Slurry is then passing 
through the sluice channels where gold flakes and heavy minerals 
are concentrated. Overflowing barren slurry is discharged in a previ-
ously exploited cell in which sand particles constitute a sandbank 
as an alluvial fan. Fine gold flakes and fine heavy minerals that have 
not been recovered by the sluice mainly report in this heap. Very 
fine and colloidal particles of clay are entrained with water up to the 
decantation pond with some very fine gold flakes that float.

The objective of the sampling campaign was to estimate the 
quantity of gold remaining in these rejection heaps and select the 
more appropriate process for their retreatment. Figure 1 shows a 
typical shape of such heap with a symmetry axis in the direction 
of the sluice channel. As they are constituted by accumulation of 
layers corresponding to different parts of the production cell (with 
variability in head content), one can suspect a vertical stratification. 
The cycles of concentrate recovery are also sources of this vertical 
distribution heterogeneity. Nevertheless, the kinetics of gold particle 
settling will generate a higher heterogeneity of distribution in the 
horizontal plan where coarsest gold particles are accumulated just 
after the sluice discharge, the finer the gold particles are the farer 
they are deposited. The gold content in tailings is then decreasing 
from the top to the toe.

Due to the relative constant regime of the water flowing on the 
surface of the sandbank, the size distribution of the sand particles 
appears the same everywhere except close to the sluice discharge 
where coarsest gravels are retained.

Sample taking of sluice reject
Due to the heterogeneity of distribution in the horizontal direction, 
it can be necessary to take several samples on each heap to esti-
mate the gold content distribution and the associated volumes to 
be able to calculate the weighted average of the various measured 
parameters. Figure 1 shows a case where two samples, R1 and R2, 

have been taken. A preliminary study has been performed by tak-
ing many samples along the symmetry axis and on both sides. The 
most untypical sample was the one taken at the sluice discharge 
where the remaining coarse particles of gold are concentrated. It 
is only representative of itself. After few meters, the distribution is 
less heterogeneous. It has been observed that the samples taken 
between 5 and 10 m from the sluice discharge on the symmetry 
axis have characteristics (sand size distribution and gold content) 
close to the average ones. In order to limit the number of samples to 
manage, and then the sampling campaign costs, only one primary 
sample has been taken for some rejection heaps.

The heterogeneity of distribution in the vertical direction suggests 
to take a sample on the entire height of the heap. But, as explained 
above, this heterogeneity is certainly smaller than the horizontal 
one. It is why it has been decided to limit the depth of sample tak-
ing to several tens of centimetres. When sampling ancient rejec-
tion heaps, the superficial layer can be considered as altered by 
weather (such as entrainment of fine particles of sand with rain and 
wind, or migration of gold particles with rain water infiltration) or by 
working activity. A superficial layer of 30 cm is then systematically 
removed before taking a parallelepiped-shape sample in one opera-
tion using a mechanical shovel. The bucket is then unloaded into 
a container constituting the primary sample with a mass between 
140 and 320 kg depending on the sand fineness. Depending on 
the transportation conditions, it can be decided to perform some 
sample preparation tasks on site to reduce the quantity of material 
to carry to the camp.

Coarse size distribution
For such sluice rejects, there is no chance to have gold particles 
larger than 1 mm. The sample mass can then be reduced just by 
sieving. It can be performed on site or in the camp to beneficiate 
of better conditions for sample preparation. Sample sieving also 
allows the measurement of the proportions of the coarsest size 
classes of the sand size distribution.

 
 
 
 

 

 
Figure 1. Overview of the typical shape of a sluice rejection heap and location of samples R1 and R2. 

 
 
 
 
 
 
 

Table 1. Heterogeneity model 
 

Family name Size range Mean size Unit mass Gold content Density (g/cm3) Shape factor 
+50 mm sand 50-100 mm 76 mm 591 g 0% 2.7 0.5 
+25 mm sand 25-50 mm 38 mm 73.8 g 0% 2.7 0.5 
+10 mm sand 10-25 mm 17.7 mm 7.47 g 0% 2.7 0.5 
+2.5 mm sand 2.5-10 mm 6.3 mm 332 mg 0% 2.7 0.5 
+500 µm sand 0.5-2.5 mm 1.5 mm 4.5 mg 0% 2.7 0.5 
+500 µm gold 0.5-2.5 mm 1.5 mm 10.7 mg 100% 16 0.2 
+250 µm sand 250-500 µm 380 µm 73.8 µg 0% 2.7 0.5 
+250 µm gold 250-500 µm 380 µm 175 µg 100% 16 0.2 
+125 µm sand 125-250 µm 190 µm 9.23 µg 0% 2.7 0.5 
+125 µm gold 125-250 µm 190 µm 21.9 µg 100% 16 0.2 
+63 µm sand 63-125 µm 95 µm 1.16 µg 0% 2.7 0.5 
+63 µm gold 63-125 µm 95 µm 4.13 µg 100% 16 0.2 
-63 µm sand -63 µm 35 µm 0.056 µg 0% 2.7 0.5 
-63 µm gold -63 µm 35 µm 0.266 µg 100% 16 0.2 
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Figure 1. Overview of the typical shape of a sluice rejection heap and 
location of samples R1 and R2.
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The sieve series used here was: 50 mm, 25 mm, 10 mm and 
2.5 mm. If a grate is used before sluicing, the 50 mm sieve is not 
used. Otherwise, a larger sample is taken and the passing fraction 
can be divided by riffle splitter after each sieving. Up to 10 mm, dry 
sieving is performed. If the sand is sufficiently dry, the oversize par-
ticles are clean and the retained fractions can be directly weighed 
and subject to a visual inspection to detect presence of coarse par-
ticles of gold or of potentially-bearing minerals. If the sand is wet, 
involving sticking of fine particles on the coarse ones, the retained 
fractions are washed with a minimum volume of clear water into 
a vessel, then dried and weighed. The washing water is clarified 
by decantation, gently siphoned off before to mix the recovered 
sediments (after rough drying) with the passing fraction. Wet sieving 
is performed for 2.5 mm, generally just before concentration in the 
preparation laboratory. The +2.5 mm fraction is dried and visually 
inspected to verify the absence of coarse gold particles or poten-
tially-bearing minerals. In two specific cases, an additional sieving 
has been performed respectively at 1100 µm and 500 µm before 
concentration. The 1100–2500 µm and the 500–2500 µm have 
been washed by panning and the heavy particles have been visually 
inspected to verify the absence of coarse gold or potentially-bearing 
minerals.

In all studied cases, the retained fractions were free of coarse 
gold or of bearing minerals. It is then supposed all the remaining 
gold in the sluice rejects is concentrated in the –2.5 mm fraction 
which represents between 20% and 60% of the tailings, rarely 
more. Sieving allows to divide the sample mass by a factor between 
2 and 5 keeping more or less the same fundamental sampling error 
regarding the gold content. A simple calculation using theory of 
sampling approach shows that sand crushing to produce –2.5 mm 
has practically no effect on the Constant Factor of Constitution Het-
erogeneity. That is to say crushing, conversely to sieving, is unable 
to reduce the sample mass and, for such low grade materials, sub-
sampling can be affected by the Poisson process.

Gold concentration using shaking table
Considering that finer sieving is more difficult to perform and that 
size classes under 2.5 mm can contain gold particles, gravity con-
centration is another way to reduce the mass of sample by con-
centrating most of the gold in a small fraction of the sample. All the 
–2.5 mm sub-samples have been entirely treated by a Gemini shak-
ing table well adapted for free gold and heavy minerals recovery; 
such heavy minerals potentially being gold-bearing minerals. The 
operating conditions have been tuned visually to recover the black 
minerals into the concentrate output. The dry mass of the –2.5 mm 
material subjects to concentration has to be known as accurately 
as possible. For that, the passing –2.5 mm has to be drained as 
much as possible before wet weighing and a small sample has to 
be taken for moisture content measurement.

The Gemini shaking tables have three outputs: heavy, mid and 
light products. Here, the heavy and mid products have been com-
bined as “concentrate” and light product reports as “tailings”. The 
concentrate yield varies between 1.2% and 78.5%. This corre-
sponds to a concentration factor between 1.3 and 82. Most of the 
treated samples have their concentrate yield between 5% and 20% 
(concentration factor between 5 and 20). Great attention has been 
paid to reduce flotation of fine gold particles, specifically in the con-
tainer receiving the products of the table from which water is over-
flowing and not recovered. Fortunately, sluice rejects don’t contain 

very fine and colloidal particles which have been reporting into the 
decantation pond during primary treatment.

Size distribution and gold contents of table concentrates 
and tailings
The table concentrate is screened at 500 µm in the preparation lab-
oratory. The +500 µm fraction is dried, weighed, washed by panning 
and the heavy particles are visually inspected to verify the absence 
of coarse gold or potentially-bearing minerals. In case of presence, 
this pan concentrate can be dried, weighed and then sent to lab-
oratory for assaying. The –500 µm fraction is dried, weighed and 
sent to the analysis laboratory for fine sieving at 250 µm, 125 µm 
and 63 µm. In rare cases, the –500 µm fraction has been divided to 
perform sieving on a smaller quantity; a sub-sample has been then 
taken from the second part for a direct assaying. The 250–500 µm 
and 125–250 µm size classes are pulverised to –125 µm. The four 
size classes are divided to obtain 50 g of pulp for Fire Assay.

The table tailings are entirely recovered as wet material and 
drained as much as possible taking care to not lose the fine and 
light particles. They are homogenized (as segregation took place 
in the reception vessels) and spread onto a plastic sheet to obtain 
a sub-sample by many increments. This sub-sample is sent to the 
analysis laboratory to be dried, weighed, pulverised and divided to 
obtain 50 g for Fire Assay.

Calculation of sampling and measurement 
errors
The main objective of the following demonstration is the calculation 
of the overall measurement error of the mean gold content of the 
sluice rejection heap. The calculation of the measurement error of 
the size distribution has been discussed in previous papers6,7. As 
the aim of this paper is to show the advantage to use screening 
and gravity concentration to increase the sampling accuracy, for the 
sake of simplification, the rejection heap is supposed to be homo-
geneous in distribution or, as we know it is not the case, the part 
of the heap around the sample location is supposed to be homog-
enous and constitutes a lot sufficiently large compared to the sam-
ple mass. To summarize, the only error taken into account at the 
primary sampling stage will be the fundamental sampling error.

Heterogeneity model
The base formulae of the theory of sampling3,4,5,8,9, such as the het-
erogeneity of constitution, are considering particles individually with 
their key parameters: unit mass (mass of one particle) and con-
tent of critical component. As it is impossible to have such a fine 
description, particles are classified in numerous families in which 
they are supposed identical. Each family is then characterised by 
three parameters: the mean unit mass and the mean critical com-
ponent content of the member particles, and the mass proportion 
of that family into the lot. These families have to be as homogenous 
as possible but in a reasonable number. Their parameters have to 
be obtained by measurement through specific experiments. It is 
why the first approach used in the field of ore sampling has been 
the classification in terms of size and density5,8,9,10. It is the more 
relevant approach as the unit mass is mainly dependant on the par-
ticle size and density, and the critical content is linked to the density. 
If it is not the case, specific experiments have to be performed to 
classify the particles of the same size class regarding their critical 
content11. In some cases, sources of heterogeneity are suspected 
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but no measurement method exists or the technique is not avail-
able or too expensive regarding the study challenge. Hypothesis 
can then be done and a sensitivity analysis can be performed to 
estimate the impact of such assumptions7.

Generally, the size classes used as primary family description 
are the ones coming from the sieve series used for the size distri-
bution measurement. The opening ratio between two successive 
sieves is too large to consider a uniform particle size in such a 
range. The choice of the mean unit size has to be conservative 
but preventing excessive overestimate of the sampling variance7. 
Table 1 gives the used size ranges and the associated mean par-
ticle size for unit mass calculation. Gold is supposed to be present 
only in liberated pure gold particles. If some bearing minerals can 
contain a small content of gold, the proportion of such locked gold 
compared to total gold is sufficiently low to not have large effect 
on the sampling error estimate. In addition, the assumption of only 
liberated gold is conservative. As no gold or bearing minerals have 
been observed in the +500 µm size classes during this study, only 
the size classes below 500 µm have been divided into two fami-
lies: sand and gold. Unfortunately, only the size distribution of the 
shaking table concentrate has been measured, not the one of the 
tailings, which is certainly different. As this difference has a low 
effect on the estimate of the fundamental sampling error, the size 
distribution of the concentrate will be used for the size distribution 
of the –2.5 mm sand. The gold content per size class of the con-
centrate gives the size distribution of the gold particles. The size 
distribution of gold particles in the tailings cannot be deducted 
without the sand size distribution and the gold content per size 
class. It is then assumed that only fine gold reports to the tail-
ings as observed in many cases12, that is to say in the –63 µm 
class. The set of families listed in Table 1 is used for the various 
heterogeneity models corresponding to the different stages of the 
sampling and measurement protocol. A special attention has to 
be paid in the number of selected particles in each family, specifi-
cally for coarse gold particles, to verify the validity of the Normal 

distribution assumption, and when there is a risk to be confronted 
to a Poisson process5.

Fundamental sampling error of the primary sample
The relative variance of the fundamental sampling error (FSE) for the 
measurement of the content aL of the critical component in the lot is 
given by the equation (1).
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The other ore particles are distributed in the other families following their size, density and shape. These families are characterised 
by a null gold content. Taking into account this heterogeneity model and considering that the gold content in the lot is very small 
compared to unity, the equation (1) becomes5,10: 
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Table 2 gives the variance and the error (approximately two times the standard deviation corresponding to a 95% confidence inter-
val) of the FSE for various samples treated during this campaign. The mass of the lot is supposed to be very large compared to the 
mass of sample. 

If the ratio between the largest sand particles and the largest gold particles is sufficiently small, the second term in the sum of the 
equation (2) is negligible and the simplified formula for free gold can be applied3–5. As shown in Table 2, it is not always the case when 
the proportion of the first term, the heterogeneity carried by the gold particles, is less than 95% of the constitution heterogeneity. In 
some cases, the number of particles of one family in the sample is too small. It mainly concerns the coarsest size class of sand or the 
coarsest size class of gold. In the first case, the impact on gold content variability is low. In the second case, it can be worst and the 
sample size has to be increased. 

The calculation of the FSE for the primary sampling allows to specify the sample mass to achieve a desired level of confidence. From 
this primary sample, various preparation procedures can be proposed. The current study was using scalping of coarse sand particles 
to reduce the mass of sample to analyse and then gravity concentration. In the following sections, more conventional procedures, 
using sample crushing and grinding, are compared in terms of overall measurement error. 

Sample screening 
It has been observed that the size classes larger than 2.5 mm in the sluice rejection heap are free of gold. Removing the +2.5 mm has 
the effect to reduce the quantity of sample for subsequent preparation without generating fundamental sampling error. Naturally, 
preparation errors can take place but can be avoided by good practice. Following the formalism proposed by Pierre Gy9 for the general 
case of probabilistic sampling, the sample screening can be considered as a secondary sampling without equiprobability. The limit of 
non-probabilistic selection is achieved for perfect classification during sieving for which the probability of a particle coarser than 2.5 
mm to be selected is 0 whereas it is 1 for finer particles. Such “sampling stage” has the particular property to have a null variance but a 
large bias which is absolutely manageable as it gives the link between the primary sample content and the scalped sample content. If 
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It has been observed that the size classes larger than 2.5 mm in the sluice rejection heap are free of gold. Removing the +2.5 mm has 
the effect to reduce the quantity of sample for subsequent preparation without generating fundamental sampling error. Naturally, 
preparation errors can take place but can be avoided by good practice. Following the formalism proposed by Pierre Gy9 for the general 
case of probabilistic sampling, the sample screening can be considered as a secondary sampling without equiprobability. The limit of 
non-probabilistic selection is achieved for perfect classification during sieving for which the probability of a particle coarser than 2.5 
mm to be selected is 0 whereas it is 1 for finer particles. Such “sampling stage” has the particular property to have a null variance but a 
large bias which is absolutely manageable as it gives the link between the primary sample content and the scalped sample content. If 

 
(2)

where the mean mass of gold particles is defined by:

Table 1. Heterogeneity model.

Family name Size range Mean size Unit mass Gold content Density (g/cm3) Shape factor

+50 mm sand 50–100 mm 76 mm 591 g 0% 2.7 0.5

+25 mm sand 25–50 mm 38 mm 73.8 g 0% 2.7 0.5

+10 mm sand 10–25 mm 17.7 mm 7.47 g 0% 2.7 0.5

+2.5 mm sand 2.5–10 mm 6.3 mm 332 mg 0% 2.7 0.5

+500 µm sand 0.5–2.5 mm 1.5 mm 4.5 mg 0% 2.7 0.5

+500 µm gold 0.5–2.5 mm 1.5 mm 10.7 mg 100% 16 0.2

+250 µm sand 250–500 µm 380 µm 73.8 µg 0% 2.7 0.5

+250 µm gold 250–500 µm 380 µm 175 µg 100% 16 0.2

+125 µm sand 125–250 µm 190 µm 9.23 µg 0% 2.7 0.5

+125 µm gold 125–250 µm 190 µm 21.9 µg 100% 16 0.2

+63 µm sand 63–125 µm 95 µm 1.16 µg 0% 2.7 0.5

+63 µm gold 63–125 µm 95 µm 4.13 µg 100% 16 0.2

–63 µm sand –63 µm 35 µm 0.056 µg 0% 2.7 0.5

–63 µm gold –63 µm 35 µm 0.266 µg 100% 16 0.2
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used size ranges and the associated mean particle size for unit mass calculation. Gold is supposed to be present only in liberated pure 
gold particles. If some bearing minerals can contain a small content of gold, the proportion of such locked gold compared to total gold 
is sufficiently low to not have large effect on the sampling error estimate. In addition, the assumption of only liberated gold is con-
servative. As no gold or bearing minerals have been observed in the +500 µm size classes during this study, only the size classes 
below 500 µm have been divided into two families: sand and gold. Unfortunately, only the size distribution of the shaking table con-
centrate has been measured, not the one of the tailings, which is certainly different. As this difference has a low effect on the estimate 
of the fundamental sampling error, the size distribution of the concentrate will be used for the size distribution of the –2.5 mm sand. 
The gold content per size class of the concentrate gives the size distribution of the gold particles. The size distribution of gold particles 
in the tailings cannot be deducted without the sand size distribution and the gold content per size class. It is then assumed that only 
fine gold reports to the tailings as observed in many cases12, that is to say in the –63 µm class. The set of families listed in Table 1 is 
used for the various heterogeneity models corresponding to the different stages of the sampling and measurement protocol. A special 
attention has to be paid in the number of selected particles in each family, specifically for coarse gold particles, to verify the validity of 
the Normal distribution assumption, and when there is a risk to be confronted to a Poisson process5. 

Fundamental sampling error of the primary sample 
The relative variance of the fundamental sampling error (FSE) for the measurement of the content a

L
 of the critical component in the lot 

is given by the equation (1). 
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In this formula, M
S
 is the mass of sample and M

L
 the mass of the lot. The N

F
 families, numbered with index i Î I

F
 = {1...N

F
}, should be 
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critical component content, a
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 is the mass proportion of the family in the lot. The mass of lot being significantly larger than the mass 

of sample, the second term of the difference is negligible. 
In the case of only free gold, the gold particles are distributed in a set of families, with indexes in the subset I
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The other ore particles are distributed in the other families following their size, density and shape. These families are characterised 
by a null gold content. Taking into account this heterogeneity model and considering that the gold content in the lot is very small 
compared to unity, the equation (1) becomes5,10: 
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where the mean mass of gold particles is defined by: 
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Table 2 gives the variance and the error (approximately two times the standard deviation corresponding to a 95% confidence inter-
val) of the FSE for various samples treated during this campaign. The mass of the lot is supposed to be very large compared to the 
mass of sample. 

If the ratio between the largest sand particles and the largest gold particles is sufficiently small, the second term in the sum of the 
equation (2) is negligible and the simplified formula for free gold can be applied3–5. As shown in Table 2, it is not always the case when 
the proportion of the first term, the heterogeneity carried by the gold particles, is less than 95% of the constitution heterogeneity. In 
some cases, the number of particles of one family in the sample is too small. It mainly concerns the coarsest size class of sand or the 
coarsest size class of gold. In the first case, the impact on gold content variability is low. In the second case, it can be worst and the 
sample size has to be increased. 

The calculation of the FSE for the primary sampling allows to specify the sample mass to achieve a desired level of confidence. From 
this primary sample, various preparation procedures can be proposed. The current study was using scalping of coarse sand particles 
to reduce the mass of sample to analyse and then gravity concentration. In the following sections, more conventional procedures, 
using sample crushing and grinding, are compared in terms of overall measurement error. 

Sample screening 
It has been observed that the size classes larger than 2.5 mm in the sluice rejection heap are free of gold. Removing the +2.5 mm has 
the effect to reduce the quantity of sample for subsequent preparation without generating fundamental sampling error. Naturally, 
preparation errors can take place but can be avoided by good practice. Following the formalism proposed by Pierre Gy9 for the general 
case of probabilistic sampling, the sample screening can be considered as a secondary sampling without equiprobability. The limit of 
non-probabilistic selection is achieved for perfect classification during sieving for which the probability of a particle coarser than 2.5 
mm to be selected is 0 whereas it is 1 for finer particles. Such “sampling stage” has the particular property to have a null variance but a 
large bias which is absolutely manageable as it gives the link between the primary sample content and the scalped sample content. If 
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F
 is the subset of the indexes of the families of particles finer than 2.5 mm. 

The variance of the measurement error of the gold content in the primary sample is then given by the rule of error propagation: 
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providing the measurements of the proportion t
<
 and the gold content at

<
 have a small variance and are independent. It is true con-

cerning the analytical error even though weighing (to obtain proportion) and subsequent processing (to obtain gold content) are per-
formed on the same passing material. The proportion of passing material and the gold content are both subject to FSE as measured 
from the primary sample. If one suppose all the sample can be analysed, the gold content is then calculated by the ratio between the 
measured mass of gold and the mass of sample. As in first approximation the mass of sample is considered as a constant, the vari-
ance of the gold content is the variance of the mass of gold in the sample. As this mass of gold is the same in the primary sample and 
in the screened primary sample, the variance of the FSE is well the one calculated by equation (2). 

Considering a reduction of 50% of the sample mass after sieving, an alternative procedure can be done with crushing of the primary 
sample up to –2.5 mm followed by a division to produce a secondary sample. During crushing, there is no chance to have size reduc-
tion of gold particles. It is then supposed that the size distribution of gold particles is conserved and the crushed sand has the same 
size distribution under –2.5 mm as the one of the table concentrate. In that case, the variance of the FSE of the secondary sampling 
has to be added to the previous one. As it is of the same order of magnitude than the primary one, the advantage of screening is 
largely demonstrated. 

After screening, the heterogeneity model is limited to the 10 last families of Table 1. Their proportion in the scalped sample is: 
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If the passing material is divided before concentration, the secondary sampling generates a FSE for which the variance is given by 
the equation (1) using the new heterogeneity model and the mass of passing material as lot mass. For the cases treated here, when 
dividing by 2, the variance is of the same order, but when dividing by 4, it is generally larger than the one of the primary sampling. If the 
sample is divided between two screening stages, intermediate FSE has to be considered for the proportion of undersize7. 

Sample concentration 
After screening and division (if required), the sample is passing through a shaking table to concentrate gold. The gold content is then 
measured size by size for the concentrate and globally for the tailings. The separation cannot be considered as perfect and fine gold 
particles are reporting to the table tailings. As the shaking table is operating more to maximize the recovery than for concentration, 
only very fine gold particles, less than 63 µm, can be rejected with tailings as it has been observed in some concentration plants12. In 
absence of gold assaying size by size for the tailings, this observation is used as assumption in the current case. The separation is 
then considered as perfect for gold particles coarser than 63 µm and there are only –63 µm gold particles in the tailings. The other 
particles reporting to concentrate are heavy minerals (mainly black minerals) which can be gold bearing minerals. Nevertheless, in such 
alluvial placer, the proportion of locked gold is very small compared to the free gold. This effect can then be neglected. Some coarse 
particles of sand are also reporting to the concentrate. For simplification, we consider a mean density for all minerals other than pure 
gold. As the size distribution has not been measured for the tailings, it is supposed to be identical to the one of the concentrate. 
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The heterogeneity model used for the concentrate is then limited to the 10 last families of Table 1. The one of the tailings is limited to 
the 5 last sand families and the –63 µm gold family. After drying, the concentrate can be divided before pulverisation, depending on 
the quantity of concentrate and the laboratory milling capacity. Similarly, the tailings are drained, then quartered to reduce the quantity 
to be dried and then divided before pulverisation. 

Concentrate and tailings analysis 
Pulverisation of concentrate and tailings are done up to have 100% passing 125 µm. If coarse gold appears retained by the sieve, then 
a Screen Fire Assay (SFA) is performed: Fire Assay (FA) of the oversize up to extinction, division of the passing material to obtain 50 g 
of analytical sample for FA. If there is no retained material in the sieve, a simple FA is performed. The advantage of SFA in case of 
presence of coarse gold has been proved and discussed in a previous paper13. To simplify the calculation, only a simple FA is presently 
considered. To take into account the fact that gold particles have difficulties to be ground, all gold particles larger than 125 µm in the 
concentrate are supposed to report into the 63–125 µm size class during pulverisation. The size distribution of pulverised sand is the 
one of the –125 µm fraction of the concentrate. The similar assumption is done for the tailings, all the gold particles remaining in the –
63 µm size class. 

The heterogeneity model used for the pulverised products is limited to the 4 last families of Table 1. As shown in Table 3, it is difficult 
to have low FSE variances for tailings sampling before and after pulverisation. The FSE component of the variance for the reconstituted 
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The variance of the measurement error of the gold content in the primary sample is then given by the rule of error propagation: 
( ) ( ) ( )2 2 2

Sa t as s s< <= +  (3) 

providing the measurements of the proportion t
<
 and the gold content at

<
 have a small variance and are independent. It is true con-

cerning the analytical error even though weighing (to obtain proportion) and subsequent processing (to obtain gold content) are per-
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from the primary sample. If one suppose all the sample can be analysed, the gold content is then calculated by the ratio between the 
measured mass of gold and the mass of sample. As in first approximation the mass of sample is considered as a constant, the vari-
ance of the gold content is the variance of the mass of gold in the sample. As this mass of gold is the same in the primary sample and 
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has to be added to the previous one. As it is of the same order of magnitude than the primary one, the advantage of screening is 
largely demonstrated. 
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If the passing material is divided before concentration, the secondary sampling generates a FSE for which the variance is given by 
the equation (1) using the new heterogeneity model and the mass of passing material as lot mass. For the cases treated here, when 
dividing by 2, the variance is of the same order, but when dividing by 4, it is generally larger than the one of the primary sampling. If the 
sample is divided between two screening stages, intermediate FSE has to be considered for the proportion of undersize7. 

Sample concentration 
After screening and division (if required), the sample is passing through a shaking table to concentrate gold. The gold content is then 
measured size by size for the concentrate and globally for the tailings. The separation cannot be considered as perfect and fine gold 
particles are reporting to the table tailings. As the shaking table is operating more to maximize the recovery than for concentration, 
only very fine gold particles, less than 63 µm, can be rejected with tailings as it has been observed in some concentration plants12. In 
absence of gold assaying size by size for the tailings, this observation is used as assumption in the current case. The separation is 
then considered as perfect for gold particles coarser than 63 µm and there are only –63 µm gold particles in the tailings. The other 
particles reporting to concentrate are heavy minerals (mainly black minerals) which can be gold bearing minerals. Nevertheless, in such 
alluvial placer, the proportion of locked gold is very small compared to the free gold. This effect can then be neglected. Some coarse 
particles of sand are also reporting to the concentrate. For simplification, we consider a mean density for all minerals other than pure 
gold. As the size distribution has not been measured for the tailings, it is supposed to be identical to the one of the concentrate. 

If Y
c
 is the mass proportion of the secondary sample recovered into the concentrate, and a

c
 and a

t
 the gold content in the concen-

trate and in the tailings respectively, the content in the secondary sample is a
<
 = Y

c
a

c
 + (1 – Y

c
)a

t
. Y

c
 being a constant regarding sam-

pling error (it is a measurement with an analysis error given by weighing accuracy but negligible compared to the sampling errors), the 
variance of the sampling error is given by 

( ) ( )
( )

( )
22

2 2 21 c tc c
c t

Y aY a
a a a

a a
s s s<

< <

æ öæ ö - ÷÷ çç ÷÷ ç= ç + ÷÷ çç ÷÷÷ ÷ç çè ø è ø
 (4) 

The heterogeneity model used for the concentrate is then limited to the 10 last families of Table 1. The one of the tailings is limited to 
the 5 last sand families and the –63 µm gold family. After drying, the concentrate can be divided before pulverisation, depending on 
the quantity of concentrate and the laboratory milling capacity. Similarly, the tailings are drained, then quartered to reduce the quantity 
to be dried and then divided before pulverisation. 

Concentrate and tailings analysis 
Pulverisation of concentrate and tailings are done up to have 100% passing 125 µm. If coarse gold appears retained by the sieve, then 
a Screen Fire Assay (SFA) is performed: Fire Assay (FA) of the oversize up to extinction, division of the passing material to obtain 50 g 
of analytical sample for FA. If there is no retained material in the sieve, a simple FA is performed. The advantage of SFA in case of 
presence of coarse gold has been proved and discussed in a previous paper13. To simplify the calculation, only a simple FA is presently 
considered. To take into account the fact that gold particles have difficulties to be ground, all gold particles larger than 125 µm in the 
concentrate are supposed to report into the 63–125 µm size class during pulverisation. The size distribution of pulverised sand is the 
one of the –125 µm fraction of the concentrate. The similar assumption is done for the tailings, all the gold particles remaining in the –
63 µm size class. 

The heterogeneity model used for the pulverised products is limited to the 4 last families of Table 1. As shown in Table 3, it is difficult 
to have low FSE variances for tailings sampling before and after pulverisation. The FSE component of the variance for the reconstituted 
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providing the measurements of the proportion t< and the gold con-
tent a< have a small variance and are independent. It is true con-
cerning the analytical error even though weighing (to obtain pro-
portion) and subsequent processing (to obtain gold content) are 
performed on the same passing material. The proportion of passing 
material and the gold content are both subject to FSE as meas-
ured from the primary sample. If one suppose all the sample can be 
analysed, the gold content is then calculated by the ratio between 
the measured mass of gold and the mass of sample. As in first 
approximation the mass of sample is considered as a constant, the 
variance of the gold content is the variance of the mass of gold in 
the sample. As this mass of gold is the same in the primary sample 
and in the screened primary sample, the variance of the FSE is well 
the one calculated by equation (2).

Table 2. FSE for primary sampling of various sluice rejection heaps.

Sample
Sample 

mass (kg)
Proportion of 

–25 mm
Proportion of 

–2.5 mm
Proportion of 
gold + 250 µm

Proportion of 
gold –63 µm

Variance 
(×10–6)

Error
Proportion 

of IHgolg
a

#1 220 83% 49% 61.8% 4.8% 738 5.4% 83%

#2 209 89% 50% 0.7% 93.6% 52 1.5% 14%

#3 220 92% 44% 0% 71.8% 52 1.5% 33%

#4 242 95% 49% 6.6% 77.5% 59 1.5% 65%

#5 300 67% 21% 21.3% 18.3% 1084 6.5% 86%

#6 180 99% 65% 10.9% 74.1% 242 3.1% 96%

#7 190 99% 67% 6.4% 66.4% 294 3.1% 98%

#8 220 99% 55% 13.7% 50.0% 431 4.1% 98%

#9 200 98% 78% 17.6% 52.8% 1615 7.9% 99%

#10 240 97% 56% 15.7% 15.5% 425 4.1% 97%

#11 200 88% 68% 5.8% 73.8% 452 4.2% 90%

#12 15 100% 57% 19.3% 3.6% 1293 7.1% 99%

#13 40 81% 37% 17.3% 32.2% 9294 18.9% 96%
aProportion of the first term of the sum of equation (2) in the sum of the constant factor of constitution heterogeneity IH.
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Considering a reduction of 50% of the sample mass after sieving, 
an alternative procedure can be done with crushing of the primary 
sample up to –2.5 mm followed by a division to produce a second-
ary sample. During crushing, there is no chance to have size reduc-
tion of gold particles. It is then supposed that the size distribution 
of gold particles is conserved and the crushed sand has the same 
size distribution under –2.5 mm as the one of the table concentrate. 
In that case, the variance of the FSE of the secondary sampling has 
to be added to the previous one. As it is of the same order of mag-
nitude than the primary one, the advantage of screening is largely 
demonstrated.

After screening, the heterogeneity model is limited to the 10 last 
families of Table 1. Their proportion in the scalped sample is:
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The variance of the measurement error of the gold content in the primary sample is then given by the rule of error propagation: 
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from the primary sample. If one suppose all the sample can be analysed, the gold content is then calculated by the ratio between the 
measured mass of gold and the mass of sample. As in first approximation the mass of sample is considered as a constant, the vari-
ance of the gold content is the variance of the mass of gold in the sample. As this mass of gold is the same in the primary sample and 
in the screened primary sample, the variance of the FSE is well the one calculated by equation (2). 

Considering a reduction of 50% of the sample mass after sieving, an alternative procedure can be done with crushing of the primary 
sample up to –2.5 mm followed by a division to produce a secondary sample. During crushing, there is no chance to have size reduc-
tion of gold particles. It is then supposed that the size distribution of gold particles is conserved and the crushed sand has the same 
size distribution under –2.5 mm as the one of the table concentrate. In that case, the variance of the FSE of the secondary sampling 
has to be added to the previous one. As it is of the same order of magnitude than the primary one, the advantage of screening is 
largely demonstrated. 

After screening, the heterogeneity model is limited to the 10 last families of Table 1. Their proportion in the scalped sample is: 
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If the passing material is divided before concentration, the secondary sampling generates a FSE for which the variance is given by 
the equation (1) using the new heterogeneity model and the mass of passing material as lot mass. For the cases treated here, when 
dividing by 2, the variance is of the same order, but when dividing by 4, it is generally larger than the one of the primary sampling. If the 
sample is divided between two screening stages, intermediate FSE has to be considered for the proportion of undersize7. 

Sample concentration 
After screening and division (if required), the sample is passing through a shaking table to concentrate gold. The gold content is then 
measured size by size for the concentrate and globally for the tailings. The separation cannot be considered as perfect and fine gold 
particles are reporting to the table tailings. As the shaking table is operating more to maximize the recovery than for concentration, 
only very fine gold particles, less than 63 µm, can be rejected with tailings as it has been observed in some concentration plants12. In 
absence of gold assaying size by size for the tailings, this observation is used as assumption in the current case. The separation is 
then considered as perfect for gold particles coarser than 63 µm and there are only –63 µm gold particles in the tailings. The other 
particles reporting to concentrate are heavy minerals (mainly black minerals) which can be gold bearing minerals. Nevertheless, in such 
alluvial placer, the proportion of locked gold is very small compared to the free gold. This effect can then be neglected. Some coarse 
particles of sand are also reporting to the concentrate. For simplification, we consider a mean density for all minerals other than pure 
gold. As the size distribution has not been measured for the tailings, it is supposed to be identical to the one of the concentrate. 
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The heterogeneity model used for the concentrate is then limited to the 10 last families of Table 1. The one of the tailings is limited to 
the 5 last sand families and the –63 µm gold family. After drying, the concentrate can be divided before pulverisation, depending on 
the quantity of concentrate and the laboratory milling capacity. Similarly, the tailings are drained, then quartered to reduce the quantity 
to be dried and then divided before pulverisation. 

Concentrate and tailings analysis 
Pulverisation of concentrate and tailings are done up to have 100% passing 125 µm. If coarse gold appears retained by the sieve, then 
a Screen Fire Assay (SFA) is performed: Fire Assay (FA) of the oversize up to extinction, division of the passing material to obtain 50 g 
of analytical sample for FA. If there is no retained material in the sieve, a simple FA is performed. The advantage of SFA in case of 
presence of coarse gold has been proved and discussed in a previous paper13. To simplify the calculation, only a simple FA is presently 
considered. To take into account the fact that gold particles have difficulties to be ground, all gold particles larger than 125 µm in the 
concentrate are supposed to report into the 63–125 µm size class during pulverisation. The size distribution of pulverised sand is the 
one of the –125 µm fraction of the concentrate. The similar assumption is done for the tailings, all the gold particles remaining in the –
63 µm size class. 

The heterogeneity model used for the pulverised products is limited to the 4 last families of Table 1. As shown in Table 3, it is difficult 
to have low FSE variances for tailings sampling before and after pulverisation. The FSE component of the variance for the reconstituted 

If the passing material is divided before concentration, the sec-
ondary sampling generates a FSE for which the variance is given by 
the equation (1) using the new heterogeneity model and the mass 
of passing material as lot mass. For the cases treated here, when 
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Sample concentration
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through a shaking table to concentrate gold. The gold content is 
then measured size by size for the concentrate and globally for 
the tailings. The separation cannot be considered as perfect and 
fine gold particles are reporting to the table tailings. As the shaking 
table is operating more to maximize the recovery than for con-
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The separation is then considered as perfect for gold particles 
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the tailings. The other particles reporting to concentrate are heavy 
minerals (mainly black minerals) which can be gold bearing miner-
als. Nevertheless, in such alluvial placer, the proportion of locked 
gold is very small compared to the free gold. This effect can then 
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the concentrate. For simplification, we consider a mean density for 
all minerals other than pure gold. As the size distribution has not 
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one of the concentrate.
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The variance of the measurement error of the gold content in the primary sample is then given by the rule of error propagation: 
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cerning the analytical error even though weighing (to obtain proportion) and subsequent processing (to obtain gold content) are per-
formed on the same passing material. The proportion of passing material and the gold content are both subject to FSE as measured 
from the primary sample. If one suppose all the sample can be analysed, the gold content is then calculated by the ratio between the 
measured mass of gold and the mass of sample. As in first approximation the mass of sample is considered as a constant, the vari-
ance of the gold content is the variance of the mass of gold in the sample. As this mass of gold is the same in the primary sample and 
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The heterogeneity model used for the concentrate is then limited to the 10 last families of Table 1. The one of the tailings is limited to 
the 5 last sand families and the –63 µm gold family. After drying, the concentrate can be divided before pulverisation, depending on 
the quantity of concentrate and the laboratory milling capacity. Similarly, the tailings are drained, then quartered to reduce the quantity 
to be dried and then divided before pulverisation. 

Concentrate and tailings analysis 
Pulverisation of concentrate and tailings are done up to have 100% passing 125 µm. If coarse gold appears retained by the sieve, then 
a Screen Fire Assay (SFA) is performed: Fire Assay (FA) of the oversize up to extinction, division of the passing material to obtain 50 g 
of analytical sample for FA. If there is no retained material in the sieve, a simple FA is performed. The advantage of SFA in case of 
presence of coarse gold has been proved and discussed in a previous paper13. To simplify the calculation, only a simple FA is presently 
considered. To take into account the fact that gold particles have difficulties to be ground, all gold particles larger than 125 µm in the 
concentrate are supposed to report into the 63–125 µm size class during pulverisation. The size distribution of pulverised sand is the 
one of the –125 µm fraction of the concentrate. The similar assumption is done for the tailings, all the gold particles remaining in the –
63 µm size class. 

The heterogeneity model used for the pulverised products is limited to the 4 last families of Table 1. As shown in Table 3, it is difficult 
to have low FSE variances for tailings sampling before and after pulverisation. The FSE component of the variance for the reconstituted 
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the 5 last sand families and the –63 µm gold family. After drying, the 
concentrate can be divided before pulverisation, depending on the 
quantity of concentrate and the laboratory milling capacity. Simi-
larly, the tailings are drained, then quartered to reduce the quantity 
to be dried and then divided before pulverisation.

Concentrate and tailings analysis
Pulverisation of concentrate and tailings are done up to have 100% 
passing 125 µm. If coarse gold appears retained by the sieve, then 
a Screen Fire Assay (SFA) is performed: Fire Assay (FA) of the over-
size up to extinction, division of the passing material to obtain 50 g 
of analytical sample for FA. If there is no retained material in the 
sieve, a simple FA is performed. The advantage of SFA in case of 
presence of coarse gold has been proved and discussed in a previ-
ous paper13. To simplify the calculation, only a simple FA is pres-
ently considered. To take into account the fact that gold particles 
have difficulties to be ground, all gold particles larger than 125 µm 
in the concentrate are supposed to report into the 63–125 µm size 
class during pulverisation. The size distribution of pulverised sand 
is the one of the –125 µm fraction of the concentrate. The similar 
assumption is done for the tailings, all the gold particles remaining 
in the –63 µm size class.

The heterogeneity model used for the pulverised products is lim-
ited to the 4 last families of Table 1. As shown in Table 3, it is difficult 
to have low FSE variances for tailings sampling before and after pul-
verisation. The FSE component of the variance for the reconstituted 
content of the –2.5 mm material is calculated following the equa-
tion (4). It depends on the individual variances for concentrate and 
tailings assaying, but also on the gold split between concentrate 
and tailings and gold size distribution. For example, the bad level of 
confidence in the tailings assaying can have low effect as for sample 
#1 or dramatic consequences as for sample #5. In contrary, appar-
ent better level of confidence for concentrate and tailings assaying 
(sample #2 compared to #1) generates a larger error.

As for screening, the advantage of using concentration, com-
pared to a more conventional procedure using grinding and sam-
ple mass reduction, can be easily demonstrated by calculating the 
overall FSE variance for this method.

Proposed procedure for sampling and 
measurement of placer gold content
In conclusion to these calculations concerning various types of 
sluice rejection material, it appears difficult to propose a general 
procedure for sampling which can be applied whatever the size 
distribution of sand and, principally, the size distribution of gold. 
Nevertheless, it appears necessary to improve the last stages of the 
sampling procedure—the sampling of concentrate and tailings for 
assaying—in order to reduce the variance of the FSE components 
for the measurement of the gold content of the undersize fraction of 
the material. The use of SFA with a finer sieve (106 µm or 75 µm in 
place of 125 µm) seems absolutely necessary. In addition, the use 
of a more efficient concentrator, such as centrifugal concentrator, 
can reduce the proportion of gold in the tailings (then its impact on 
the overall error) as well as the quantity of concentrate allowing its 
entire pulverisation.

Determining the required mass of primary sample has to be con-
ducted by the size distribution of sand. It can be easily adjusted 
as the size and proportion of the coarsest particles can be visu-
ally estimated. The effect of the gold content and gold particle size 
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distribution is more difficult to appreciate before measurements. 
Only assumptions can be done at the light of what is known con-
cerning process generating the tailings. A mass of 200 kg seems 
sufficient when a grate has been used before sluicing and the mate-
rial is finer than 25 mm. If particles larger than 50 mm appear, it is 
preferable to increase the mass up to 500 kg. In that case, screen-
ing can be done with intermediate division of passing product.

Screening at 2.5 mm seems a good compromise between the 
maximum feed size to have a good efficiency of the concentration 
using shaking table and the difficulty to screen a large amount of 
material with finer sieves. Nevertheless, if the proportion of under-
size material is larger than 50%, screening can be performed at 
1 mm to reduce the quantity of material for concentration. The same 
1 mm screening has to be done to use centrifugal concentrator. 
The size class 1–2.5 mm has to be washed by panning to verify the 
absence of coarse gold. The passing material can be divided but 
the secondary sample for concentration has to be between 30 and 
60 kg. If coarse gold (larger than 500 µm) is suspected, this amount 
can be increased.

As many mine sites are equipped with shaking table, this is pref-
erable. In this case, operating conditions have to maximize the 
recovery more than the concentration. The objective is to minimize 
the number of gold particles reporting to tailings. If the quantity of 
concentrate is too large, it can be reprocessed, then favouring the 
concentration. The second tailings have to be assayed separately. 

Concentration operation has to be carefully observed to detect the 
presence of coarse gold particles (+250 µm) and if fine gold parti-
cles are misclassified into the tailings.

The first tailings (as well as the second tailings in case of repro-
cessing of first concentrate) has to be screened at 1 mm and maybe 
at 500 µm if it can drastically reduce the mass to be analysed. The 
retained sand has to be washed by panning to verify the absence 
of coarse gold. Then the passing is divided and a second screen-
ing can be performed at 500 µm or 250 µm with similar treatment 
of retained sand. Last passing can be dried and divided to obtain 
between 1 and 2 kg for pulverisation at –106 µm. If gold particles are 
retained in the sieve, SFA is required. The passing powder is then 
divided to take 30 to 50 g for FA.

The concentrate (the second one in case of reprocessing of first 
concentrate) has to be screened at 500 µm. The retained particles 
have to be washed by panning to verify the absence of coarse 
gold or bearing minerals. In case of presence, the pan product is 
weighed and assayed. The passing 500 µm is dried and divided 
only if its mass exceeds 4 kg. It is then pulverised at –106 µm for a 
SFA.

Conclusion
Estimating gold content in a low grade placer deposit, or in tail-
ings remaining after sluice treatment, makes it necessary to collect 
numerous large samples. As these samples cannot be processed 

Table 3. FSE for sub-sampling after screening and concentration of various sluice rejection heaps.

Sample #1 Sample #2 Sample #5 Sample #6

Sampling of screened material

Mass of –2.5 mm (kg) 109 104 61.6 117

Mass for concentration (kg) 27.1 25.9 15.4 29.3

Variance (×10–6) 1840 21 2800 698

Sampling of concentrate

Mass of concentrate (kg) 0.60 0.31 1.32 2.4

Mass for pulverisation (kg) 0.60 0.31 1 1

Variance (×10–6) 0 0 1610 2470

Sampling for concentrate FAa

Variance (×10–6) 988 80 8840 4460

Sampling of tailings

Mass of tailings (kg) 26.5 25.6 14.1 27.0

Mass for pulverisation (kg) 1 1 1 1

Variance (×10–6) 36100 47100 52700 33600

Sampling for tailings FAa

Variance (×10–6) 368000 16700 171000 92400

FSE of equation (4)

Variance (×10–6) 5710 46860 287000 31200

Overall FSE varianceb

Variance (×10–6) 8290 46930 291000 32200

Error (95% confidence) 17.9% 42.5% 106% 35.2%
aThe mass of sample for FA is 50 g.
bIncludes the variance of the FSE of the primary sampling as given in Table 2.
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in toto by grinding, it is necessary to use concentration stages (by 
screening or gravity concentration) to be able to reduce the quantity 
of material for final analysis.

The measurements performed during this study were with the 
objective of placer deposit treatment or tailings retreatment. The 
obtained material characteristics have been used to build heteroge-
neity models in order to calculate the components of the variance of 
the overall fundamental sampling error. The results showed, a pos-
teriori, a relatively low accuracy for the estimate of the global gold 
content. Considering the local conditions of work, this level appears 
satisfactory and the reprocessing performed after this study gave 
the expected gold recovery. Nevertheless, at the light of the results 
of this study, an enhanced procedure is proposed. It has now to 
be verified and the variance of the overall measurement quantified.
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T
he general principles for safety and nutritional evaluation 
of foods and feed and potential health risks associated 
with hazardous compounds have been developed by FAO 
and WHO1 and further elaborated in the EU funded project 

Safe Foods, where specific attention was given to a coherent scien-
tific analysis of health and environmental risk-benefits and impacts 
on economics, social and ethical aspects2. Nevertheless, the crucial 
role that sampling has in foods/feed safety assessment has never 
been explicitly recognized. High quality sampling should always be 
applied to ensure the use of adequate and representative samples 
as test materials for all the steps of food/feed safety assessment: 
hazard identification, toxicological and nutritional characterization of 
identified hazards, as well as estimation of quantitative and reliable 
exposure levels of foods/feed or related compounds of concern 
for humans and animals3. The different types of substances under 
study which are present in food/feed matrices and commodities, 
raw or semi- processed, pose both general and specific challenges 
to the development of appropriate sampling strategies and ana-
lytical detection methods. Although it is well recognized that both 
sampling and analytical errors affect the reliability of any final risk 
estimation, traditionally much more attention has been devoted to 
the development and improvement of analytical methods, as com-
pared to the development of appropriate sampling plans. But the 
reality is that analytical results are of low or no value, no matter the 
quality of the method used, if the sampling process is not repre-
sentative of the entire field-to-aliquot pathway.

The Theory of Sampling (TOS) has developed over the last six 
decades a complete theory of heterogeneity, sampling procedures 
and sampling equipment assessment, the importance of which 
was first recognized in the mining and geological sectors, but since 
transgressed nearly all boundaries between science, technology 
and industry4,5. Over the course of the last 10-15 years the univer-
sality of TOS principles has been proven thoroughly, demonstrating 
that all sampling processes, irrespective of the nature of their target 
lots, need to be structurally correct (unbiased) in order to ensure a 
sufficient degree of accuracy and precision6. This is true also when 
assessing foods and feed safety, including food/feed contaminants, 
additives, naturally occurring toxins/ anti-nutrients, or contaminat-
ing micro-organisms, and whole foods/feed derived from geneti-
cally modified plants/animals.

More specifically, TOS allows estimating the variability remaining 
after all sources of sampling bias have been removed, i.e. the vari-
ability intrinsic to the specific material under investigation for both 
stationary as well as dynamic lots. From a food and feed safety 
perspective, this constitutes the level of unavoidable risk associ-
ated with any given survey. No other sampling framework allows 
objective quantification of the risk as a direct function of the 

specific heterogeneity properties of the test material. On the con-
trary: all other sampling frameworks rely on specific distributional 
assumptions , do not characterize heterogeneity patterns stem-
ming from the specific properties of the test material, and do not 
include an estimation of the risk associated with sampling surveys7. 
For these reasons we consider that only TOS provides a complete 
framework to ensure accuracy and precision of all sampling steps 
involved in any given scenario, starting from the primary sampling 
all the way to the subsequent secondary sampling steps involved 
in the field-to-fork continuum necessary to monitor foods and feed 
safety3.

Therefore we propose to explicitly recognize the central role of 
sampling in foods and feed safety assessment and to integrate 
TOS in the well-established FAO/WHO risk assessment approach 
in order to guarantee a transparent and correct frame for the safety 
assessment of foods and feed and the many steps of the subse-
quent decision making process. A key example of successful imple-
mentation of this approach regarding GMO detection and quantifi-
cation was published recently8,9,10.
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Sampling for mycotoxins in feed — heterogeneity 
characterization
Claas Wagner
Sampling Consultant, www.wagnerconsultants.com E-mail: cw@wagnerconsultants.com

The presence of mycotoxins, in particular aflatoxin B1, can cause significant health problems as well as severe societal economic 
losses, and is therefore regulated with respect to maximum acceptable concentration in various feed- and foodstuffs. International 
regulatory authorities have begun to recognize the importance of representative sampling, but sampling guidelines are only partly 
in compliance with the Theory of Sampling (TOS). In particular, practical guidance regarding sampling, including correct design and 
operation of sampling devices, including explanation on how to develop sufficient sampling protocols are lacking in current guidelines. 
These are critical practicalities of main importance, especially when dealing with trace concentrations and/or concentrations that are 
irregularly distributed - as is the case for mycotoxins. Furthermore, heterogeneity characterization, which is a necessary requirement 
to be able to develop valid sampling protocols or validation assessments of existing sampling operations, is currently not mentioned 
in the existing guidelines. The present paper focuses on heterogeneity characterization with respect to sampling of mycotoxins for 1-D 
and 3-D feed lots (a full analysis of all critical practicalities in sampling mycotoxins is published elsewhere). Structural guidelines for 
correctly designing experimental heterogeneity characterizations are presented, allowing evaluation of sampling representativeness 
and determination of optimal number of increments per composite sample.

Background

M
ycotoxins are toxic secondary metabolites of moulds, 
which can occur during plant growth and during 
storage and processing. Among various mycotoxin 
types, aflatoxins are of major concern due to potential 

impact on human and animal health. The food and feed industry 
has set a special focus on aflatoxin B1, which occurs most fre-
quently and is the most toxic aflatoxin, since it has been directly 
correlated to adverse health affects.1 Mycotoxins can occur within 
a concentration range of µg/kg to mg/kg. The Food and Agricul-
ture Organization of the United Nations (FAO) has estimated that 
approximately 25% of the world’s agricultural production is con-
taminated with mycotoxins, resulting in significant economic loss 
due to their impact on human health, trade and animal productivity.2 
Due to the fact that the presence of mycotoxins in food- and feed-
stuffs cannot be avoided, valid testing is demanded, and therefore, 
sampling methods for raw and processed materials are a critical 
necessity. The U.S. Department of Agriculture (USDA) and its Grain 
Inspection, Packers & Stockyards Administration (GIPSA) has esti-
mated that non-representative sampling accounts for nearly 90% 
of the error associated with aflatoxin detection,3 mainly due to non-
random spatial distribution throughout materials when occurring in 
the trace concentration range (mg/kg or ug/kg).

In the following critical practicalities with focus on heterogene-
ity characterization required for developing sampling protocols for 
determining mycotoxins in feed (equally applicable to food) are pre-
sented. Results are substantiated with data from field trials. The 
real-world data used here have been redacted and serve specifi-
cally to strengthen the general arguments and not to represent spe-
cific results of the studied field trials, which are proprietary.

Critical sampling practicalities
The reason for all sampling errors is lot heterogeneity, causing 
material to vary irregularly throughout the lot on spatial but also a 
compositional dimensions and scales. Increasing the number of 
correctly extracted increments in a composite sample is the most 

effective way to decrease primary sampling errors, and will lead to 
results, which are closer to the true lot value. The difficultly is to 
determine the ‘optimal number of increments’, since this depends 
on heterogeneity, the analyte concentration level, and the size and 
lot geometry. In practice, sampling is often a compromise between 
the desired levels of accuracy/precision and labour/cost deemed 
necessary. The only criterion that must never be up for negotiation 
is representativity, which needs to be based on sampling correct-
ness. In particular when dealing with trace concentrations, or highly 
heterogeneous distributions, as it is the case for mycotoxins, the 
sampling variance is by far the dominating source of uncertainty, 
due to the characteristically skewed, polymodal, highly irregular 
‘distribution’ of these analytes.4,5

In the following tools for determining optimal number of incre-
ments and minimizing errors at each sampling and mass reduction 
step are presented. Examples are based on a real-world field trial 
performed on various materials used as animal feedstuff for deter-
mining aflatoxin B1 levels within each feed component, as well as 
within the total feed mixture (also termed ‘total mixed ration’, TMR).

Sampling stages
In the present field trials, all total mixed ration components are stored 
in piles and could only be sampled once unloaded (3-D sampling 
situation). The feed components are mixed in a predetermined ratio 
to form the total mixed ration (TMR), which is spread out in elon-
gated feed bunks (1-D sampling situation). For each feed compo-
nent, as well as the TMR, an individual sampling strategy determin-
ing the optimal number of increments has been developed, based 
on preceding material heterogeneity characterizations. All individual 
feed components have been analysed for aflatoxin B1 including 
pre-set control variables (protein, fibre and moisture). Samples col-
lected from the feed mixture (TMR) have also been analysed for the 
same analytes, allowing a comparison of the TMR results with the 
analytical results of the individual TMR components.

For developing an appropriate aflatoxin sampling plan the follow-
ing steps have been undertaken:

doi: 10.1255/tosf.53
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 ■ Assessment of optimal sampling location (preferentially sampling 
in a 1-D sampling situation)

 ■ Selection of appropriate sampling devices and mass reduction 
procedures for each material and lot type

 ■ Design of experiments for characterizing material heterogeneity
 ■ Determination of optimal sampling frequency based on empirical 
experimental outcomes
As stated above, only the total mixed ration can be considered as 

a 1-D sampling situation, while all individual feed components are 
piled up in 3-D lots, which were regrettably not able to be sampled 
during unloading.

Primary sampling
Before presenting the experimental design for the required mate-
rial heterogeneity characterizations, the sampling tools used for the 
elongated TMR, the individual TMR components, as well as applied 
mass reduction procedures are presented.

The total mixed ration is pre-mixed and spread out in elongated 
feed bunks. Such a sampling situation (one-dimensional lot) allows 
extraction of increments covering the entire depth and width of the 
material, while a fully comprehensive spatial distribution of the incre-
ments is covered in the longitudinal direction of the lot (distance in-
between increments as well as total number of increment is based 
on experimental design). In order to correctly delineate and extract 
the increments a ‘sampling box’ has been designed, suitable for the 
relevant lot dimensions and material characteristics, as depicted in 
Figure 1.

For individual TMR components (three-dimensional lots), the use 
of sampling spears is claimed to allow the best accessibility for all 
lot dimensions. Various types of sampling spears exist in the mar-
ket; but they are seldom designed in compliance with TOS. The 
most important aspects with respect to sampling spear design are 
its length, width, aperture positions and opening width, as well as 
the closing mechanism. In the optimal case the length of the sam-
pling spear should cover the entire depth of the lot, which allows 
insertion of the sampling spear vertically at every position within 
the lot (as indicated by the arrows in figure 2, left side). However, 
due to the fact that some of the TMR component piles exceeded 
the maximum available length of sampling spears, positioning and 
inserting direction were carefully considered. On the right hand side 
of figure 2, a pile is depicted that exceeds the length of the sam-
pling spear. In order to cover all lot dimensions, i.e. also the lower 
and bottom parts of the lot at its highest level (row 3), the sampling 
spear was inserted horizontally in row 2 at the lowest accessible 
inserting point. It is emphasized that this spear sampling procedure 
is a result of a compromise based on the factual situation that the 
individual TMR components could not be sampled during unloading 
(1-D sampling situation). Muzzio et al. have published a particularly 
illuminating expose of the deficiencies in spear sampling for pow-
ders and granular mixtures.6

Mass reduction
Correct mass reduction procedures needs to be applied or sam-
pling errors will adversely impact the secondary, tertiary etc. 
sampling stages and inflate the total measurement uncertainty.7 
Petersen et al. have performed an extensive study on various 

Figure 1. TMR ‘sampling box’ covering entire depth and width of target 
material, which is spread out in the longitudinal (horizontal) direction.

Figure 2. Illustrating stratified composite sampling of non-equal height 3-D storage piles. Sampling spear length versus pile height – spear inserting 
directions .
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available mass reduction procedures and have rated them accord-
ing to their representativeness, with the conclusion that only riffle 
splitters and rotational splitters allow correct mass reduction.8. For 
the majority of the TMR components riffle splitters with appropri-
ate chute opening widths have been used, while for some fibrous, 
very light and wet materials the primary samples have been mass 
reduced using a circular cutting device, dividing the primary sam-
ple in eight equal sectorial cuts (increments). Four of the eight cuts 
have been used in the secondary sampling stage, while the other 
four cuts were discarded. All primary samples were mass reduced 
and further processed in the laboratory, including comminution and 
mass reduction to analytical sample size. Also in the final analyti-
cal mass reduction stage riffle splitters and bed-blending technique 
have been used to avoid sampling errors, especially important since 
dealing with a trace concentration range of aflatoxins, ibid.

Design of experiments for characterizing 
material heterogeneity
Following the proposed outline for developing an appropriate afla-
toxin sampling protocol, the steps are (1) assessment and decision 
on optimal sampling location (3D vs. 1D), (2) selection of appropriate 
sampling devices and mass reduction procedures, (3) the design of 
experiments for material heterogeneity characterisation in order to 
determine (4) the optimal sampling frequency for each material.

Depending on the lot type, the sampling variance associated 
with the final sampling protocol and the heterogeneity distribution 
of the targeted analyte (e.g. aflatoxin B1) can be quantified using 
two different procedures: the replication experiment (stationary 3-D 
decision units) and variographic analysis (dynamic or stationary 1-D 
decision units). These assessment methods can also be applied to 
incorrect sampling procedures, for which the result would reflect 
the material heterogeneity plus the significantly inflated sampling 
errors. For the present field trials, sampling errors have been mini-
mized by selection of appropriate increment sampling location and 
procedures allowing to characterize the sampling variability of the 
heterogeneity of the target analyte in the lot; based on that the opti-
mal number of increments for the final composite sample has been 
determined.

The replication experiment was applied to all TMR components 
(3-D sampling situations), while a variographic experiment was 
applied to the sampling variance for the TMR in a 1-D sampling 
situation.

For the replication experiments ten primary samples were col-
lected from every TMR component, each time repeating the full 
lot-to-test portion sampling pathway in completely identical fash-
ion, DS 3077 (2013). Each primary sample consists of 30-40 incre-
ments depending on the lot dimensions. The minimum requirement 
is that the entire spatial geometry of the target material is fully cov-
ered by the sampling tool and the selected number of increments. It 
is important that all sampling operations, particularly at the primary 
sampling stage, are fully realistic during the replication experiment, 
meaning for example that the replicates should not be extracted at 
the exact same locations. In the described experimental field trial, 
different sampling operators collected the replicate primary sam-
ples in order to reflect all possible variation also that caused by 
individual differences regarding operating the sampling and mass 
reduction devices. For each replication experiment, the ‘relative 
sampling variation (RSV)’, the statistical relative ‘coefficient of vari-
ation (CV%)’, has been calculated, giving a measure of the specific 

heterogeneity of the target material (e.g. aflatoxin distribution), as 
expressed by the specific sampling procedure applied.

Heterogeneity characterization of the TMR is based on a vari-
ographic experiment, for which 60 equally spaced increments have 
been extracted from the feeding lane using the described TMR 
sampling procedure (see section 2.2). The main objective of the 
variographic experiment is similar to the replication experiment, 
meaning to determine the RSV (here called RSV1-dim). Addition-
ally, the influence of different sampling rates (i.e. distance between 
extracted increments) has been evaluated, allowing determination 
of the optimal sampling frequency or the optimal sampling interval.

Results and discussion of heterogeneity 
characterizations
The following section explains how results gained from heterogene-
ity characterization experiments have been interpreted to correctly 
determine aflatoxin levels in feed. The results have been redacted, 
rather serving to explain general features and interpretation pos-
sibilities than to present the actual values of the studied field trial, 
which are proprietary.

Results of individual TMR components
In addition to aflatoxin B1, all materials have also been analysed for 
protein, dietary fibre and moisture content, which serve as control 
variables to evaluate the applied sampling methods. For TMR com-
ponents containing no detectable aflatoxin, protein, dietary fibre 
and moisture are used as control variables to determine required 
sampling frequency for reflecting inherent material heterogeneity.

The replication experiments used for characterizing 3-D lots also 
allow comparison of the sampling variances originating at different 
sampling stages (i.e. primary sampling, secondary sampling, ter-
tiary sampling etc.). Figure 3 shows a result of the sampling vari-
ances in the different sampling stages for one of the TMR compo-
nents, protein content. For nearly all materials and analytes in the 
study, similar results established the primary sampling variance as 
completely dominating over the secondary and tertiary sampling 
variance. This also confirmed the correctness of the mass reduc-
tion procedures used.

In contrast to figure 3, figure 4 shows the sampling variance of 
dietary fibre for a different TMR component (proprietary), revealing 
that the sampling variance decreases from primary to secondary 
sampling stage, but actually increases in magnitude in the tertiary 
sampling stage. This latter is a clear indication that an incorrect 
sampling procedure was used at this stage. This example demon-
strates how a replication experiment allows detection of ‘hidden’ 

Figure 3. Typical example of comparison of sampling variances from 
different sampling stages. Dominance of primary sampling variance over 
secondary and tertiary sampling variance is the typical case.
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sampling errors. In this particular case, it was discovered that grab 
samples were extracted to gain the final test portion (despite the 
pre-designed, correct mass reduction steps), disobeying TOS’ 
principles of sampling correctness. After correction of this incorrect 
procedure (replacement by a bed-blending technique), the sam-
pling variance of the tertiary sampling stage decreased to a level 
below the secondary sampling variance, confirming reduction, or 
elimination of the incorrect mass reduction procedure.

The replication experiments of the field trial have also been 
used to quantify the heterogeneity of each TMR component, in 
particular with respect to the aflatoxin concentration. For all TMR 
components containing aflatoxin, the pertinent distributions are 
significantly skewed to the right; a characteristic of aflatoxin which 
has also been confirmed by various other studies.9,10 The relative 
sampling variation (RSV) confirms this observation, ranging from 
around 50% to above 300% for the analysed materials. Since sam-
pling errors have been minimized by means of the experimental 
design, the determined RSV values measure the total empirical 
sampling variance influenced by the aflatoxin heterogeneity of the 
target material. The RSV values for the control variables for all TMR 

components ranges between 2% and 15%, confirming that the 
comparatively high RSV values for materials containing aflatoxin 
is dominantly caused by the irregular, non-normal distribution of 
aflatoxin, rather than by incorrect sampling procedures. In order 
to lower the sampling variance  for aflatoxin (if required by quality 
specifications), the number of increments per composite sample 
would need to be increased.

Results of TMR mixture
The total mixed ration (mixture of all individual feed components) is 
the last point at which aflatoxins can be detected before being fed 
to the animals and potentially causing dangerous health effects. The 
high RSV values determined for the various TMR components with 
respect to aflatoxin B1 indicate that despite elimination of potential 
incorrect sampling errors, the overall uncertainty on aflatoxin con-
centration is still uncomfortably high. For the field trials a specific 
uncertainty level on aflatoxin level in the TMR was pre-set, requiring 
that the sampling method and sampling frequency guarantee this 
uncertainty level. A variographic analysis also allows determining 
the influence of different sampling rates on the overall uncertainty, 
which has also been assessed for the present field trial.

Figure 5 shows the variographic results of the control variables for 
the TMR, comparing the number of increments used for final com-
posite sample with the corresponding relative uncertainty incurred. 
The exact numerical values of the corresponding uncertainty are 
again not shown here due to confidentiality reasons.

Adding the variographic results for aflatoxin B1 to the same graph 
(see figure 6), it is obvious that the corresponding uncertainty for 
aflatoxin is dramatically higher (~10 times higher) compared to the 
control analytes, as also concluded from the assessment of the RSV 
values of the individual TMR components. The steepest decrease of 
uncertainty can be observed increasing the number of increments 
from one to two and from six to ten for the final composite sample. 
For this field trial the pre-set acceptable uncertainty level has been 
reached combining 10 increments to a final composite sample. In 

Figure 4. Typical example of comparison of sampling variances from dif-
ferent sampling stages, revealing an incorrect mass reduction procedure 
in the tertiary sampling stage (see text for details).

Figure 5. Variographic result for TMR (excluding aflatoxin) for a varying number of increments in a composite sample and the corresponding rel. total 
sampling-plus-analysis uncertainty. Values of y-axis have been removed due to confidentiality reasons without any loss of generality. Results are calculated 
for a systematic sampling mode.
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case a lower uncertainty level is required in the future, the appropri-
ate number of increments can be selected directly from these vari-
ographic results, allowing full detection and uncertainty control of 
the aflatoxin concentration present in the TMR.

Conclusions
Critical practicalities in feed sampling for mycotoxins have been 
presented, which are currently not considered in the relevant sam-
pling guidelines. The main problem for detection of mycotoxins, and 
especially aflatoxin in feed, is their decidedly irregular, non-normal 
distribution in the target feed/food materials. ‘Hot spot’ character-
istics and low trace concentration ranges and distributions make 
representative sampling critical for valid mycotoxins concentration 
control. Assessment of optimal sampling locations as well as selec-
tion of the appropriate sampling and mass reduction devices forms 
the basis for representative sampling. A primary consideration is to 
determine the optimal number of increments, since practical sam-
pling is a trade-off between labour/economic efforts and sample 
quality. When the empirical effect from increasing the number of 
increments is known, an educated decision can be made. Repli-
cation experiments for 3-D decision units and variographic analy-
sis for 1-D decision units serve as a basis for the mandatory initial 
material heterogeneity characterization; and can be used to derive 
an optimal number of increments. Examples of an industrial field 
trial were presented including heterogeneity characterizations for 
various total mixed ration components, as well as for mixed feed 
itself. Interpretation guidelines were given on how to assess applied 
sampling methods on the basis of these experimental designs and 
how to determine an optimal increment number and location. It 
was highlighted how variography can be used to compare various 
sampling strategies based on their corresponding total uncertainty 
levels. The developed criteria regarding sampling practicalities can 
be transferred to many other feed- and foodstuffs and other com-
modities with similar characteristics regarding trace concentrations 

or concentrations which are irregularly distributed throughout the 
target material.
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Sampling of cereals: assessment of alternative protocols 
for mycotoxin analysis
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Context and objectives

E
uropean directives1,2 for official controls of some con-
taminants in cereals such as mycotoxins set methods for 
sampling and analysis. The sampling protocols are strict 
and not very practical.

The composition of batches of cereals is rarely homogeneous 
and, in particular, certain contaminants like Fusarium-mycotoxins 
are distributed in a non-uniform way. Sampling is therefore a pro-
cedure which requires a great deal of care; it is necessary to get a 
guaranteed representative sample before initiating analysis.

For four years, studies have been undertaken by a French work-
ing group of associated storage organizations and suppliers of 
sampling devices in order to:

 ■ evaluate mycotoxin distributions in cereal batches,
 ■ compare different sampling protocols, including the European 
directive (reference method),

 ■ determine the relationship between the number of increments 
and the total analysis uncertainty, and

 ■ define an acceptable sample weight for laboratory analysis.

Evaluation of the distribution of mycotoxins
Three wheat batches of 500T were selected and 100 increments 
are taken from each. The DON content is determined on each sam-
ple by an Elisa test.

Nine maïze batches of 500T to 1500T are selected and 25-150 
elementary samples are taken. Fumonisins B1,B2 contents are 
measured for seven batches, Zearalenone content for three batches 
and DON content for one batch. Measurements are performed by 
chromatographic analyses3,4,5.

The levels of mycotoxins span a wide range of contamination that 
cover the regulatory thresholds in human food.

For wheat, grids were drawn on the top of the silos in order to 
ensure a consistent sampling plan across the whole batch. An 
example of static sampling plan is given Figure 1.

Each of 100 increments are homogenized and ground before 
being analysed. Mappings are developed based on the results; 
these all show strong heterogeneity in the silo. This heterogene-
ity results from the field variability (wheat heterogeneity study con-
ducted by ARVALIS over four years). The silo can be considered as 

a stack of plots. One level of the silo is made up from different field 
plots; the observed silo variability is similar to that noted as intra-plot 
field variability.

The level and the variability of DON contents are very different 
between silos. The higher the silo’s average content, the greater 
the dispersion.

Figure 1. Silo sampling plan.

doi: 10.1255/tosf.59

Table 1. Mycotoxin contamination levels

Fusariotoxin Cereal Number of silos Mean silo value (µg/kg)
Food regulatory 

threshold (µg/kg) 

DON
Common wheat 5 477 to 1988 1250

Maize 1 2633 1750

Fumonisins B1 + B2 Maize 7 534 to 7132 4000

Zearalenone Maize 3 139 to 683 350
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The trials on maize are conducted on flowing grain streams. An 
increment is taken every 20 to 25 tons. As for wheat, the disper-
sion of the samples is different depending on the silo. The results 
recorded for Fumonisins in seven silos show a relationship between 
average contents and variability.

The higher the mycotoxin contents, the higher the variability 
between samples. The heterogeneity of batches depends on the 
level of contamination. The distribution of mycotoxins is not uniform 
and in addition varies according to the content levels.

Comparison of alternative sampling protocols
The official control of mycotoxins is to be performed on an average 
sample of the grain batches. Three different protocols for arriving at 
this average sample are studied here:

 ■ the protocol corresponding to regulation n°401/2006 for fusari-
um toxins. This is considered as a reference.

 ■ the “normative” protocol drafted by the standardisation working 
group (EN ISO 24333 standard).This method is adapted to cer-
tain situations experienced by cereal operators (e.g. intervention 
scheme)

 ■ the “routine” protocol with a smaller number of increments than 
the two alternatives. This protocol is suited to the practical and 
economic conditions encountered on the daily controls by the 
cereal industry operators.
Two different grain sampling situations have been taken into 

account: flowing cereal streams (transfer from one silo to another 
one, discharge and Redler samplings or train discharge) and static 
batches (lorries, flat or vertical silos). A total of 22 tests were con-
ducted with a large range of devices. The number of increments for 
each type of situation is shown in Table 2.

The mycotoxin used for estimation is DON for wheat and maize.
The average DON content of the different batches of grains inves-

tigated ranges between 477 and 6,275µg/kg. These values frame 
the regulatory limits or recommendations well. Statistical analysis 
of the results (Student’s T-test) showed that there is no significant 
difference between the three protocols. It should be noted however 
that in the case of lorries, the routine protocol may sometimes mis-
judge the level of contamination (2 cases out of 14).

A comparison between sampling methods (manual vs automatic 
sampling) indicated there was no statistically significant difference.

Thus the alternative protocols (normative and routine) may be 
used for estimating the average mycotoxin content of a batch of 
grain instead of regulatory protocol. A sampling protocol based on 
a smaller but sufficient number of increments does not lead to an 
underestimation of the average mycotoxin content of the batch. Use 
of the regulatory protocol lead to higher, perhaps unjustified costs.

Estimation of the impact of a sampling protocol 
on accuracy

All test data were used to estimate the error of the estimation of 
the average mycotoxin content (accuracy).

The global variability observed, characterized by a coefficient of 
variation (CV), seems to be independent of the average content of 
the silo; it is about 45%.

This variability has two origins: the variability due to sampling 
errors and that due to the analytical error.

When producing a composite sample obtained from n incre-
ments, the sampling variability can be reduced if based on an 
increased number of individual increments (N.B. covering the full 
lot volume). By contrast, the analytical error component is constant.

Figure 2. Heterogeneity measured at 4 m depth (DON)

Figure 3. Heterogeneity measured at 6 m depth (DON)

Figure 4. Between-sample standard deviation variability vs. Fumonisin 
content.

Table 2. Number of increments in alternative sampling protocols

Reglementary 
protocol

Normative 
protocol

Routine 
protocol

Flowing – 500T 100 25 10

Static – lorry 100 10 3

Static - 500T 100 50 10
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Statistical simulations were carried out to define the degree of 
variability due to sampling over that of the chromatographic analy-
sis. For this, three hypothetical levels were considered for the ana-
lytical error (CV = 10%, CV = 20% and CV = 30%). The variability 
due to sampling error can be estimated in relation to the number 
of individual increments, see Figure 5. Here it can be observed that 
after a certain number of increments, the reduction of the over-
all uncertainty of the result generated by an additional increments 
becomes negligible.

Thus the benefit of a higher sampling intensity is low. By increas-
ing the number of increments from 10 to 100, the total accuracy 
improves only 8% for an analytical uncertainty equal to 40% (CV 
analytical = 20%). These models are applicable for wheat and 
maize contaminated with DON, Zearalenone and Fumonisins.

Influence of the reduction of the size of the 
laboratory sample
The regulation (EC) defines a total sample mass as the result of 
aggregation of all the increments taken from the lot or batch, 

specifying its weight to be 10 kg. But no specification is given for 
the laboratory sample mass. A mass of 10 kg is too big for the labo-
ratory and causes different problems associated with sub-sampling 
(division), grinding, storage.

Our trials consisted of reducing a 20 kg sample to ≈500g by using 
a conical divider, see Figure 6. All the split off fractions were ground 
and analysed by chromatographic methods. Two wheat samples 
were characterized for DON while two samples of maize were ana-
lysed for for Fumonisins B1, B2.

For this study, the averages obtained at each step of division 
(sub-sampling) are compared to the average calculated using all 
available data. This latter corresponds to the initial sample of 20 kg 
(called “reference”).

Two modes of interpretation of the results were applied:
 ■ comparing the means with the reference, using the critical differ-
ence (CD) as defined in the standard NF ISO 5725 – 6 6;

 ■ Assessing the uncertainty that characterizes the dispersion of 
values around the reference.
The critical difference was estimated from the standard deviation 

of repeatability specified in the standard used.

Figure 5. Uncertainty of estimated average mycotoxin content as a function of the number of increments from a 500 T lot.

Figure 6. Sub-sampling (division) flow chart.
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For DON, only one batch corresponding to a mass of 1kg for one 
sample showed a greater difference than the DC. For Fumonisins, 
some differences were observed for fractions less than or equal to 
2.5 kg.

An uncertainty, Ue, equal to 2 standard deviations of reproduc-
ibility from standards was assigned to each reference:

 ■ 39% for DON;
 ■ 34% for Fumonisin B1;
 ■ 39% for Fumonisin B2.
The averages obtained at each step of sub-sampling, for each 

sample and each level, are included in the intervals of uncertainty 
associated with references, except for the fraction of 1 kg for the 2 
maize samples.

The results of this study show that it is possible to suggest the 
laboratory sample mass as low as 3 kg without affecting the estima-
tion of the average level of contamination. It should be noted that it 
appears possible to reduce this mass to 1kg for the analyte DON.

Conclusions
These studies confirm the significantly high spatial variability of 
mycotoxin distributions.

They also showed that an average sample composed by a 
smaller number of increments than that stated in the regulation, 
may still representative of the target grain lot. The results regarding 
Fusarium-mycotoxin contents are similar. This means that it is pos-
sible to reduce the sampling intensity.

The results were included in the data that supported the drafting 
EN ISO 24333. This standard, published in 20097, has received 
positive feedback from users. During the review of regulation 
401/2006 in 20148, the EN ISO 24333 standard has been rec-
ognized to sample lots ≥500 T and thus reduces the resources 
devoted to sampling.

The mass of the sample sent to the laboratory for mycotoxin anal-
ysis is reduced from 10 to 3kg.
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The role of inference in food safety
Charles A. Ramsey
EnviroStat, Inc., PO Box 657, Windsor, CO 80550, USA chuck@envirostat.org

Concerned individuals have been trying to determine the safety of their food since ancient times. In ancient times, people themselves 
were the ultimate test of food safety, but as human evolution progressed, other techniques such as sensory perception and 
experimentation on animals were used. Today sophisticated analytical techniques and models are available to measure and predict 
food safety. These sophisticated techniques and models are dependent not only on the quality of samples that are collected and 
analyzed but also on how inferences are made from the analytical results to the food being sampled. Unfortunately, the Theory of 
Sampling and the role of inference have not been fully integrated into prediction of food safety.The basis for many “modern” food 
sampling protocols was developed prior to the development of the Theory of Sampling. Many of these sampling protocols were 
based on concepts of acceptance sampling procedures and associated inference. The Theory of Sampling enables the representative 
sampling of bulk materials and eliminates the reliance of acceptance sampling as the only method for the characterization of food 
and utilizes a different type of inference than for acceptance sampling. This contribution addresses the differences between inference 
for acceptance sampling and inference for the sampling of bulk materials and the implications of these differences for food safety.

Introduction

T
he testing of food for poison has occurred since ancient 
times. Until recently (and even some today), most food 
testing was performed by having someone taste the food 
and waiting to see if there were any ill effects. This process 

worked for fast acting poisons but was ineffective for slower act-
ing poisons. Through the use of sophisticated analytical techniques 
and better understanding of toxins, the use of humans to make 
inference regarding the safety of food has greatly diminished. How-
ever, it has been reported that several notable people, including 
Vladimir Putin1 and Barack Obama2 have recently used food tasters 
to ensure their food is not poisoned.

Food safety today is mostly dependent on manufacturing prac-
tices that focus on critical contamination points in the manufactur-
ing process. These are Hazard Analysis and Critical Control Points 
(HACCP) conceived in the 1960s when Pillsbury developed food for 
the first space flights3 and Good Manufacturing Practices (GMP). 
However, there is still a need for inspection of food to determine the 
adequacy of HACCP and GMP, assess contamination after man-
ufacturing, respond to outbreaks and a variety of other reasons. 
Since the amount of food produced is very large compared to the 
number of samples collected, it is critical that sampling protocols be 
very efficient. Because the consequences of contaminated food are 
extreme, it is also critical that inferences are correct and that correct 
decisions are made.

Inference is the process of estimating parameters of a Decision 
Unit4 based on analytical results of samples from the Decision Unit5. 
The most common parameter estimated is the true mean concentra-
tion of an analyte of interest. The requirement to enable inference is 
that the sample is from an equiprobabilistic (random) selection of the 
elements within the Decision Unit. The error (closeness of the estima-
tion to the true value) in the inference is controlled through the appli-
cation of principles of the Theory of Sampling6,7 (TOS). See Figure 1.

In cases where multiple Decision Units exist, inference can also 
be used to estimate the percent (portion) of Decision Units that pos-
sess a specific concentration or characteristic. Equi-probabilistic 
(random) selection is also required for this type of inference, but it 
is random selection of the Decision Units, not random selection of 
the elements within the Decision Unit as above, that must be equi-
probable. Figure 2.

These two inferences (to an individual Decision Unit and to 
unsampled Decision Units) are sometimes used individually and 
sometimes combined, depending on the Sample Quality Crite-
ria (SQC)8. Understanding of the differences in the types of infer-
ence is critical for the design of sampling protocols as well as for 
the interpretation of analytical results and final decision-making. In 
both types of inference, inference is made from what is sampled 
(collected) to what is not sampled (not collected). While this paper 
focuses on food safety, the inference principles are generic and 
applicable to all sampling and analysis.

Figure1. Sampling from within a Decision Unit allows inferences to be 
made with respect to the entire Decision Unit.

Figure 2. Sampling individual Decision Units allows inferences to be 
made with respect to all the Decision Units.

doi: 10.1255/tosf.77
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Inference to a single decision unit
A Decision Unit may be small in size/mass or it may be quite large. 
There are no size or geometric constraints on a Decision Unit. In the 
case of a small Decision Unit, it may be possible to collect the entire 
Decision Unit (DU) as the primary sample. This may be the case for 
a loaf of bread DU or a cantaloupe DU. However, in most cases 
the Decision Unit it too large to practically collect in its entirety as a 
primary sample. This would be the case for a warehouse of bread 
DU or a truck of cantaloupes DU. In some cases, even if the entire 
Decision Unit can be collected in its entirety that may not be desired 
as there would be nothing left.

In the laboratory, it is also possible to analyze the entire primary 
sample as received or it may be necessary to collect a smaller test 
portion from the primary sample for subsequent analysis. The pos-
sible sampling situations in the field and in the laboratory are very 
similar, either the entire DU (primary sample) can be taken or the DU 
(primary sample) must be representatively sampled according to 
the principles of TOS. In total there are four possibilities:

 ■ Take entire DU in the field, analyze entire primary sample in the 
laboratory

 ■ Take entire DU in the field, subsample primary sample in the 
laboratory

 ■ Sample DU in the field, analyze entire primary sample in the labo-
ratory

 ■ Sample DU in the field, subsample primary sample in the laboratory
Each and every one of these possibilities exists in food safety. 

Inference for each of these possibilities is discussed below.

Take entire DU in the field, analyze entire primary 
sample in the laboratory
Inference is the simplest in this case. The result from the labora-
tory is the true concentration of the analyte of interest in the pri-
mary sample (except for analytical uncertainty, which will not be 
discussed). The primary sample in this case is the Decision Unit. No 
inference is required as everything is taken and analyzed.

Take entire DU in the field, subsample primary sample 
in the laboratory
The result from the laboratory is used to estimate the true con-
centration of the analyte of interest in the primary sample. Since 
the entire primary sample was not analyzed, an inference must be 
made from the analytical result to the concentration of the analyte 
of interest in the primary sample. The entire DU in the field was col-
lected as the primary sample, so no inference is required from the 
primary sample to the DU.

Sample DU in the field, analyze entire primary sample in 
the laboratory
The result from the laboratory is the true concentration of the ana-
lyte of interest in the primary sample. The entire primary sample was 
analyzed in the laboratory, so there is no inference required from the 
analytical result to the primary sample. However, the entire DU was 
not collected in the field as the primary sample, so there will be an 
inference from the analytical result of the primary sample to the DU.

Sample DU in the field, subsample primary sample in 
the laboratory
The result from the laboratory is used to estimate the true concen-
tration of the analyte of interest in the primary sample. The primary 

sample was sampled in the laboratory, so there is an inference from 
the analytical result to the primary sample. However, the DU was 
also sampled so there will be another inference from the primary 
sample to the DU. In this case there are two inferences being made. 
One inference from the analytical result to the primary sample and 
one inference from the primary sample to the Decision Unit.

Inference for each of these situations can be made directly or 
through some type of statistical calculation. Direct inference occurs 
when an individual analytical result is used to estimate the concen-
tration in the primary sample and/or to the entire Decision Unit. 
This is very common. Alternatively, several measurements can be 
made and a statistical calculation used for inference to either the 
primary sample or to the DU. Examples may be an average or a 
95% upper confidence interval of the mean. The type of inference 
desired (direct or statistical calculation) therefore has an impact on 
the sampling protocol. For each type of inference it must be deter-
mined how that inference is going to be made and the error associ-
ated with each inference.

Inference from sampled to unsampled decision 
units
In some cases the amount of material in the Decision Unit is very 
small compared to the total amount of material under investigation. 
In other words, there are many, many Decision Units; so many, 
in fact, they cannot all be sampled. Even if all the DUs could be 
sampled, it may be desired not to sample all of them since there 
would be no Decision Units left for consumption! If every can of tuna 
fish was tested for mercury or every nut tested for aflatoxin, there 
would be no canned tuna or nuts left to eat. This type of sampling 
is actually common, not only in food but in other industries as well. 
It is commonly known as attribute (or acceptance) sampling9. This 
is the type of sampling used in surveys and quality control. The 
premise is that if enough Decision Units are sampled, claims can be 
made about all the Decision Units (especially those not sampled). 
The claim made is typically based on the percent (or portion) of 
individual Decision Units that have some specific characteristic or 
attribute. This characteristic or attribute can also be concentration 
related as in the case of detection limits.

Survey example to illustrate concepts
Many companies and governments survey (or poll) to determine the 
percentage of the population that has some opinion, belief, owns 
a product, etc. For many of these surveys, only several hundred to 
several thousand people are contacted. The percent of people con-
tacted that have the opinion, belief, product, etc. is used to make 
an inference to a larger number of people, which can be millions 
or billions. Surveys can be very accurate even though only a very 
small amount of people are actually surveyed. The only criteria to 
make inference from the surveyed people to all the people is that 
the surveyed people are selected at random (specific types of ran-
dom are not addressed). The more people surveyed, the better the 
estimate of the true percentage of people that have that opinion, 
belief, product, etc. For this example, the individual is the Decision 
Unit. It is the individual that is “sampled” and information is obtained 
on the individual. This type of sampling is common and is applicable 
to food safety where the conditions for implementation are met.

In some cases there are multiple Decision Units, but they can 
all be sampled. There may be three trucks (Decision Units) of 
grain, and it is possible and desirable to sample all three, obtaining 
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specific information on each truck. The amount of material taken for 
the samples is negligible compared to the total mass of the three 
trucks. However, if these three trucks each contained 5,000 pack-
ages (Decision Units), it may be impractical to collect 15,000 pri-
mary samples. Even if it was practical, there would be little material 
left.

Inference to unsampled Decision Units is a function of only the 
number of Decision Units sampled, not about mass, increments, 
tools, etc. as in the case of inference to a DU (where mass, incre-
ments, tools, etc. are critical for primary sample collection). Infer-
ence to unsampled Decision Units assumes the attribute, charac-
teristic, or concentration of the Decision Unit is known (or can be 
known) and all that is required is random selection of enough Deci-
sion Units to meet a specified confidence. Inference to unsampled 
DUs is based solely on probability (the reason random selection of 
Decision Units is required). The importance of random selection of 
Decision Units cannot be over stressed. Since the entire inference 
scheme is based on randomness, no compromises can be made. 
Attitudes like “This looks random to me,” and “I can’t get to those 
Decision Units so I will skip them” are unacceptable.

A special case of attribute sampling exists when the desire is to 
claim the absence of a particular attribute or characteristic. While 
it is impossible to determine for certain that no DUs have a speci-
fied attribute or characteristic, if enough DUs are sampled and the 
characteristic or attribute is absent from each DU, an inference can 
be made that there is a XX% confidence that no more than YY% 
of the DUs have a particular characteristic or attribute. The details 
of the calculations are addressed in most introductory texts on sta-
tistics9-12.

Example
Lima beans are sold in a variety of packaging including frozen, 
bagged, bulk, and canned. Two packaging examples, one frozen 
and the other bulk, will be considered to illustrate the two different 
types of inference.

Frozen lima beans
Lima beans can be sold in frozen packages. For some reason (e.g., 
routine surveillance, customer complaint) it was decided to test 
frozen packages of lima beans to see if a certain contaminant is 
present above a specified detection limit in any of the packages of 
lima beans. If any of the packages contains a detectable concentra-
tion of the contaminant, one course of action will follow. If none of 
the packages contain a detectable concentration of contamination, 
another course of action (no action) will follow. In this case the indi-
vidual package would be the Decision Unit. It would be easy (and 
desirable) to select an entire package (DU) as the primary sample 
and send it to the laboratory. This is a perfect primary sample as no 
sampling error exists (as long as the sample integrity is maintained). 
The laboratory, however, cannot analyze the entire primary sample. 
Instead, the laboratory will have to process the primary sample and 
remove a small portion (subsampling) for analysis. The act of sam-
ple processing and subsampling will contain some error. An infer-
ence will have to be made from the analytical result to the primary 
sample. This inference may be performed with just one analysis 
(direct), or there could be multiple analysis and some type of statisti-
cal calculation could be used for inference. These details would be 
addressed during the SQC process. For this example direct infer-
ence will be used.

The obvious next question is which packages of lima beans are 
of concern. Just one package, all the packages at the local gro-
cery store, all the packages in the warehouse, all the packages in 
Europe or something else? From a sampling and inference point of 
view, it does not matter (as long as random selection is achieved). 
For this example the choice will be a specific warehouse at a spe-
cific point in time. In the case of surveillance sampling or exposure 
assessment, the packages of lima beans could be sampled over 
the course of a year or some other time frame.

There will be two types of inference in this example: one will be 
from the analytical result to the package of lima beans and one will 
be from sampled packages of lima beans in the warehouse to all 
the packages of lima beans in the warehouse. The quality of the 
inference to the package is a function of the error in the sample 
processing and subsampling. The quality of the inference to all the 
packages in the warehouse is a function of how many packages 
(DUs) are sampled. There is no set number for quality. It should 
be a function of the consequences of an incorrect inference (and 
resulting incorrect decision). This would be addressed in the SQC 
process.

It is important to understand these inferences and their impact on 
the sampling protocol. For instance, the laboratory may receive 300 
packages of lima beans and decide to combine them in groups of 
ten and only perform 30 analysis to save money. If this happened, 
information would be lost on the individual Decision Units and it 
would be impossible to determine a course of action.

Bulk lima beans
This example is the same as above except the lima beans are in 
10 kg bulk containers (Decision Unit). In this case the entire DU can-
not be taken as a primary sample, so the DUs (individual 10 kg bulk 
containers) will have to be sampled and an inference made from 
the primary sample back to the DU. In this example there are many 
DUs (more than can be sampled) and information is required on 
all the DUs, therefore another inference must be made from the 
sampled DUs to the unsampled DUs. In other words several, but 
not all, of the 10 kg packages will be sampled using the principles 
of TOS. The results from the sampled DUs will be used to infer 
(estimate) the percent of all the DUs in the warehouse that have a 
detectable concentration of the specified contaminant. If none of 
the 10 kg packages have a detectable concentration, one course of 
action will follow, and if any of the 10 kg packages have a detectable 
concentration, then another course of action will follow.

As in the frozen package example, understanding of these infer-
ences is critical for developing the sampling protocol. It would be 
incorrect to select increments from different bulk containers and 
combine them into a primary sample because information will be 
lost on the individual bulk containers. For bulk containers, an overall 
error for both primary sampling and for the sample processing/sub-
sampling in the laboratory need to be established.

Issues
In many cases a single sample can be used to represent a Deci-
sion Unit. This is always desirable. However, in some cases it may 
require multiple samples. If the desire is to estimate the exposure 
risk from pesticides on tomatoes to all individuals in a country, one 
could theoretically collect a single sample from tomatoes in time 
and space (across the entire country for a 30 year period), but this 
could never happen. In a situation such as this multiple samples 
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of tomatoes within the Decision Unit (entire country for 30 years) 
would have to be collected.

It is typically not appropriate to combine increments across Deci-
sion Units as this will dilute the concentration of the individual Deci-
sion Units. There is, however, an exception to this. It is acceptable 
to combine multiple increments (from different Decision Units) for 
analytical efficiency (a composite sample) as long as information 
regarding the individual Decision Units is not lost. A common exam-
ple is the presence of some prohibited attribute or characteristic 
that can be detected/measured (analyte is not diluted out) in the 
composite sample. In this case composting (as described above) 
is a viable strategy to reduce analytical cost and still achieve the 
objectives.

Inference to unsampled Decision Units can be made using 
attributes and concentrations. There are many, many statistical 
approaches to estimate both attributes and concentrations that are 
not addressed in this paper. The purpose of this paper is to identify 
the types of inferences and how they are used, not how the infer-
ences are calculated. 

In some cases the average of the Decision Units is calculated 
for decision-making purposes. In this case, the Decision Unit was 
incorrectly chosen. There should have been only one Decision Unit 
that contained all of the material. While it could be argued that the 
same average result is achieved, it would be more cost effective to 
treat all the material as one Decision Unit.

Conclusion
Knowledge of inference to Decision Units and to unsampled Deci-
sion Units is critical when applying the Theory of Sampling to food 
safety to make correct and defensible decisions. The sampling pro-
tocols for inference to a Decision Unit and to unsampled Decision 
Units are very different. Inference within a Decision Unit is based 
on the sampling errors incurred, sample processing and analysis. 
This error is mitigated and controlled through correct application 
of the principles of TOS. Confidence is indirectly related to the total 
sampling plus analysis error. Inference to unsampled Decision Units 
is based on the number of Decision Units sampled. This number is 

based on the probability of finding all the Decision Units that possess  
or lack a specific attribute or characteristic. Confidence in this case 
is directly related to the number of Decision Units sampled.

As TOS becomes more widely adopted in the food industry, it is 
imperative that practitioners understand and apply the principles of 
inference correctly in the development of sampling protocols. This 
is critical to ensure that defensible and cost effective decisions are 
made regarding food safety.
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A stream sampling method has been developed to facilitate implementation of variographic analysis and use of replication experiments 
in the development of pharmaceutical formulations. These methods are thoroughly developed in the Theory of Sampling but are not 
currently used in pharma. Pharmaceutical formulations have very strict requirements as drug products are expected to deliver a 
specific drug content to patients and are required to avoid possible consequences of over-dosing or under-dosing. Formulation 
developers currently rely on grab sampling, the use of a sample thief (spear) to extract material from areas suspected of having 
incomplete mixing (“dead spots”). This study applies an alternative stream sampling approach based on the Theory of Sampling in 
connection with testing two alternative mixing processes.
 The mixing process based on vibration and tumbling can be shown to provide a significantly lower end-point heterogeneity. The 
results show the usefulness of the variographic approach in combination with replication experiments; both are effective in identifying 
areas of unacceptable heterogeneity in pharmaceutical blends, and point to the need to continue improving the mixing processes 
described in this study.

Background

P
harmaceutical manufacturing contains an expectation, 
indeed a regulatory demand that powder blends that pre-
cede tablets and capsules be “homogeneous”.

This term is a first collision between Theory of Sampling 
(TOS) and pharmaceutical industry quality control (QC) practices.1 
Here “homogeneous” does not imply a perfect mixture where the 
distribution of particles is strictly identical throughout the lot how-
ever, but is used to communicate that heterogeneity is sufficiently 
low that patients will receive a product with the strength “it purports 
or is represented to possess”. These “homogeneous” unit doses 
are usually required a relative standard deviation (RSD) of less than 
5%.2,3 Quality control units in pharmaceutical manufacturing have a 
strong interest both in determining the average concentration of a 
blend, and an equally strong interest in determining how the drug 
varies throughout a lot (so much for homogeneity in TOS’ fashion).

In this study two different methods are evaluated for mixing the 
active pharmaceutical ingredient (API) and excipients in a pharma-
ceutical blend. The first mixing procedure involves only tumble mix-
ing. The second procedure involves a vibration mixing step to break 
the agglomerates of the cohesive acetaminophen particles, and a 
second tumble blending step.5,6 Variographic analysis and replica-
tion experiments were then used to compare the effectiveness of 
the two mixing procedures. We show that variographic analysis 
and TOS could be very valuable in the development of pharma-
ceutical formulations in combination with near infrared (NIR) spec-
troscopy. This preliminary work is performed at lab scale but the 
same approach could be used by personnel at a pharmaceutical 
company.

Experimental
Materials: The blends were prepared from lactose monohydrate 
Granulac (Meggle Pharma), microcrystalline cellulose Vivapur 102 
(JRS Pharma) and semi-fine acetaminophen (APAP) received from 
Mallinckrodt Inc. (Raleigh, NC). The lactose monohydrate was 

passed through a U.S. Standard Sieve 60 (250 µm opening) before 
mixing.

 Calibration Model: An experimental design was followed to 
minimize correlation between components and obtain a robust 
NIR calibration model. Three components blends were prepared, 
(correlation between majority components is unavoidable, and this 
process reduces the other two), using the experimental design soft-
ware MODDE 8.0.0.0 Umetrics (Umeå, Sweden). Settings were 14 
runs, objective: screening, in a D-optimal design linear model. The 
concentration range was 50% (relative) above and below the 15.0% 
w/w (target concentration), resulting in a calibration set spanning 
7.5%–22.5% w/w. The experimental design is thoroughly described 
by Roman et.al.7

Preparation of Blends: for the validation of sampling method three 
blends were prepared, two of 1.5 kg and one of 400 g. The blends 
consisted of 15% (w/w) acetaminophen (APAP), 66.67% (w/w) 
microcrystalline cellulose (MCC), and 18.33% (w/w) lactose (LAC). 
Two mixing procedures were evaluated: 1. mixing in tumble blender 
for one hour – this was called the T process; 2. 30 minutes of vibra-
tion and 90 minutes of tumble blending –- called the VT process. A 
test set blend (400 g) to challenge the calibration model was pre-
pared with a mixing time of 30 min in each blender.

Description of FT-NIR system and software to develop the cali-
bration model: A Bruker Optics (Billerica, MA) Matrix Fourier Trans-
form (FT)-NIR spectrometer was used to obtain spectra. Calibration 
and test set spectra were obtained at a spectral resolution of 8 cm-1 
and a total of 32 scans were averaged. Each spectrum (average of 
32 scans) requires about 4.4 seconds. All spectra were obtained 
as the powder moved at a linear velocity of 10 mm/s, except for 
the static repeatability test (see below). Under these conditions 
each spectrum can be estimated to represent approximately 180 
mg of powder mixture, based on a depth of penetration of 1.2 mm 
measured for this spectroscopic system.7,8 Calibration models 
were developed in SIMCA 13.0 Umetrics (Umeå, Sweden), partial 
least squares algorithm (PLS). NIR spectra were pre-treated with a 
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standard normal variate transformation and a first derivative based 
on 17 points. The chemometric model was performed on the 9100 
– 5000 cm-1 NIR spectral range. The performance of the calibration 
model was evaluated with independent test blends, aka test set 
validation.9–11 Table 1 shows the results obtained in the prediction of 
an independent test set.
A sampling system was designed to deposit blends over a labora-
tory conveyor belt for simulating a 1-dim industrial blender outflow 
sampling/analysis system: Each powder mixture (both calibration – 
and validation blends) was deposited in a 3 m long, 4 cm wide and 
3 cm deep rig by the use of an in-house developed screw feeder.7 
The feeder was operated so as to provide a thick powder bed on 
the rig. FT-NIR spectra were obtained along the entire 3 m length 
rig corresponded to approximately 250 g of the 1.5 kg lot powder 
mixture. The powder surface was left uneven and no attempt was 
made to obtain a flat surface of powder in the recipient, aiming to 
produce a highly realistic industrial situation.

Results and Discussion
Real-time analysis of drug concentration was performed by near 
infrared spectroscopy, as a non-destructive analytical method 
applied to blender output streams.8,12 Figure 1 shows the stream 
sampling system used to obtain the NIR spectra. The drug con-
centration associated with each spectrum was predicted with the 
validated PLS calibration model and are shown in Figure 2 for three 
different blends.13 The blend marked VT involved both vibration and 
tumbling mixing as described in the Experimental section, and the 
blends marked T1 and T2 only included tumble mixing.

The stream sampling approach also facilitates the use of vari-
ographic analysis and the replication experiment9–11,14, which are 
virtually new in pharmaceutical blending.7,8 The Replication Experi-
ment was performed with the three blends (six successive rig 
depositions, 10 times to-and-fro over just one deposition), and the 
results are shown in Table 2. Figure 2 shows drug concentration 
results from a replication experiment where six depositions of 250 g 
are made onto the 3 m rig shown in Figure 1.

Figure 2 clearly shows that the VT process was superior in mixing 
to obtain concentrations near the 15.0% (w/w) APAP target level. 
Particle breaking due to vibration also improved the flow properties 
of the powder mixture. The central graph (T1) shows less drug con-
centration results due to difficulties in powder flow and deposition 
onto the 3 m rig. The VT process showed the lowest standard devi-
ation (0.78% w/w APAP) as shown in Table 2, at least half of those 
obtained for the T process. The VT process should still be improved 
due to a drop in concentration observed from spectra #78–116.7

Table 2 also shows that the T process has a much higher stand-
ard deviation in the replication experiment (n = 10) for a single dep-
osition. The standard deviation of the VT process is 0.34% (w/w) 
APAP, while the T process blends show standard deviations of 
1.06 and 2.02. This replication experiment shows the significant 
differences in heterogeneity observed. Table 2 also shows similar 
repeatability study for all blends, since this study is a measurement 
of instrument (measurement) performance. The repeatability study 
was conducted by obtaining six consecutive spectra of the same 
static powder.

The results shown in Figure 2 are important because of the 
novelty of stream sampling in pharmaceutical blending15 since 
most processes have been developed with sample thief (“spear”) 
extracts.16 Thief sampling has been used to find “dead spots” 

Table 1. Results of prediction of test set blend (tumble + vibration blender) by 
the FT-NIR calibration model. 

Validation Blend prepared with tumble mixer + vibration 
mixer, mixed by one hour (T + V)

Deposition
Average
% (w/w) 

APAP

Std. 
Dev

RSD 
(%)

RMSEP
RSEP 

(%)

n = 1 15.58 0.46 2.93 0.54 4.71

Spectra (#) 68

Figure 1. Powder deposition into the 3 meter rig used for moving the 
powder at 10 mm/sec towards the FT-NIR spectrometer.

Figure 2. Prediction of drug concentration in three different blends using 
NIR spectroscopy and the rig shown in Figure 1.
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– areas of incomplete mixing within the blender. The stream sam-
pling approach is effective in showing areas of heterogeneity 
as shown in this study. The use of NIR spectroscopy to develop 
pharmaceutical processes is also increasing but most NIR spec-
troscopic methods are based on a NIR spectrometer installed at a 
single point (interface) to a blender.17,18

Figure 3 shows the variograms obtained for the three pro-
cesses.19,20 The three variograms show the very clear differences 
between the blending processes. The T process shows a sig-
nificantly higher sill and nugget effect, demonstrating a very high 
heterogeneity of the outflow material, i.e. the least effective blend-
ing. Comparison indicate that the VT process provides a superior 
mixed-in distribution of the drug in the blend. However, even the 
best of these tentative processes would not meet pharmaceutical 
regulatory expectations - yet. A recently withdrawn draft guidance 
required: 1) a relative standard deviation ≤ 5%, and 2) all individual 
results within 10.0 percent (relative) of the mean drug concentra-
tion.3 Thus, the stream sampling is clearly effective in finding areas 
of heterogeneity in the powder blend and simply cannot hide any 
presence hereof.

The VT process shows a nugget effect - minimum practical error 
(MPE) of only 0.04% as shown in Figure 3. Thus, the sampling and 
analysis system is indeed capable of providing a satisfactory very 
low MPE (the sum of all correct and incorrect sampling errors plus 

the analytical error, TAE). MPE still depends critically on the het-
erogeneity of the blend: MPE is greater for the less mixed, more 
heterogeneous blends.

Conclusions
The stream sampling method was effective in identifying areas of 
significant heterogeneity in the powder blends and the need to con-
tinue improving both the mixing process, as well as the monitoring 
approach itself. We regard the present results as very encouraging. 
This pilot study indicates the way forward for a possible blending 
process-and-measurement-system development in the laboratory 
before industrial deployment, i.e. up-scaling, which will always con-
stitute a specific issue to be tackled on a case-by-case basis.
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Estimating total sampling error for near infrared 
spectroscopic analysis of pharmaceutical blends—theory 
of sampling to the rescue
A. Roman-Ospinoa, C. Ortega-Zuñigaa, A. Sanchez-Paterninaa, S. Ortiza, K. Esbensenb and R.J. Romañacha

aandres.roman@upr.edu, acarlos.ortega4@upr.edu, aadriluz.sanchez@upr.edu, astephanie.ortiz10@upr.edu, bke@geus.dk, 
arodolfoj.romanach@upr.edu

A replication experiment was performed to validate a stream sampling method for a pharmaceutical powder blend. A 1.5 kg powder 
blend was prepared and an in-house developed feeder was used to divide into six sub-samples of approximately 250 g. Each 250 g 
sub-sample (1/6 total blender lot volume) was deposited along a rig of 3 meter length. A validated near infrared (NIR) spectroscopic 
method was used to determine the drug concentration as the powder deposited in the rig moved at a linear velocity of 10 mm/sec. The 
depth of penetration of the NIR radiation was 1.2 mm and the sample volume analysed was approximately 180 mg. The MPE (minimum 
practical error) obtained with the system was 0.04% w/w acetaminophen (APAP), which was considered excellent for the system. The 
replicate analysis of the powder deposition provided 390 measurements of drug concentration, with a mean APAP concentration of 
14.93% (w/w) and a relative standard deviation (RSD) of 5.20%. Replicate measurements (n = 650) of the powder deposited along 
a single rig of 3 m length ×10 provided an RSD of 2.23%, attributable to deposition (outflow) heterogeneity. Finally, static replicate 
analysis of the measurement error alone amounted to an RSD of 0.14%. The embedded replicate experiments elucidated all sources 
of variation in a sampling system for pharmaceutical powder blends, and proved reliable and highly sensitive in identifying areas of 
non-acceptable residual heterogeneity (dead zones).

Background
The analysis of drug concentration in pharmaceutical blends is 
mostly done through grab sampling where a sampling spear (called 
sampling thief in the pharmaceutical industry) is frequently inserted 
into a blender to extract 6–10 samples.1,2 The extracted material is 
then taken to a laboratory where the drug concentration of the pow-
der blend is determined. The sample thief is used to extract powder 
mixture from specific locations and transects through the blender 
volume, which based on previous studies, have shown a greater 
likelihood to represent “dead spots” (areas of residual incomplete 
mixing).3 Thus, all the components of the blender volume, the lot, 
do not have the same probability of being extracted for analysis. 
This is a structural fault of the sampling system. If the areas of 
incomplete mixing are not those selected with this fixed location 
approach the sampling approach will fail to do what it is supposed 
to do and volumes with larger residual heterogeneities will go unde-
tected. This is the exact opposite of the objective of end-of-mixing 
sampling and analysis.1–3

These flawed approaches are currently being complemented by 
non-destructive near infrared (NIR) spectroscopic methods devel-
oped to analyse the drug concentration within the blender (in-line), 
or at-line/off-line. The non-destructive spectroscopic methods are 
so far usually interfaced at a single location within the blending ves-
sel (or interacting through a window in the vessel wall).4 If powder 
moves in and out of the sampling interface there is a greater likeli-
hood that larger parts of the lot will be analysed than with a pow-
der thief, depending on the specific combination of analysis volume 
w.r.t. material through-flow in relation to the full vessel volume. But 
such solutions, despite having a clear potential of being significantly 
better than thief sampling, are by no means a complete solution 
for the desired blender material characterisation based on the full 
blender volume. To the degree that this is not achieved (yet), the pre-
sent verification approaches cannot be said to be comprehensive.

However the powder mixture can alternatively be sampled after 
it leaves the blender, either using a physical sampling approach or 
by invoking the rapid, and more efficient NIR spectroscopic method 
for analysis.1,2 In this approach the powder flows down a chute, or 
is ducted via a mini-conveyor belt, from which a NIR spectrometer 
can obtain spectra of the mixture. This is a Process Analytical Tech-
nology (PAT) approach, of great potential and considerable proved 
merit.5–7 Based on a chemometrics multivariate calibration model it 
is possible to predict the drug concentration in the NIR-beam ana-
lytical volume.8 This stream sampling approach has been followed 
experimentally in a limited number of pilot studies.9–11

We here report on pioneering laboratory validation of a PAT 
stream sampling approach where the active drug concentration is 
determined by NIR spectroscopy. Previous studies have involved 
thorough validations of NIR analytical methods obtaining accurate 
estimates of the Total Analytical Error (TAE), but have not addressed 
the accompanying sampling errors.4 This study describes the result 
of a first systematic Replication Experiment approach12 in a realistic 
laboratory setting. The systematic replication experiments represent 
a new approach to the analysis of blends and to estimating the 
effective sampling and measurement uncertainty within pharma.12–14 
We are aware of only two other forays within pharma, in which TOS 
is also an important element, both focusing on product analysis 
uncertainty17,18

Experimental
Materials: The blends were prepared from lactose monohydrate 
Granulac (Meggle Pharma), microcrystalline cellulose Vivapur 102 
(JRS Pharma) and semi-fine acetaminophen (APAP) from Mall-
inckrodt Inc. (Raleigh, NC). The lactose monohydrate was passed 
through a U.S. Standard Sieve 60 (250 µm opening) before mixing.

Calibration Model: An experimental design was followed to 
minimize correlation between components and obtain a robust 
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calibration model. Three component blends were prepared (correla-
tion between majority components is unavoidable, and this process 
reduces the other two). The experimental design software MODDE 
8.0.0.0 Umetrics (Umeå, Sweden) was used. Settings were 14 
runs, objective: screening, in a D-optimal design linear model. The 
concentration range was 50% above and below the 15.0% w/w 
APAP target concentration, resulting in a calibration set spanning 
7.5–22.5% w/w. Table 1 shows the concentrations of the eight cali-
bration blends prepared.

Preparation of Test Set Blend: A 1.5 kg blend with an APAP con-
centration of 15.0% (w/w) was prepared as shown in Table 1. This 
blend was used for the entire replicate study.

Description of Fourier Transform Near Infrared (FT-NIR) system 
and software to develop the calibration model: A Bruker Optics (Bill-
erica, MA) Matrix FT-NIR spectrometer was used to obtain spectra. 
Calibration and test set spectra were obtained at a spectral resolu-
tion of 8 cm–1 and a total of 32 scans were averaged. Each spec-
trum (average of 32 scans) requires about 4.4 seconds. All spectra 
were obtained as the powder moved at a linear velocity of 10 mm/s, 
except for the static repeatability test (see below). Under these 
conditions, each spectrum can be estimated to represent approxi-
mately 180 mg of powder mixture as shown in Figure 1.11 Calibra-
tion models were developed in SIMCA 13.0 Umetrics (Umeå, Swe-
den), partial least squares algorithm. NIR spectra were pre-treated 
with a standard normal variate transformation and a first derivative 
based on 17 points. The chemometric model was performed on 
the 9100–5000 cm–1 NIR spectral range. The performance of the 
calibration model was evaluated with independent test blends, aka 
test set validation.13–15

A sampling system was designed to deposit blends over the con-
veyor belt for simulating a 1-dim industrial blender outflow sam-
pling/analysis system. Each powder mixture (both calibration – and 
validation blends) was deposited in a 3 m long, 4 cm wide and 3 cm 
deep rig by the use of an in-house developed screw feeder, as 
shown in Figure 2. The feeder was operated so as to provide a 
thick powder bed on the rig. FT-NIR spectra were obtained along 

the entire 3 m length rig corresponded to approximately 250 g of 
the 1.5 kg lot powder mixture. The powder surface was left uneven 
and no attempt was made to obtain a flat surface of powder in the 
recipient, aiming to produce a highly realistic industrial situation.

Figure 2 shows a photograph of the system for Replication Exper-
iment studies (six successive rig depositions, 10 times to-and-fro 
over just one outflow. The Matrix FT-NIR spectrometer is situated 
at a height ~10 cm to obtain spectra as the rig moves at 10 mm/
sec. The replicate experiment was first conducted by performing 6 
outflow depositions each of approximately 250 g along the 3 m rig. 
This setup yielded approximately 65 spectra per outflow stream. 
The APAP drug concentration was predicted for each spectrum 
using the validated FT-NIR calibration model (multivariate calibration 
prediction).8

The second replication experiment consisted of moving one of 
the full length outflow deposition over the conveyor belt to and fro 
10 times, obtaining spectra from one end to the other. The final 
part consisted of a repeatability study, where six consecutive spec-
tra were obtained at one fixed location without moving the pow-
der mixture or the spectrometer. This repeatability study was itself 
performed a total of 6 times. All replication experiment results are 
shown in Table 2.

Results and Discussion
The above replication experiment was performed to validate a spe-
cific PAT sampling/analysis facility for a realistic 1.5 kg powder blend 

Table 1. Composition of calibration and test set blends for NIR calibration model.

Blend 1 2 3 4 5 6 7 8 Test set

APAP (% w/w) 7.50 7.50 7.50 14.00 15.00 16.25 22.50 22.50 15.0

MCC (% w/w) 30.00 90.00 60.00 63.50 30.00 83.75 77.50 30.00 66.67

LAC (% w/w) 62.50 2.50 32.50 22.50 55.00 0.00 0.00 47.50 18.33

Figure 1. Schematic rig illustration of PAT sampling by a NIR spectrom-
eter along conveyor belt material stream. Observe how the NIR beam 
only interacts with the top layers of the material stream, giving rise to 
structural IDE/IME contributions to the total measurement system error 
in the vertical direction[depth of penetration is 1.2 mm]. The estimated 
analytical mass is about 180 mg.

Figure 2. Conveyor belt assembly (total length 3 m) with FT-NIR spec-
trometer positioned at a height of 10 cm and powder feeding system 
(background). Note that the NIR beam covers the entire width of the 
conveyor belt, suppressing a potential IDE contribution to the total meas-
urement system error in the cross-stream direction.
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prepared with a 15.0% (w/w) APAP concentration. The lot in ques-
tion was the full 1.5 kg prepared blend, from which the six repeti-
tions of a full length (3 m) 250 g rig experiment could be performed. 
Each 250 gram sub-sample (1/6 total blender lot volume) allowed 
about 65 analyses (based on NIR spectra) to be made along the 
rig length, Figures 1 and 2. This enables evaluation of both full and 
partial blender outflow analysis performance.

Table 2 shows that the grand average concentration predicted 
by the NIR calibration model was 14.93% (w/w), based on all 390 
analyses performed for the lot, i.e. a situation in which the entire 
outflow material stream has been analysed. The relative standard 
deviation of this complete lot volume results was 5.20%. These 
results must be considered excellent as these involve the maximal 
combined variation effects stemming from i) the outflow deposi-
tion (flow segregation), ii) residual blend heterogeneity and iii) TAE 
of the PAT NIR analytical method. The relative standard deviation 
is termed the relative sampling variability (RSV) for the replication 
experiment approach.12

Table 2 also shows the results from replicate analysis of a single 
deposition (i.e. a single conveyor belt pass but repeated to-fro 10 
times). This experiment addresses the specific blend heterogeneity 
in one 1/6 total lot stream only (including the attendant TAE). As 
expected, this RSV variation is significantly lower, 2.23%. The aver-
age drug concentration is here 15.21% (w/w). Thus, the average 
concentration is different from that when the entire lot was ana-
lysed. There is thus a difference of +0.28% APAP, due to that only 
1/6 part of the lot is being analysed.

The static analytical repeatability studies results (the NIR beam 
was focused on a single unmoving area of the powder blend and 
six consecutive spectra were acquired) are also shown in Table 2. 
The relative standard deviation in the repeatability study is approxi-
mately 0.2%, attesting to TAE only.

Variability larger than this analytical baseline represents i) residual 
blend heterogeneity (imperfect mixing), ii) specific outflow variabil-
ity (“deposition” above) as well as iii) possible process sampling 
errors for the PAT sensor system. The variance of this analytical 
repeatability study (0.2)2 may be subtracted from the square of the 
standard deviation of the replicate analysis of the single deposition 
to obtain a measure of the blend heterogeneity. The replicates of 
single deposition show a standard deviation of 0.34, and after sub-
tracting the measurement repeatability the blend heterogeneity is 

0.31. These values could be used as baseline level to improvement 
the sampling and measurement systems.

Figure 3 shows the plot of the drug concentration values through-
out the entire run, revealing a significant drop in drug concentra-
tion from approximately spectrum #78 to 116. This simple plot is 
crucial in showing that a certain part of the blend was responsi-
ble for the overwhelming part the heterogeneity observed—a dead 
spot. The drug concentration from spectrum #81 to 100 averaged 
12.5% instead of the 15.0% target level. Thus, the stream sampling 
approach was very capable to identify incomplete mixing process 
without the use of sampling spear.

The main feature of the replication experiment studies concerns 
the possibility to apply a variographic characterisation of the outflow 
stream. The variogram function V(j) was determined based on the 
drug concentration values predicted by the NIR calibration model. 
A lag of 1 was based on consecutive predictions of drug concentra-
tion, each concentration corresponding to approximately 180 mg 
as shown in in Figure 1. The maximum lag shown in the variogram 
is 190, since the total number of drug concentration predictions 
was ~390. From Figure 4 it is obvious that the total PAT measure-
ment system error is very small (nugget effect) compared to the 
level of drug content variance (sill) along the full 3m outflow stream. 
The range is approx. 30–36, i.e. the distance within each predicted 
drug concentration is increasingly auto-correlated for smaller lags 
than this.

This run also allows a simulation of the variographic outflow 
approach for NOC (normal operation conditions), by excluding the 
samples in the interval #78–116 (resulting in a seamless outflow 
only characterised by the NOC residual heterogeneity). A renewed 
variogram for this data series is presented in Figure 4 (right), in 
which can be seen that the nugget effect is identical, while there is 
a very notable reduction of the sill level – both features as expected. 
Renewed estimation of the RSV1-dim results in 2.6%. This run is fully 
realistic w.r.t. to its industrial counterpart to the degree that the 
blender used is reasonably up-scalable; all other system elements 

Table 2. Results of Replication Experiments.

Depositiona 
(n = 6)

Replicatesb of 
Single Deposition 

(n = 10)

Repeatability 
Studyc 
(n = 6)

Ave. 14.93 15.21 15.78

Std. Dev. 0.78 0.34 0.14

RSD (%) 5.20 2.23 1.3

Spectra (#) 390 647 36
aDeposition = one deposition length (3 m)
bSpectra were collected 10 times along the complete length of the rig for a 

total of 647 spectra
cStatic NIR beam footprint on unmoving rig; six replicated NIR spectra 

acquisition
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Figure 1. Schematic rig illustration of PAT sampling by a NIR spectrometer along conveyor belt material stream. Observe 
how the NIR beam only interacts with the top layers of the material stream, giving rise to structural IDE/IME contributions 
to the total measurement system error in the vertical direction[depth of penetration is 1.2 mm]. The estimated analytical 
mass is about 180 mg. 

 
 
 

Figure 2. Conveyor belt assembly (total length 3 m) with FT-NIR spectrometer positioned at a height of 10 cm and powder 
feeding system (background). Note that the NIR beam covers the entire width of the conveyor belt, suppressing a poten-
tial IDE contribution to the total measurement system error in the cross-stream direction. 
 

 

 

  
 
Figure 3. Prediction of drug concentration for the 390 individual analysis of the complete lot (six x 3m rig lengths). 

  

 
Figure 4. Left: Variogram based on the total of 390 individual analyses of the complete lot (six x 3m rig lengths). The range 
is ~30-36; nugget effect = 0.04; sill =0.7. The total measurement system uncertainty, RSV1-dim , is therefore ~5.2% (rel).12 
Right: Same variogram excluding shaded area in figure 3. 
   

Figure 3. Prediction of drug concentration for the 390 individual analysis 
of the complete lot (six ×3 m rig lengths).
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would be identical: outflow facility, NIR spectrometer, chemometric 
prediction model.

A recently withdrawn draft guidance which describes the analy-
sis of powder blends by thief sampling requires the analysis of 
drug concentration for at least 10 blends from a tumble blender 
with: 1) a relative standard deviation £5%, and 2) all individual 
results within 10.0 percent (relative) of the mean drug concen-
tration.16 The 390 determinations of drug concentration display 
a RSD of 5.20% slightly exceeding the first requirement and did 
not meet the second requirement due to the dead spot drop in 
concentration shown in Figure 3. Thus, the outflow stream sam-
pling system is eminently capable of finding areas of heterogeneity 
in the entire blend lot. If the blending process were improved by 
eliminating the sudden drug concentration drop shown in Figure 
3, then the RSD in drug concentration reduces to approximately 
2.6% and all values are now within 10% of the mean drug con-
centration stipulation.

To the degree that a complete, up-scalable measurement system 
can be established in the laboratory, the present approach will be 
able to guide rational product development, to some considerable 
degree without pilot—or full scale plant demonstration—until the 
manufacturing process has been brought into complete statistical 
control in the laboratory.

The value of an outflow variographic facility has been demon-
strated and its merits exemplified. This is the first time a TOS-based 
approach (variographic and replication experiment) for the char-
acterisation of a pharmaceutical manufacturing process has been 
applied with illustrative and highly satisfactory results.
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Practical use of variographics to identify losses and 
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This work illustrates variographic analysis applied to industrial production processes to identify and reduce adverse production 
deviations (over-specification, loss) and evaluate profitability. A first example concerns production of light-weight expanded clay 
aggregates (Exclay), produced in cement-like rotary kilns. Clay raw material is heated to 1150 ºC to be expanded. An adverse 
periodicity was observed in a specific plant cooler manifested as fluctuations in the material volume (height level) causing a periodic 
variance in the production output from the kiln. This problem must be resolved by instigating a more stable cooler, which could in 
fact be engineered by a very small investment of about 5,000 Euro. A variogram characterization was carried out to evaluate the 
amplitude of the periodicity, and the quantities involved (losses), which information was used to calculate the investment pay-back 
time. From the variogram it was observed that the reduced kiln output volume was at least 0.7%. During one year with improved 
cooler level control, this translates into savings of about 100,000 Euro, i.e. a pay-back time will be less than one month. A second 
example is from a LRM-project (Loss and Reduction Model) at a plant producing bagged pre-mixed mortars, in which the variance 
of the weight of the produced bags was found to be consistently too large. A pilot variographic analysis was applied with an aim to 
identify the root causes of this problem (three filling stations at the same line were investigated, all with identical filling systems and 
scales): Two stations were found to have a total material loss of 1.2%, while the third was running perfectly well (low V(0) and low 
sill), but with a too high set point. The technical resolution shows that it is possible to reduce material loss with existing equipment 
by improved monitoring/recording routines but no need to acquire new expensive belt scales a.o. For two of the stations V(0) (MPE) 
was in fact at a level almost identical to the sill making it structurally impossible to keep bag weight within specifications. Recurrent 
monitoring of V(0) and moving average smoothing should be evaluated at the very many similar production lines in the multinational 
corporation involved to gain improved process control to reduce overfilling. While relatively small on the basis of an individual filling 
line, the potential accumulated corporate savings take on a quite different economic significance. Variographic analysis is a powerful 
tool for industrial technicians and process engineers to improve processes – and in the present cases for industrial managers as well 
for evaluating ultimate investment profitability in industrial processes.

Introduction

T
o illustrate systematic application of variographic analysis 
in process industry, two examples from the multi-national 
Saint-Gobain Weber corporation are presented. The first 
example, from production of expanded clay aggregate 

building material, shows how variografic analysis can be used to 
calculate investment pay-back time with better accuracy than by 
use of standard statistical methods. The other example concerns 
bagging of premixed mortars are in fact typical for a variety of 
industrial bagging processes in general. This example shows how 
variographic analysis can be used to identify the main reasons for 
adverse product variances (here bag weight) and how to reduce 
such deviations and thereby reduce production costs.

Example from Exclay industry
The first example concerns production of light-weight expanded 
clay aggregates (Exclay), produced in cement-like rotary kilns. Clay 
raw material is heated to 1150ºC to be expanded. A periodicity 
was observed in a specific plant cooler regarding fluctuations in the 
material level. This influences the amount of air passing through 
the cooler and thereby amount of air and the pressure in the kiln. 
Periodicities in the pressure in the kiln cause periodicities in the level 
of expansion and thereby in the output from the kiln. A lower expan-
sion means a smaller volume produced from the same amount of 
raw material, i.e. higher production costs (sales are valued by m3 

produced). There is a lower limit to an acceptable product density. 
Also, if the temperature/pressure is raised too high, a point will be 
reached where the material will sinter and sizable lumps in the kiln 
will cause severe problems. The operators always try to burn as 
hard as possible to optimise the m3 output from the kiln. How-
ever the maximum level of hard burning is limited by the material 
with lowest densities, if a cyclic short term periodicity is manifested. 
Periodicities in the densities will then reduce the output of the kiln.

The unstable level in the cooler could be improved by a small 
investment of about 5,000 Euro. Earlier the level in the cooler has 
been measured by use of a radioactive isotopes. This has been 
found not to be precise enough however (besides being a serious 
environmental issue). By replacing this approach with a modern 
radar measurement system, the precision is increased satisfactorily. 
Variographic analysis was carried out to evaluate the pay-back time 
of the investment. Figure 1 shows a photo and schematic drawings 
of the Niems cooler used at the plant.

Example from pre-mix industry
The other example is from a LRM-project (Loss and Reduction 
Model) at a plant producing pre-mixed mortars. LRM enables 
manufactures to evaluate four modules: material, machine, distri-
bution and maintenance, that each may require improvement. The 
losses in each module are identified by breaking down the process 
in its part elements, allowing a simplified, focused improvement 
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approach. Variographic analysis is not included in LRM today, but 
the present contribution suggests how this may be introduced with 
significant advantage.

The LRM project identified a material loss by weighing pallets of 
bagged material. The bags on the pallet originated from three fill-
ing stations at a specific line as a pilot study. The bags shall have 
a nominal weight of 25 kg. The lower and upper acceptance limits 
are stipulated to 24.5 and 25.5 respectively. The pallets were too 
heavy and indicated material losses. Variographic analysis together 
with traditional statistics was used to try to identify the root causes 
and suggestions for further progress on reduction of material losses. 
Variographic analysis has earlier shown to be a powerful tool to 
separate the different potential factors contributing to this variance2. 
Investment caution rules the day, e.g. it would be futile to invest 
in new expensive equipment to level the filling degree, if the main 
problem f.ex. turned out to be caused by inaccurate scale measure-
ments.

The bags are filled by using air-pressure from two nozzles into a 
transportation air-tube. One of the nozzles sets the packing cham-
ber under pressure to force the material through an opening, with 
a connecting tube that leads into the filling-bag. The second noz-
zle delivers the conducting airstream. Adjustment of the differential 
air-pressure between these two streams controls the filling of the 
bags. The nozzles get their regulatory input from the scales, which 
are stipulated to operate according to a specification of 25 ± 0.5 kg. 
Outside these limits the filling station is stopped. The scales are 
normally put on ‘auto-correct’ which is able to perform corrections 
with a magnitude of ±0.1–0.2 kg. If the weight of a particular bag 
is registered as above 25 kg, the weight of the next bag is reduced 
with 0.1 kg – and conversely if the weight is below 25 kg, the weight 
of the next bag is increased with 0.1 kg.

Methodology
A variogram can be used to break down the contributing elements 
together making up the overall variance into their separate compo-
nent sources. This is of critical interest in industrial processes. The 
variogram can be divided into three different components1:

 ( ) ( ) ( ) ( )= + +1 2 3      V j V j V j V j  

 

 (1)1

Where:
V(j) is the overall variance (total observed process variance), i.e. the 
variogram
V1(j) is the short-range random, discontinuous contribution
V2(j) is the long-range, non-random continuous contribution (trend 
errors)
V3(j) is the periodic continuous contribution (periodic error)
j – is the sampling inter-distance, aka the lag

V1(j = 1) describes the overall variance contribution reflecting the 
uncertainty introduced because measurements are only made at 
discrete intervals1. This is of course always of interest, but even 
more interesting is V1(j = 0). This is a back-extrapolation made from 
the variogram indicating the variance to be obtained, if one would 
be able to sample at the exact same location twice (repeated sam-
pling). This estimate (the ‘nugget effect’) quantifies the quality of the 
total sampling and measuring systems used. Thus V(0) includes all 
the correct and incorrect sampling errors (CSE + ISE) in addition to 
TAE. For this reason V(0) is also termed the Minimum Possible Error 
(MPE) for a process monitoring system. V(0) will never be zero due 
to Fundamental Sampling Errors (FSE), but in the practical industrial 
use V(0) is never dominated by FSE alone, but will always be signifi-
cantly higher. Thus a high V(0) usually indicates significant contribu-
tions from the Incorrect Sampling Errors and or GSE. A significantly 
high V(0) (with respect to the sill) is a critical warning of a serious 
total measurement system problem, which must be rectified. If V(0) 
is too high in this sense, it will not be possible to control the pro-
cess in a satisfactory way, since this disallows insight into the real 
process variations. The closer V(0) is to the sill the more the real 
process variation signals are drowned out by a structurally flawed 
measurement system, a situation which will unavoidably lead to 
faulty decisions and actions.

V2(j) reflects underlying process trends, important in any indus-
trial production process, but easily spotted already in the raw time 
series process monitoring data. It is preferable to deal with this type 
of process deviations before applying variographic analysis.

Figure 1. Schematic drawing and photo of a Niems shaft cooler. Material falls from the kiln head into the top of the cooler. Cooling air is blown in from 
below as shown in the drawing (left).
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V3(j) reflects cyclic process behaviours, of critical interest in pro-
duction and manufacturing process. A variogram will easily detect a 
periodicity and its apparent amplitude, indicating how much it con-
tributes to the overall variance. The associated costs can thereby 
also be estimated with relative ease. This is an area that requires 
some insight and experience.

The overall variance V(j) at high j (large sampling distances) reflects 
the total process variance beyond the range, i.e. the sill.

It has been found useful to relate the magnitude of V(0), the pro-
cess measurement system error (MPE), to the level of the sill, as 
a%-age, and to use this as a quality index for the total process 
measurement system6. The higher this index w.r.t. its maximum 
value (100% – at which level it would be equal to the sill), the worse 
the performance of the measurement system. Indices over 50% run 
a severe risk of deceiving process monitoring proper; in general this 
index should be below 33% or so to be acceptable ibid.

Estimation of cyclic amplitudes
Considering a sine curve, hx(T), with an amplitude h3 and a period T, 
one can calculate the corresponding variogram
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Thus the amplitude of a cyclic variogram is:
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i.e. half the distance from minimum to maximum in the relevant 
cyclic part variogram1.

The amplitude of the cycle h3 can thus be calcualted as follows:

 ( )= ´2
3 32  h V j  

 

 (5)

Leading to:

 ( )= ´3 3  2 jh V  

 

 (6)

i.e the square root of the cyclic contribution variance estimated from 
the variogram.The amplitude of a cyclic periodicity is found by first 
defining V(0). Thereafter is a line drawn from the minimum in the 
cycle to V(0) on the y-axes (see Figure 6). A parallel line is drawn 
from the maximum point to the y-axis (see Figure 6). The value of 
the cyclic contribution of the variance is read/measured/calculated 
by subtracting the minimum value of crossing from the maximum 
value. This furthers a basis for estimating cost savings from reduc-
ing or eliminating a cyclic contribution.

Exclay industry
Samples for loose bulk density measurements were taken after 
the cooler unit every 90 seconds for close to two hours. The sam-
ples were taken from a falling stream with a customized collector. 
See Figure 2. This sampling equipment is not in full accordance 
with Theory of Sampling (TOS), but has earlier been evaluated to 
be fit-for-purpose3. This earlier work also concluded that loose 
bulk density is an informative parameter regarding instability 

control in the production process3. Density measurements were 
carried out continuously by a Thaulow bucket in accordance with 
EN1097-34.

Pre-mix industry
Since bag weights are not recorded in the present plant setup, a 
continuous film recording was made of the bagging line showing 
the display of all three filling lines. The weights were extracted from 
this documentation variographic analysis was carried out on this 
basis.

Figure 2. Sampling equipment for loose bulk density measurements 
(while not 100% TOS compliant, the manual cross-stream sampler at 
least covers the entire width of the falling stream).

Figure 3. All 83 single measurements from the Exclay experimental 
campaign.

Figure 4. Variogram of the 83 measurements in Fig. 3.
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Results and discussion
Exclay industry
All 83 single measurements of the loose bulk densities and the cor-
responding variogram are shown in Figures 3 and 4.

A major long term periodicity is observed, showing an unstable 
production period, interpreted as probably caused by changes in 
clay and/or coal feeding. It is important to follow up on this vari-
ance contribution3,5, but this is not a part of the present study. In 
order to assess the contribution from the level in the cooler bet-
ter, the long term periodicity has to be eliminated from the var-
iogram. The first part of the period measured is from a period 
with an increasing trend and unstable production. This part is not 
included in the final analysis. In addition there is a dip in the densi-
ties between measurements 45 and 65 of about 10 kg/m3. This is 
typically what happens when the operator adjust the coal feeding 
to the burner. These densities are therefore increased by 10 kg/m3 
to eliminate this long term contribution. One outlier (measurement 
no 63) was also adjusted.

The adjusted measurements and the corresponding variogram 
are shown in Figures 5 and 6.

After these process-experience dependent adjustments, a perio-
dicity with a frequency of lag = 5 emerges, i.e. 7.5 minutes. This 
corresponds well with the experience of seasoned process opera-
tors. This strong periodicity makes it difficult to estimate V(0), but 
from Figure 6 it can be seen that the V(0) probably lies between 
0.000067 and 0.00010. A conservative estimate of the contribu-
tion to the variance from the cyclic periodicity, would therefore be 
~0.00005 (see Figure 6). The amplitude of the recorded data is then 
calculated from equation 6 to be 0.0071 or 0.71%. With an average 
density of 276 kg/m3 this equals 2.0 kg/m3. This may appear as but 
a small effect, but when accumulated equals savings of approxi-
mately 100,000 Euro per year. On this bases pay-back time of the 

investment of 5,000 Euro will be less than one month. It will likely 
even be shorter since short term cycles often confuse operators 
to decide to take action where they in fact should have remained 
passive.

Pre-mix industry
For each filling station 23 (24) bags are included in the analysis. This 
is absolutely at the lower end to give a fully satisfactory data base 
upon which to arrive at fully credible conclusions, but the results 
may still point to real-world problems and may certainly help to illus-
trate how variografic analysis can be used to identify root causes 
and to propose an action plan at a bagging line.

Figures 7– 9 show the results of the three filling stations of the 
bagging line investigated. Figures 10–12 show the corresponding 
variograms. It is easily seen that the three filling stations behave very 
different at the pilot study campaign time.

The overall overfilling was 1.2% in the period analysed, i.e. 1.2% 
unnecessarily increased raw material costs.

Bagging station 1 was found to be the one best tuned. The 
overall variance (sill) is low, and almost the whole contribution to 

Figure 7. Weight measurements at bagging station 1.

Figure 8. Weight measurements at bagging station 2.

Figure 9. Weight measurements at bagging station 3.
Figure 6. Variogram of the last part of the measured period (see text for 
details).

Figure 5. Single measurements of loose bulk density (see text for 
details)
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the variance comes from V(0). This means that most of the vari-
ance observed stems the measurement system. The variance of 
the bags from this station is well inside the limits of ±0.5 kg from 
the average. There was one notable issue however; the average is 
25.36, i.e. an overconsumption of 1.5% of raw material. This will of 
course increase the production costs. The explanation for the high 
average was probably that the autocorrect of the weight was found 
to be turned off, in combination with slightly too high pressure.

Bagging station 2 has a serious problem, displaying extremely 
high variations. The sill (overall variance) is 100 times higher than 
for bagging station 1. One bag is even above 27 kg. The average 
weight is 25.55 kg which corresponds to an overconsumption of 
2.2%. V(0) is higher than for bagging station 1. The different bag-
ging lines are using the same type of scale, but there could be other 
factors contributing to the higher V(0) value, such as vibrations, dust 
on the scales etc. V(0) is presently at the limit to give bag weights 
just within the ±0.5 kg specifications. Two STD (95% confidence 
level) interval around V(0) is 0.44 kg, meaning that the scales will 
measure 5% of the bags above 25.44 kg or below 24.56 kg – even 
if all bags had a weight of 25 kg on statistical average. This will make 
it very difficult to adjust the filling to 25 kg when the remaining part 

of the variance is also considered. The tolerance limit has probably 
been increased by the plant personal to avoid an uncomfortably 
high occurrence rate in the production. In addition the high vari-
ance indicates an air-leakage influencing the filling. Could it be that 
the air-leakage influences the scale causing a high V(0) as well as 
a high overall variance due to bad filling control? If this is the case 
the air-leakage simply doubles-up the problems, in practise making 
it virtually impossible to control the process. The last ‘explanations’ 
are only speculative at the present, but show how detailed inter-
pretation of experimental variograms is of great help for process 
control in pointing out both problems as well as possible solutions.

Bagging station 3 has an accurate, correct set point; 24.99 kg, 
but both the sill (total variance) and V(0) is significantly higher com-
pared to bagging station 1, bagging station 3: 0.00015 compared 
with 0.00003 for bagging station 1. The difference is more or less 
explained by higher V(0) and a contribution from a strong cyclic 
periodicity with lag = 2. V(0) is again at the limit to deliver the bags 
within the spec of ±0.5 kg. The two STD (95% confidence level) 
around the V(0) is here 0.43 kg. By a similar argument as above, this 
means that the scales will measure 5% of the bags above 25.43 kg 
or below 24.57 kg solely as a function of the quality of the meas-
urement system. Combined with the cyclic periodicity, this gives 
3 bags out of spec, even if the material consumption is perfect. 
The cyclic periodicity again comes from the auto-correction facility. 
This is deemed acceptable, but a high v(0) will probably cause the 
auto-correction occasionally to go in the wrong direction, and again 
make it almost impossible to keep all the bags inside the limits of 
±0.5 kg. Investigations will be carried out as to why the scale has 
such a high variance. It also must be pointed out that the periodicity 
makes the estimation of V(0) difficult.

It is important to realise that a high V(0) is a function of an infe-
rior (TSE + TAE), which will occasionally indicate bags out of spec, 
which are in fact not. Such a measurement system is not accept-
able in the industrial practise as it disturbs proper process control.

Figure 10. Variogram of data from bagging station 1, (left) for comparison of all stations; (right) for close-up evaluation.

Figure 12. Variogram of data from bagging station 3, (left) for comparison of all stations; (right) for close-up evaluation.

Figure 11. Variogram of data from bagging station 2; same Y-axis vari-
ance units as Fig. 10 (left).
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To reduce material losses at the production line, the first step 
should be to evaluate the weight measurement system. This will 
make it much easier to eliminate or to reduce real losses. It will 
be important to monitor and keep V(0) low. Bagging line 1 had an 
acceptable V(0), and since all the station use the same system it 
should be possible to achieve the same system quality at the other 
two stations as well. Further analysis to find the root causes of the 
differences has to be carried out, e.g. is there influencing dust con-
tamination, air-flow or other, not yet identified agents? Can operator 
adjustment influence V(0)?

As an important aside, it is worthy of considerable note (and con-
cern) that all scales were newly calibrated before this experiment.

It is likely that operators have been under time pressure during 
the experimental campaign, possibly substantiated in their choice 
to increase the specification limits instead of stopping the bag-
ging equipment to solve the problems. There is always a balance 
between the costs (and time pressure) of non-production time and 
the costs of increased raw material consumption. On-line recording 
using moving average smoothing and V (0) monitoring could ease 
the decision of when to stop or not. Specific routines of when to 
take action, related to specific limits could be worked out depend-
ing of type of product and raw material costs. Even if the producer 
chooses to continue without correction, for example due to high 
demand, they will now be fully aware of the potential costs of doing 
so.

Conclusions
A periodicity with a frequency of lag equal 5, i.e. 7.5 minutes arises 
from cooler level fluctuations in the case of production of Exclay. 
This corresponds to a conservative estimate of a loss of 0.71% 
of output of the kiln, leading to a yearly loss of 100,000 Euro. An 
investment of 5,000 Euro will have a pay-back time of less than 1 
month. This is but a modest economic result but shows the power 
of variografic analysis as a strong strategic tool for industry in gen-
eral.

Bag overfilling in the analysed period was 1.2%, originating from 
two stations with an overfilling of 1.5 and 2.2% respectively and one 
perfectly run station. It seems that the plant focus has been on time 
and not on costs, since an auto-correction facility was deliberately 
turned off on one of the weighing stations and the specification lim-
its of another were manually increased – leading to weights far off 

from the ±0.5 kg specification. The existing equipment used to fill 
and weigh the bags is likely good enough, based on the fact that 
the acceptable filling station shows completely acceptable levels 
of V(0) and sill, resulting in bags well within the limit of ±0.5 kg . It 
is necessary to pay more attention and awareness to the costs of 
overfilling – at the very least, data from the scales must be recorded. 
On-line moving average smoothing with set limits of action depend-
ing on product should also be introduced. On-line monitoring of 
V(0) is also a new feature to be implemented, since two of the bag-
ging stations show such a high V(0) that it is in practise structur-
ally impossible to keep the measured weight of the bags within the 
stipulated specifications. By the unavoidable addition of even small 
process variances, e.g. periodicity stemming from the auto-correc-
tion, the whole process monitoring is bound to get out of control. 
At all times a special focus must be on keeping V(0) low, indicated 
the need, and the significant return from, proper education of the 
plant operators/supervisors. This example shows the usefulness of 
variographic analysis in industrial LRM analysis.

The power of using variograms to untangle and separate differ-
ent contributors to the total process and measurement system vari-
ances in industry is ‘priceless’ in more ways than one.
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The overall measurement error—TOS and uncertainty 
budget in metal accounting
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Caspeo, 3 avenue Claude Guillemin BP36009, Orléans CEDEX 2, France. E-mail: s.brochot@caspeo.net

Metal accounting is one of the main tools for financial and technical management of metal production industry. It is based on 
measurements and has to manage the uncertainty inherent to the measurement process. The uncertainty in the metal accounting 
generates financial risk. The accuracy of the metal accounting results is directly linked to the accuracy of the material balance 
and then to the accuracy of the mass and content measurements. Estimate the overall measurement error, through its probability 
distribution or its first and second moments (mean and variance), can contribute to the enterprise decision making.
 The overall measurement error can be calculated and analysed by establishing the uncertainty budget. If this approach has been 
mainly introduced to calculate the analytical error (cf. ISO GUM), it has to take into account the sampling procedure. Even though it 
is not explicitly named “uncertainty budget”, the same approach is proposed in the Pierre Gy’s Theory of Sampling (TOS), where the 
various components of the overall error are well identified and described with their properties and their relative weights.
 The present paper proposes a methodology to build such uncertainty budgets in the frame of the implementation of a metal 
accounting system. It can be applied to an existing measurement system, analysing the results in order to find some ways for 
improving the measurement accuracy. In addition, it can be used to define a new measurement procedure with an objective of 
accuracy. Various real examples illustrate both applications.

Introduction

I
f “Metal accounting is the estimation of (saleable) metal produced 
by the mine and carried in subsequent process streams over a 
defined period of time”1, it has become widely used to quantify 
the performances of production plants (metal recovery, losses, 

environmental impact) and to establish an accurate estimation for 
the metal inventory (stock taking and work in progress estimation). A 
large discrepancy between the estimated and actual inventory can 
have significant financial consequences. Similarly, poor estimation of 
metal recovery and losses can hide process issues and give inap-
propriate production planning. This is why “metal accounting pro-
vides interface between technical and financial performance meas-
urement”1. These two cultures have two very different points of view 
and have difficulties to conciliate them. The main topic of disagree-
ment is the uncertainty of measurement which implies uncertainty in 
the estimation of production and inventories.

The measurement uncertainty and the methods of reducing it 
have been largely discussed in many papers2,3,4,5,6. The objective 
of the current paper is to propose a method to be able to quantify 
the uncertainty with the establishment of the uncertainty budget of 
any measurement useable for metal accounting. An audit of the 
measurement system has to take place in order to examine the 
current situation, collect all information necessary for uncertainty 
budget and make recommendations for measurement accuracy 
improvements.

Metal accounting implementation
Metal accounting is a component of the general enterprise account-
ing7,8. It constitutes a powerful tool to manage metal producing 
companies at their various stages: mine and mill, concentrator, 
smelter or hydrometallurgical plant, refinery, or a combination of 
these stages. It is the bridge between the technical and the financial 
point of views of the process. The process data generated to man-
age the production performances are used to valuate the products 
and stocks into financial data.

The main objective of a metallurgical accounting system is to help 
the company in managing process data to generate a material bal-
ance in order to obtain a metal accounting report. The secondary 
objective is to use the material balance to accurately calculate the 
process performances and help the process manager in optimis-
ing it. The metal accounting is generally established for a period of 
production. This period can be defined by a regular time period or 
by the period of production of a material batch. In accordance with 
the financial and accounting rules, the regular time period is gener-
ally a month.

In the life time of a company we can consider three life cycle levels 
for metal accounting9:

 ■ Metal accounting system life cycle: this begins with the decision 
to implement the metal accounting system in a company and 
finishes with the decision to end it.

 ■ Production evolution life cycle: this regards the adjustments of 
the metal accounting system due to production evolutions such 
as a process change, a new production unit, or new products.

 ■ Metal accounting life cycle: this groups the periodical tasks to 
obtain a regular metal accounting report.
From the moment a company decides to implement a metal 

accounting system to the time the system reaches completion, 
three periods can be identified. The “implementation” groups all 
tasks to obtain an operational and efficient metal accounting sys-
tem. The “production” groups all tasks to regularly generate metal 
accounting reports and update the system according to notable 
evolutions. The “closing” groups all tasks to finalize the last metal 
accounting taking into account the plant dismantlement.

The implementation of a metal accounting system is a company 
project mobilising all staff: general management, financial, account-
ing, production, laboratory, metrology, information technology, pur-
chasing, sales staff… Depending on the initial level of development 
of the company many tasks have to be taken into consideration9. 
The ones concerning the present paper are: a review of the existing 
measurement system; the design and implementation of necessary 
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additional measurements; the establishment of the measurement 
uncertainty budget6 involving the identification and implementation 
of some improvements; the standardisation of the measurement 
system.

Measurements at the basis of metal accounting
The metallurgical accounting is based on the calculation of the 
material balance of the considered system. This calculation neces-
sitates raw data, such as masses, moisture contents or assays, 
which are obtained by measurements. As the measurement is a 
random process, it is subject to uncertainty which can be quanti-
fied with its associated “measurement error”2. It concerns also the 
measurements of mass3, moisture or metal content, percentage of 
solids or density… These last measurements generally necessitate 
sampling which is the main source of uncertainty4,5. All efforts have 
to be done to obtain correct sampling and measurement to avoid 
any bias. This bias would produce discrepancies between metal 
accounting and real production with the risk of unacceptable finan-
cial consequences. Nevertheless, the variance of the overall meas-
urement error cannot be avoided and its calculation necessitates 
the establishment of its uncertainty budget6.

The quantity of material managed during the considered period 
of metal accounting is generally given by the sum of many mass 
measurements such as truck loads or production weights per shift. 
Similarly, the mean moisture or metal contents are calculated by 
the weighted average of the contents of many samples. The aggre-
gation of this raw data gives the “basis data” which is the sum of 
the total masses or the average contents of the material during the 
accounting period. A measurement error can then be attached to 
the basis data using the error propagation calculation rules10.

Measurement error and data reconciliation
Due to the measurement uncertainty, the basis data are incoherent 
regarding the material conservation laws11,12. The incoherence can 
be observed when there is data redundancy: when there is more 
data than the required minimum to calculate the material balance. 
The objective of data reconciliation by material balance is to find 
a set of estimates for the measured values which are as close as 
possible to the measurements and verify the material conservation 
laws. Sometimes, balancing behaviour reveals non-stationary pro-
cesses or bad accuracy estimation. The information redundancy 
allows delivering coherent estimators more accurate than the initial 
measurements13,14. This approach allows for the detection of aber-
rant values and to reduce error due to sampling and measurement.

Overall measurement error
The relative measurement error is defined as the difference between 
the value of a parameter obtained by a measurement protocol and 
the true value which is, by definition, unknown, the whole divided by 
the true value. Due to the natural variability occurring in any meas-
urement protocol, the measurement error is a random variable 
following a probability law which can be obtained using different 
approaches. For the statistical approach, the same measurement is 
performed a large number of times and statistics are done on the set 
of results. This approach, referring to evaluation of type A, is called 
a posteriori as it is necessary to do the measurements to be able to 
evaluate the probability law. The probabilistic approach, evaluation 
of type B, is called a priori because it is based on theories such as 
the sampling theory. A combination of these two approaches can 

be used to evaluate the overall measurement error. The moments 
of the probability distribution are used to characterise the meas-
urement error. The first moment, the mean, gives an evaluation of 
the bias, a systematic deviation between the measurements and 
the true value. It measures the accuracy of the measurement. The 
second moment, the variance, quantifies the reproducibility (or pre-
cision) of the measurement.

Components of the measurement error
The overall measurement error (OE) includes a lot of components 
which can be divided, following the Pierre Gy’s classification15, 16, 

17, into two main components: the total sampling error (TE) and the 
analytical error (AE).

The analysis error is due to the imperfection of the protocols and 
devices used for analytical operations19. When concerning assay-
ing or moisture content, the analysis is performed on the sample 
obtained from the last sampling stage, which is generally taken 
in the laboratory. The evaluation of the analysis error needs the 
decomposition of the protocols and procedures to find all sources 
of error. Calculation rules and metrological approach are used to 
calculate the total analysis error. Another approach, mainly used 
in QAQC procedures, is based on the variance analysis of a large 
number of performed measurements18.

The total sampling error has to take into account the succes-
sion of particle size and bulk reductions. It is then the sum of the 
total sampling errors at each stage (TEn). The sample preparation 
operations generate the increment preparation error (IPE) due to 
contamination, loss, chemical or physical alteration, unintentional 
or intentional mistakes. The operation of taking a small amount of 
material in a lot in order to obtain a sample generates: the funda-
mental sampling error (FSE), the grouping and segregation error 
(GSE), all together called short-range process integration error 
(PIE1), result from the heterogeneity of constitution, while the long-
range (PIE2) and periodic (PIE3) process integration errors, and the 
increment weighing error (IWE) comes from the heterogeneity of 
distribution in the space or in the time. The increment delimitation 
error (IDE) and the increment extraction error (IEE) constitute the 
materialisation error.

Uncertainty budget
The evaluation of the overall measurement error necessitates listing 
all the sources of error along the entire process, from the original 
lot, subject to the measurement, to the use of the analytical results. 
The inventory of the sources of errors is obtained from a preliminary 
diagnostic phase of the plant measurement system. This phase has 
a double objective: calculate the variance of the overall measure-
ment error and improve the measurement process, everywhere it is 
possible, in order to reduce this error in terms of bias and variance.

The uncertainty budget lists all the components of the overall 
measurement error with their respective weights. The analysis of 
the repartition of the components allows focussing on the improve-
ment of the main components. The establishment of such a list 
necessitates an a priori approach of type B. Indeed, it is very dif-
ficult to extract the error components from the variance analysis 
of a large number of measurements in the frame of an a poste-
riori approach of type A. Nevertheless, some components can be 
obtained from such type A approach such as the device repeatabil-
ity or, concerning sampling, the process integration errors obtained 
from chronostatistics15,16.
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Audit of the measurement system
The term “Measurement System” refers to all aspects of the meas-
urements:

 ■ All pieces of equipment used for measurements including sample 
taking and preparation, and laboratory;

 ■ Their documentation: manuals, maintenance log-sheets, calibra-
tion log-sheets and certificates, inventory;

 ■ The measurement procedures including sample taking and prep-
aration, analysis;

 ■ The measurement results management and storage;
 ■ The Quality Assurance / Quality Control (QA/QC) documentation: 
procedures, reports;

 ■ The uncertainty budget for all relevant measurements;
 ■ Information and data repository.
The first step of the audit is to examine the current situation of the 

measurement system. It starts with an inventory of all the measure-
ments required for metal accounting. This list is confronted with the 
inventory of the currently performed measurements. A special atten-
tion has to be paid at this level. Indeed, the definition of the material 
flow diagram9 (including material movements and stocks which are 
accounted) and its level of details is commonly conducted by the 
availability of measurements, while common sense would dictate 
the contrary: define the material flow diagram with the objective of 
accurate metal accounting and then locate, design and implement 
the measurements. The comparison between the inventories of the 
expected and actual measurements gives a first idea of the “cost” 
for the measurement system upgrading.

The already performed measurements are then analysed in details 
one by one. An on-site visit is absolutely necessary to observe the 
measurement process in operation: true location of the measure-
ment or of the sampling point, material subject to measurement, 
operating conditions of the equipment, operator practice, operating 
environment… All the documentation concerning equipment (such 
as user’s guide, technical sheets, and maintenance and calibra-
tion log-sheets), procedures (for sampling taking and preparation, 
analysis and safety rules), QA/QC (procedures and reports) and 
material are collected. Results of already performed measurements 
have to be collected from databases (historians) or log-sheets for 
subsequent statistical analysis.

The technical documentation of the equipment allows to list its 
inherent sources of error and to collect the quantitative values used 
to estimate their components in form of variances (such as read-
ability or temperature sensitivity). The procedures give the detailed 
description of the measurement process with all its steps and the 
sources of error arising at each stage. The list of items to account in 
the uncertainty budget is deducted from these both kinds of docu-
mentation. If documentation is missing, operator interview is abso-
lutely required. Even though the documentation is available, such 
interview is always rewarding as there is always a gap between the 
documentation and the real practice.

Material characterisation for heterogeneity model
The theory of sampling gives guidance how to calculate the funda-
mental sampling error starting from the description of the heteroge-
neity of the material regarding the parameter to measure (moisture 
content, assay, slurry density). A detailed description of the het-
erogeneity can be deducted from various sources of information: 
mineralogical studies including quantitative mineralogy using image 
analysis, size and density distribution analysis, processing test 

results and process data. Such a model of heterogeneity has to be 
developed for each stage of the sampling plan. Indeed, the material 
being ground before sub-sampling, the heterogeneity changes in 
terms of size distribution and mineral liberation. Generally, most of 
the required information are available in the collected documenta-
tion. If there are missing data, specific experiments can be con-
ducted to refine the material characterisation.

The variographic analysis is the better way to estimate the com-
ponents of the process integration error (PIE) and mainly the ones 
associated to the distribution heterogeneity15,16,20. Such studies 
are rarely available before the audit. Sometimes, the historical data 
are sufficient to have a first idea of the process variability. But the 
required operating conditions to conduct such a study are not the 
one of the routine measurements. It is why it has to be performed 
for the more relevant sampling points, that is to say where the ben-
efit will cover the cost.

A multi-disciplinary approach is absolutely necessary during this 
task. Indeed, the heterogeneity model is built by inference from a 
great diversity of information sources. In addition, it is generally nec-
essary to do, and justify, some realistic assumptions.

Audit report
The main part of the audit report concerns the uncertainty budget. It 
allows to associate a quantitative error to each measurement, what 
is the basis of data reconciliation. The uncertainty budget highlights 
the main components of the overall error pointing out the possible 
improvements. Recommendations can then be done at the light of 
these results.

Conclusion
A metallurgical accounting system has to conciliate two points of 
view: the technical point of view for which the material balance is 
the product of a statistical approach of the reality and the finan-
cial point of view for which the metal balance refers to an exact 
and coherent  economic value in the accounting system. Neverthe-
less, the material balance is based on measurements which are 
random processes. The measurement error has to be considered 
when corrections  take place during the data reconciliation process. 
If the data reconciliation is based on a statistical coherent mate-
rial balance , the obtained estimated values are the more probable 
ones.

In the implementation of a Metal Accounting system, the initial 
diagnostic of the existing measurement system has to be carefully 
conducted to have a good quantification of the overall measure-
ment error. This error is directly used by the data reconciliation sys-
tem and gives the accuracy of the key point indicators. In addition, 
the analysis of the uncertainty budget of the overall error indicates 
the main components on which the efforts of improvement have to 
be done.
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Complete sampling distribution for primary sampling, 
sample preparation and analysis
Geoffrey J. Lyman
Materials Sampling & Consulting, Southport, Queensland, Australia 4215. E-mail: glyman@iprimus.com.au

Following from the author’s recent paper at Sampling 2014 which presented a method for calculation of the sampling probability 
density function due to the particulate heterogeneity (density function of the fundamental sampling uncertainty), it is possible to apply 
the same characteristic function method to arrive at the overall sampling distribution for any sampling protocol and analysis method. 
This paper develops the application of the method of characteristic functions to the overall sampling problem including the uncertainty 
which derives from the primary sampling from a process stream. The assay distribution in a process stream or of impurities in the 
flow of a final product can be governed by non-Gaussian, serially correlated distributions. The paper shows how such circumstances 
can be dealt with to arrive at robust solutions. The paper represents an end-point in the theory of sampling as it provides a means of 
determining the entire distribution function for a sampling system. Such a determination has not previously been possible and having 
determined the entire distribution function, the statistics of the sampling process are completely determined.

Introduction

O
ne cannot say too much about the theory of sampling 
put forward by Pierre Gy. Gy consolidated the elements 
of sampling theory that had been proposed over the 
years leading up to his definitive works in the 50s and 

60s. For the English-speaking world, the theory of sampling arrived 
in 1979 with his book published by Elsevier.

This was close to the time when I first began to take an interest in 
sampling theory so that I could design plant tests intended to reveal 
the performance of unit operations in coal processing, with which 
I was then involved. There was always in mind that party A claims 
an increase in yield of X percent while party B claims an increase 
of Y percent. Who was correct? How were the trials carried out? 
Is it possible to assess the uncertainty involved in the claims of 
improved performance? If everyone who carried out trials was cor-
rect, the yield of product would be 120% of the feed content.

The resolution of this conundrum is found in the provision of esti-
mates of uncertainty to be attached to each of the quantities meas-
ured in the test work and to have those uncertainties propagated 
through to the final figure for recovery, yield or whatever perfor-
mance indicator is preferred. Unlike the physicists who were work-
ing at the time when I was an undergraduate and graduate engineer 
learning my trade, I found that the mineral processors never pro-
vided error bars on their results in the same way that the physicists 
and chemists did. I found this to be an unscientific approach and 
to be rather political in nature. An engineering or physical quantity 
has no validity until there is a reasonably accurate estimate of its 
uncertainty that is stated along with the figure.

Pierre Gy waged a campaign to bring the mineral processors into 
the world of modern science by focussing on the uncertainties that 
we experience when doing test work or running a plant. While a 
number of investigators had made estimates of sampling variance 
due to the particulate nature of a mineral mixture, Gy created a 
mathematical structure that could be used in a coherent fashion 
to describe the variance of sampling due not just to the particulate 
nature of the mineral but also to the process variance in the flow 
in the plant that was being sampled. His recognition that he could 
borrow from the nascent theory of geostatistics to describe the vari-
ance due to grade variation in a process stream was a unique and 

brilliant step forward. This very important component of sampling 
variance had been ignored up to that point in time.

The mineral processing world is still struggling to come to terms 
with the power of Gy’s work. The full power of his theory is often 
neglected in the design of sampling systems. We have new analyti-
cal tools to look at fine particle compositions that permit the imple-
mentation of the detail of Gy’s work; we don’t have to guess at a 
liberation constant any more or postulate how that value may vary 
with the top size of the sample.

I have recently been lucky enough to come across some work by 
a skilled statistician that lead me to develop a means of estimating 
the entire sampling distribution, due to all factors. This paper pre-
sents the outline of how these calculations are made.

I respectfully dedicate this presentation to Pierre whose work has 
been a constant inspiration since I learned of it and met him many 
years ago in Sydney.

The paper will briefly recall the mathematical method by which the 
calculations can be made and will then provide an example of the 
outcome of the calculations, for a gold ore.

Mathematical background
The method of calculation of the entire sampling distribution is based 
on the fact that given a set of random variables that are statistically 
independent and each have arbitrary probability density functions, the 
characteristic function for the probability density of a weighted sum 
of the random variables is determined from the product of the char-
acteristic functions for each of the random variables. This is a funda-
mental relationship of mathematical statistics. In fact, the probability 
density function and the characteristic function are Fourier transform 
pairs. Knowledge of the characteristic function for a random variable 
is equivalent to knowledge of the probability density function.

For every probability density function, p(x), the characteristic 
function is defined as
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Following from the author's recent paper at Sampling 2014 which presented a method for calculation of the 
sampling probability density function due to the particulate heterogeneity (density function of the funda-
mental sampling uncertainty), it is possible to apply the same characteristic function method to arrive at the 
overall sampling distribution for any sampling protocol and analysis method. This paper develops the ap-
plication of the method of characteristic functions to the overall sampling problem including the uncertainty 
which derives from the primary sampling from a process stream. The assay distribution in a process stream 
or of impurities in the flow of a final product can be governed by non-Gaussian, serially correlated distribu-
tions. The paper shows how such circumstances can be dealt with to arrive at robust solutions. The paper 
represents an end-point in the theory of sampling as it provides a means of determining the entire distribu-
tion function for a sampling system. Such a determination has not previously been possible and having de-
termined the entire distribution function, the statistics of the sampling process are completely determined. 

Introduction 
One cannot say too much about the theory of sampling put forward by Pierre Gy. Gy consolidated the elements of sampling theory 
that had been proposed over the years leading up to his definitive works in the 50s and 60s. For the English-speaking world, the 
theory of sampling arrived in 1979 with his book published by Elsevier. 

This was close to the time when I first began to take an interest in sampling theory so that I could design plant tests intended to 
reveal the performance of unit operations in coal processing, with which I was then involved. There was always in mind that party A 
claims an increase in yield of X percent while party B claims an increase of Y percent. Who was correct? How were the trials carried 
out? Is it possible to assess the uncertainty involved in the claims of improved performance? If everyone who carried out trials was 
correct, the yield of product would be 120% of the feed content. 

The resolution of this conundrum is found in the provision of estimates of uncertainty to be attached to each of the quantities 
measured in the test work and to have those uncertainties propagated through to the final figure for recovery, yield or whatever per-
formance indicator is preferred. Unlike the physicists who were working at the time when I was an undergraduate and graduate engi-
neer learning my trade, I found that the mineral processors never provided error bars on their results in the same way that the physi-
cists and chemists did. I found this to be an unscientific approach and to be rather political in nature. An engineering or physical 
quantity has no validity until there is a reasonably accurate estimate of its uncertainty that is stated along with the figure. 

Pierre Gy waged a campaign to bring the mineral processors into the world of modern science by focussing on the uncertainties 
that we experience when doing test work or running a plant. While a number of investigators had made estimates of sampling variance 
due to the particulate nature of a mineral mixture, Gy created a mathematical structure that could be used in a coherent fashion to 
describe the variance of sampling due, not just to the particulate nature of the mineral, but to the process variance in the flow in the 
plant that was being sampled. His recognition that he could borrow from the nascent theory of geostatistics to describe the variance 
due to grade variation in a process stream was a unique and brilliant step forward. This very important component of sampling vari-
ance had been ignored up to that point in time. 

The mineral processing world is still struggling to come to terms with the power of Gy's work. The full power of his theory is often 
neglected in the design of sampling systems. We have new analytical tools to look at fine particle compositions that permit the im-
plementation of the detail of Gy's work; we don't have to guess at a liberation constant any more or postulate how that value may vary 
with the top size of the sample. 

I have recently been lucky enough to come across some work by a skilled statistician that lead me to develop a means of estimating 
the entire sampling distribution, due to all factors. This paper presents the outline of how these calculations are made.  

I respectfully dedicate this presentation to Pierre whose work has been a constant inspiration since I learned of it and met him many 
years ago in Sydney. 

The paper will briefly recall the mathematical method by which the calculations can be made and will then provide an example of the 
outcome of the calculations, for a gold ore. 

Mathematical background 
The method of calculation of the entire sampling distribution is based on the fact that given a set of random variables that are statisti-
cally independent and each have arbitrary probability density functions, the characteristic function for the probability density of a 
weighted sum of the random variables is determined from the product of the characteristic functions for each of the random variables. 
This is a fundamental relationship of mathematical statistics. In fact, the probability density function and the characteristic function are 
Fourier transform pairs. Knowledge of the characteristic function for a random variable is equivalent to knowledge of the probability 
density function. 

For every PDF, p(x), the characteristic function is defined as 
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where, I = –1 so it is a complex-valued function and is a Fourier transform of the density function. Given the characteristic function of 

a density function, the density function can be recovered as an inverse transform yielding a real-valued function 

 
(1)

where, i = Ö–1 so it is a complex-valued function and is a Fourier 
transform of the density function. Given the characteristic function 

doi: 10.1255/tosf.44



Issue 5  201588 TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

of a density function, the density function can be recovered as an 
inverse transform yielding a real-valued function

  ( ) ( )1
2

iuxp x e u du
¥

-

-¥

= ò j
p

 (2) 

The characteristic function has the following properties 
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where ( )uj <Eq A> is the complex conjugate of j(u). 

It is also possible to calculate the non-central moments of the density function directly from the characteristic function without 
making the inversion, as 
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This last relationship is very useful as one can find the sampling variance without having to make an inversion. 
In sampling a process stream for a particular critical content, when the sampling is carried out in a mechanically correct manner, 

there are only three sources of variance: 
• variance due to the time variation of the critical content of the process stream 
• variance due to the intrinsic (particulate) heterogeneity of the primary increments and the subsamples retained in the sample 

preparation protocol, including that of the analytical aliquot 
• variance due to the final analysis of the aliquot by some appropriate means  

It is usual to base the calculation of the variance due to intrinsic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the variance due to intrinsic heterogeneity depends only on the partic-
ular state of comminution of the material being sampled. Indeed, the distribution of the uncertainty due to intrinsic heterogeneity is 
taken to be dependent only on the average grade and the state of comminution of the material. 

In such a case, it is possible to state that the three sources of uncertainty are statistically independent. Consequently, if it is possible 
to determine the probability density functions for each of the three sources of uncertainty, it will be possible to calculate the probability 
density function for the sampling protocol as a whole by finding the characteristic functions for each of the sources of uncertainty, 
taking their product and inverting this product. Even if the probability density function varies with the state of comminution of the 
subsample within the sampling protocol, that change can be accommodated within the procedure by introducing additional inde-
pendent density functions into the calculation. 

The first source of variance, due to time variation of grade in the stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which frequent increments are taken with preparation and analysis of 
individual increments. Such information as we have usually comes from on-line analysis systems. For the purpose of this analysis, the 
grade variation in the process stream under examination will be simulated on a very fine time scale (all potential increments will be 
created) and the stream will be sampled at an appropriate frequency over an 8 hour shift. 

We know more about the second source of variance if an appropriate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely fundamental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunction with gravity recoverable gold studies. 

The final source of uncertainty, the analytical uncertainty can be determined from laboratory duplicate assay information. It is im-
portant that such information be uncensored (all assays made must be captured by the laboratory information management system). 
This distribution should be Gaussian if the protocol and method is correct. 

Example 
The calculations will be illustrated by considering a variable feed to a gold plant that is treating ore from two different sources, one of 
which has a higher grade than the other and a different size distribution of gold in the ore. We take the following case: 

• Ore A is treated 25% of the time and is the higher grade material 
• The switching of the feed between the two sources is random in that the duration for which each ore is treated follows an 

exponential distribution with an expected duration of 10 minutes (high grade) and 30 minutes (low grade). 
• Both ores carry gold with a two distribution of grain sizes to explore the impact of 'coarse gold'. 

Feed variation and primary sampling density function 
A typical trace of the feed gold grade is shown in Figure 1. Both the low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2. 

The time variations of the grade for both ore types are taken to follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alternately from one of the two ore sources. 

The simulated trace of grade as a function of time is sampled at a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time period. The sampling is of course unbiased. The quantity of interest is 
the distribution of the difference between the true unknown grade and the grade of the sample as that is the sampling uncertainty. It is 
essentially impossible to calculate this distribution a priori, so the simulation method must suffice. 

The simulations were run 5000 times, simulating 5000, 8 hour periods on a time base of 1 second (28800 points in the simulation) 
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where ( )uj <Eq A> is the complex conjugate of j(u). 
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This last relationship is very useful as one can find the sampling variance without having to make an inversion. 
In sampling a process stream for a particular critical content, when the sampling is carried out in a mechanically correct manner, 

there are only three sources of variance: 
• variance due to the time variation of the critical content of the process stream 
• variance due to the intrinsic (particulate) heterogeneity of the primary increments and the subsamples retained in the sample 

preparation protocol, including that of the analytical aliquot 
• variance due to the final analysis of the aliquot by some appropriate means  

It is usual to base the calculation of the variance due to intrinsic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the variance due to intrinsic heterogeneity depends only on the partic-
ular state of comminution of the material being sampled. Indeed, the distribution of the uncertainty due to intrinsic heterogeneity is 
taken to be dependent only on the average grade and the state of comminution of the material. 

In such a case, it is possible to state that the three sources of uncertainty are statistically independent. Consequently, if it is possible 
to determine the probability density functions for each of the three sources of uncertainty, it will be possible to calculate the probability 
density function for the sampling protocol as a whole by finding the characteristic functions for each of the sources of uncertainty, 
taking their product and inverting this product. Even if the probability density function varies with the state of comminution of the 
subsample within the sampling protocol, that change can be accommodated within the procedure by introducing additional inde-
pendent density functions into the calculation. 

The first source of variance, due to time variation of grade in the stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which frequent increments are taken with preparation and analysis of 
individual increments. Such information as we have usually comes from on-line analysis systems. For the purpose of this analysis, the 
grade variation in the process stream under examination will be simulated on a very fine time scale (all potential increments will be 
created) and the stream will be sampled at an appropriate frequency over an 8 hour shift. 

We know more about the second source of variance if an appropriate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely fundamental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunction with gravity recoverable gold studies. 

The final source of uncertainty, the analytical uncertainty can be determined from laboratory duplicate assay information. It is im-
portant that such information be uncensored (all assays made must be captured by the laboratory information management system). 
This distribution should be Gaussian if the protocol and method is correct. 

Example 
The calculations will be illustrated by considering a variable feed to a gold plant that is treating ore from two different sources, one of 
which has a higher grade than the other and a different size distribution of gold in the ore. We take the following case: 

• Ore A is treated 25% of the time and is the higher grade material 
• The switching of the feed between the two sources is random in that the duration for which each ore is treated follows an 

exponential distribution with an expected duration of 10 minutes (high grade) and 30 minutes (low grade). 
• Both ores carry gold with a two distribution of grain sizes to explore the impact of 'coarse gold'. 

Feed variation and primary sampling density function 
A typical trace of the feed gold grade is shown in Figure 1. Both the low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2. 

The time variations of the grade for both ore types are taken to follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alternately from one of the two ore sources. 

The simulated trace of grade as a function of time is sampled at a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time period. The sampling is of course unbiased. The quantity of interest is 
the distribution of the difference between the true unknown grade and the grade of the sample as that is the sampling uncertainty. It is 
essentially impossible to calculate this distribution a priori, so the simulation method must suffice. 

The simulations were run 5000 times, simulating 5000, 8 hour periods on a time base of 1 second (28800 points in the simulation) 
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This last relationship is very useful as one can find the sampling variance without having to make an inversion. 
In sampling a process stream for a particular critical content, when the sampling is carried out in a mechanically correct manner, 

there are only three sources of variance: 
• variance due to the time variation of the critical content of the process stream 
• variance due to the intrinsic (particulate) heterogeneity of the primary increments and the subsamples retained in the sample 

preparation protocol, including that of the analytical aliquot 
• variance due to the final analysis of the aliquot by some appropriate means  

It is usual to base the calculation of the variance due to intrinsic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the variance due to intrinsic heterogeneity depends only on the partic-
ular state of comminution of the material being sampled. Indeed, the distribution of the uncertainty due to intrinsic heterogeneity is 
taken to be dependent only on the average grade and the state of comminution of the material. 

In such a case, it is possible to state that the three sources of uncertainty are statistically independent. Consequently, if it is possible 
to determine the probability density functions for each of the three sources of uncertainty, it will be possible to calculate the probability 
density function for the sampling protocol as a whole by finding the characteristic functions for each of the sources of uncertainty, 
taking their product and inverting this product. Even if the probability density function varies with the state of comminution of the 
subsample within the sampling protocol, that change can be accommodated within the procedure by introducing additional inde-
pendent density functions into the calculation. 

The first source of variance, due to time variation of grade in the stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which frequent increments are taken with preparation and analysis of 
individual increments. Such information as we have usually comes from on-line analysis systems. For the purpose of this analysis, the 
grade variation in the process stream under examination will be simulated on a very fine time scale (all potential increments will be 
created) and the stream will be sampled at an appropriate frequency over an 8 hour shift. 

We know more about the second source of variance if an appropriate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely fundamental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunction with gravity recoverable gold studies. 

The final source of uncertainty, the analytical uncertainty can be determined from laboratory duplicate assay information. It is im-
portant that such information be uncensored (all assays made must be captured by the laboratory information management system). 
This distribution should be Gaussian if the protocol and method is correct. 

Example 
The calculations will be illustrated by considering a variable feed to a gold plant that is treating ore from two different sources, one of 
which has a higher grade than the other and a different size distribution of gold in the ore. We take the following case: 

• Ore A is treated 25% of the time and is the higher grade material 
• The switching of the feed between the two sources is random in that the duration for which each ore is treated follows an 

exponential distribution with an expected duration of 10 minutes (high grade) and 30 minutes (low grade). 
• Both ores carry gold with a two distribution of grain sizes to explore the impact of 'coarse gold'. 

Feed variation and primary sampling density function 
A typical trace of the feed gold grade is shown in Figure 1. Both the low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2. 

The time variations of the grade for both ore types are taken to follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alternately from one of the two ore sources. 

The simulated trace of grade as a function of time is sampled at a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time period. The sampling is of course unbiased. The quantity of interest is 
the distribution of the difference between the true unknown grade and the grade of the sample as that is the sampling uncertainty. It is 
essentially impossible to calculate this distribution a priori, so the simulation method must suffice. 

The simulations were run 5000 times, simulating 5000, 8 hour periods on a time base of 1 second (28800 points in the simulation) 
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This last relationship is very useful as one can find the sampling variance without having to make an inversion. 
In sampling a process stream for a particular critical content, when the sampling is carried out in a mechanically correct manner, 

there are only three sources of variance: 
• variance due to the time variation of the critical content of the process stream 
• variance due to the intrinsic (particulate) heterogeneity of the primary increments and the subsamples retained in the sample 

preparation protocol, including that of the analytical aliquot 
• variance due to the final analysis of the aliquot by some appropriate means  

It is usual to base the calculation of the variance due to intrinsic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the variance due to intrinsic heterogeneity depends only on the partic-
ular state of comminution of the material being sampled. Indeed, the distribution of the uncertainty due to intrinsic heterogeneity is 
taken to be dependent only on the average grade and the state of comminution of the material. 

In such a case, it is possible to state that the three sources of uncertainty are statistically independent. Consequently, if it is possible 
to determine the probability density functions for each of the three sources of uncertainty, it will be possible to calculate the probability 
density function for the sampling protocol as a whole by finding the characteristic functions for each of the sources of uncertainty, 
taking their product and inverting this product. Even if the probability density function varies with the state of comminution of the 
subsample within the sampling protocol, that change can be accommodated within the procedure by introducing additional inde-
pendent density functions into the calculation. 

The first source of variance, due to time variation of grade in the stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which frequent increments are taken with preparation and analysis of 
individual increments. Such information as we have usually comes from on-line analysis systems. For the purpose of this analysis, the 
grade variation in the process stream under examination will be simulated on a very fine time scale (all potential increments will be 
created) and the stream will be sampled at an appropriate frequency over an 8 hour shift. 

We know more about the second source of variance if an appropriate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely fundamental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunction with gravity recoverable gold studies. 

The final source of uncertainty, the analytical uncertainty can be determined from laboratory duplicate assay information. It is im-
portant that such information be uncensored (all assays made must be captured by the laboratory information management system). 
This distribution should be Gaussian if the protocol and method is correct. 

Example 
The calculations will be illustrated by considering a variable feed to a gold plant that is treating ore from two different sources, one of 
which has a higher grade than the other and a different size distribution of gold in the ore. We take the following case: 

• Ore A is treated 25% of the time and is the higher grade material 
• The switching of the feed between the two sources is random in that the duration for which each ore is treated follows an 

exponential distribution with an expected duration of 10 minutes (high grade) and 30 minutes (low grade). 
• Both ores carry gold with a two distribution of grain sizes to explore the impact of 'coarse gold'. 

Feed variation and primary sampling density function 
A typical trace of the feed gold grade is shown in Figure 1. Both the low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2. 

The time variations of the grade for both ore types are taken to follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alternately from one of the two ore sources. 

The simulated trace of grade as a function of time is sampled at a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time period. The sampling is of course unbiased. The quantity of interest is 
the distribution of the difference between the true unknown grade and the grade of the sample as that is the sampling uncertainty. It is 
essentially impossible to calculate this distribution a priori, so the simulation method must suffice. 

The simulations were run 5000 times, simulating 5000, 8 hour periods on a time base of 1 second (28800 points in the simulation) 
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This last relationship is very useful as one can find the sampling 
variance without having to make an inversion.

In sampling a process stream for a particular critical content, 
when the sampling is carried out in a mechanically correct manner, 
there are only three sources of variance:

 ■ variance due to the time variation of the critical content of the 
process stream

 ■ variance due to the intrinsic (particulate) heterogeneity of the 
primary increments and the subsamples retained in the sample 
preparation protocol, including that of the analytical aliquot

 ■ variance due to the final analysis of the aliquot by some appropri-
ate means
It is usual to base the calculation of the variance due to intrin-

sic heterogeneity on an average composition of the material being 
sampled, although this is not mandatory. It is then implicit that the 
variance due to intrinsic heterogeneity depends only on the particu-
lar state of comminution of the material being sampled. Indeed, the 
distribution of the uncertainty due to intrinsic heterogeneity is taken 

to be dependent only on the average grade and the state of com-
minution of the material.

In such a case, it is possible to state that the three sources of 
uncertainty are statistically independent. Consequently, if it is pos-
sible to determine the probability density functions for each of the 
three sources of uncertainty, it will be possible to calculate the 
probability density function for the sampling protocol as a whole 
by finding the characteristic functions for each of the sources of 
uncertainty, taking their product and inverting this product. Even if 
the probability density function varies with the state of comminution 
of the subsample within the sampling protocol, that change can 
be accommodated within the procedure by introducing additional 
independent density functions into the calculation.

The first source of variance, due to time variation of grade in the 
stream is something about which we know very little in practical 
terms as it is very rare to undertake sampling campaigns in which 
frequent increments are taken with preparation and analysis of indi-
vidual increments. Such information as we have usually comes from 
on-line analysis systems. For the purpose of this analysis, the grade 
variation in the process stream under examination will be simulated 
on a very fine time scale (all potential increments will be created) 
and the stream will be sampled at an appropriate frequency over 
an 8 hour shift.

We know more about the second source of variance if an appro-
priate investigation of the ore is undertaken to determine the size 
distribution of the gold grains. This information is absolutely funda-
mental to the sampling of the material and development of sampling 
protocols. The required information can be developed in conjunc-
tion with gravity recoverable gold studies.

The final source of uncertainty, the analytical uncertainty can be 
determined from laboratory duplicate assay information. It is impor-
tant that such information be uncensored (all assays made must be 
captured by the laboratory information management system). This 
distribution should be Gaussian if the protocol and method is correct.

Example
The calculations will be illustrated by considering a variable feed to 
a gold plant that is treating ore from two different sources, one of 

Figure 1. Typical simulated variation of feed gold grade, showing the switching between the two feed types (bottom trace).
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which has a higher grade than the other and a different size distribu-
tion of gold in the ore. We take the following case:

 ■ Ore A is treated 25% of the time and is the higher grade material
 ■ The switching of the feed between the two sources is random in 
that the duration for which each ore is treated follows an expo-
nential distribution with an expected duration of 10 minutes (high 
grade) and 30 minutes (low grade).

 ■ Both ores carry gold with two distributions of grain sizes to ex-
plore the impact of ‘coarse gold’.

Feed variation and primary sampling density function
A typical trace of the feed gold grade is shown in Figure 1. Both the 
low grade and the high grade material are taken to follow gamma 
distributions of grade. The low grade material has an average of 
2 g/t and the high grade material, 10 g/t. Both distributions have an 
order of two. Their density functions are shown in Figure 2.

The time variations of the grade for both ore types are taken to 
follow random functions with an exponential covariance functions 
with a range of about 70 minutes and are used in such a way that 
the variation in an ore type remains correlated even when inter-
rupted by feeding of the other ore type. This simulates feeding alter-
nately from one of the two ore sources.

The simulated trace of grade as a function of time is sampled at 
a 15 minute period (32 increments per shift) and the grade of the 
accumulated sample is compared to the true grade for the time 
period. The sampling is of course unbiased. The quantity of interest 
is the distribution of the difference between the true unknown grade 
and the grade of the sample as that is the sampling uncertainty. It 
is essentially impossible to calculate this distribution a priori, so the 
simulation method must suffice.

The simulations were run 5000 times, simulating 5000, 8 hour 
periods on a time base of 1 second (28800 points in the simulation) 
Such large simulations require special methods to ensure that the 
simulation is exact. Methods such as sequential Gaussian simula-
tions are not exact. The histogram of differences was extracted and 
was recognised to follow a Laplace distribution very closely (double 
sided exponential distribution). The distribution parameters were 
extracted by a fitting method. The result is shown in Figure 3 and 
the Laplacian model is very good indeed (could this be a general 
result for the sampling distribution?).

The Laplace density function centred on zero is given by
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The tails of the Laplacian distribution are much heavier than a normal distribution. The variance of the distribution is 2a2, so the 
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and a speed of 0.6 m/s, leading to a primary increment mass of 277 kg, which is numerically equal to the feed rate in kg/s. The in-
crement therefore represents 1 second of plant feed (hence the simulation of the feed on a 1 second basis). The sampling interval is 
15 minutes, providing 32 increments, as noted above. 

The two ores are taken to carry both fine and coarse gold. For convenience, the mass distributions of the gold particles are taken to 
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where d <Eq B> is the size at which 0.632 of the sample passes. 

The distributions are shown in Figure 4. 
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where s is the variance of sampling and x <Eq C> is the mean grade and M
S
 is the mass of the sample, the value of the sampling 

constant for the gold will not change until the comminution of the ore is such that the number of gold particles increases due to the 
breaking of the particles. It is not enough to 'liberate' or flatten the particles, they must break. When a subsample is taken at any stage 
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being retained, the sampling variance will increase, but the sampling constant will not change unless the gold particles have been 
broken.  

The situation differs when there are totally barren fragments as these will impact on the sampling constant, but this is not the case in 
this example. 

For the purpose of illustration of the calculation of the total sampling distribution, we will take the sampling to the stage at which we 
have 30 g of comminuted material for fire assay. We will assume that the gold particles have not been broken, but simple flattened by 
the sample pulverisation. 
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where  d̃ is the size at which 0.632 of the sample passes.
The distributions are shown in Figure 4.
In sampling gold ores, it is very important to recognise that the 

objective of sampling is to collect an adequate number of gold 
particles in order to control the variance and distribution of sam-
pling. When there is no dilution, the uncertainty in the grade of the 
sample derives only from the Poisson distribution of the number of 

Figure 2. Probability density functions for the low grade (- - -), high 
grade (- . - .) and average grade (solid line).

Figure 3. Fit of the Laplacian density function to the histogram on an 
interval of 0.1 g/t for the difference between true and sampled shift 
grade. 5000 simulations. Density function parameter = 0.389 g/t.
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gold grains arriving in the sample. It does not matter whether these 
grains are contained in large or small particles of the host rock. The 
link between the number of particles of gold and the grade of the 
sample is the distribution by mass of the gold particles: their size 
distribution. Once the size distribution (or better still, the mass dis-
tribution if the gold is present in particles of a complex structure) is 
defined, the sampling distribution can be calculated.

If a sampling constant, Ks, for the gold is defined such that
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 is the mean grade and 
MS is the mass of the sample, the value of the sampling constant 
for the gold will not change until the comminution of the ore is such 
that the number of gold particles increases due to the breaking of 
the particles. It is not enough to ‘liberate’ or flatten the particles, 
they must break. When a subsample is taken at any stage in the 
sample preparation protocol, the only impact is the expected num-
ber of gold particles in the subsample. With the smaller mass being 
retained, the sampling variance will increase, but the sampling con-
stant will not change unless the gold particles have been broken.

The situation differs when there are totally barren fragments as 
these will impact on the sampling constant, but this is not the case 
in this example.

For the purpose of illustration of the calculation of the total sam-
pling distribution, we will take the sampling to the stage at which 
we have 30 g of comminuted material for fire assay. We will assume 
that the gold particles have not been broken, but simple flattened 
by the sample pulverisation. The grade distribution of 30 g aliquots 
is shown in Figure 5 and has an expected value of 4 g/t.

Analytical density function
Given that the expected grade is 4 g/t, it is not unreasonable to 
assume that the uncertainty attached to the fire assay procedure 
itself is normally distributed. Note that this uncertainty does not 
include the intrinsic heterogeneity of the analytical aliquot. If this 
factor were to be included, the distribution might be skewed. The 
SD is taken to be 0.2 g/t, for the purpose of illustration.

Total sampling distribution
To determine the total sampling distribution, it is necessary to take 
the total uncertainty to be the sum of three random variables: the 
uncertainty due to distributional heterogeneity and a fixed number 
of increments per shift (a Laplace distribution), the uncertainty due 
to the intrinsic heterogeneity of the ore (a skewed distribution) and 
the uncertainty due to the analytical procedure (a normal distribu-
tion). The total distribution is shown in Figure 6.

Discussion
Up to this point in time, assessment of sampling uncertainty has 
been limited to knowledge of the variance of sampling without 
being able to assess whether the sampling distribution is skewed 
or, worse, bimodal.

In the realm of geostatistics, some practitioners have indulged in 
the practice of ‘top cutting’, that is, the discarding or reduction of 
grade values that seem to be too high. These high values destroy 
the ‘normality’ of the data and have adverse effects on the estima-
tion of the variogram. The methods presented here, in combination 
with a full knowledge of the mineralogy of the ore under scrutiny, 
have the ability to determine precisely the distribution of the grades 
of samples, permitting assessment of the probability of observing 

Figure 4. Gold particle size distributions, each a weighted sum of 
Weibull distributions, for low and high grade ore.

Figure 6. Total sampling distribution, with distribution due to sample 
intrinsic heterogeneity for comparison.

Figure 5. Grade distribution of 30 g aliquots of the ore.
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high grade results. At the start of evaluation of a potential orebody, 
one of the first steps should be the determination of the heteroge-
neity of the ore and ore samples so that the exploration samples 
collected are of sufficient mass to yield assay results of a precision 
that are fit for purpose, that is to say, representative. The tools pre-
sented here permit a full assessment for the first time.

In process sampling, especially in sampling a feed or product 
material where metallurgical accounting or product valuation is 
involved, the assumption that grade values follow a Gaussian (nor-
mal) distribution carries significant financial risk. In the metallurgi-
cal accounting setting, skewed grade distributions for assays can 
invalidate the reconciliation of the material balance. The classical 
example of this is the weighted least squares adjustment of assays, 
to arrive at a material balance that closes exactly, that produces 
adjusted tailings grades that are negative. Failure to take non-
normality of tailings (or other process flows) grades into account 
distorts the entire material balance leading to bias in the adjusted 
balance.

In the sale of any commodity, or the valuation of a raw ore for 
toll treatment, knowledge of the sampling distribution is vital to the 
construction of the contract of sale and the development of quality 
reconciliation agreements between the seller and buyer. It is not 
uncommon to see agreements that involve unrealistically narrow 
splitting limits let alone ones that do not take possible skewness of 
grades into account. Responsible development of contracts must 
be based on knowledge of the full sampling distribution of a product 
or ore, so that an operational characteristic curve can be drawn up 
that reveals the financial risk to both seller and buyer.2,3 

Conclusion
The foregoing example demonstrates that it is possible to develop 
a full statistical model of all sources of variance impacting the sam-
pling of a process stream. The method also has potential application 

in geostatistical studies. The method for dealing with ore heteroge-
neity has been dealt with in detail by Lyman.1 A key to the advances 
made here is the recognition that the distribution of the uncertainty 
due to the extraction of primary increments from a process flow can 
be estimated by simulation and that that distribution can be mod-
elled by any suitable means.

The combination of the three sources of uncertainty can be com-
bined using the characteristic function method to arrive at a total 
sampling distributions.

The value of the method is particularly evident when sampling 
ores of precious metals where the material may be nuggetty leading 
to skewed distributions due to the intrinsic heterogeneity of the ore. 
Knowledge of the full sampling distribution is of great value in the 
case wherein an operation is toll treating a gold ore for a client. The 
contract and sampling protocol can be developed with full knowl-
edge of the financial risk involved through the use of an operational 
characteristic curve which depends entirely and directly on the full 
sampling distribution. The fact that the full sampling distribution is 
known is also reassuring to the client.

The statistical basis of the theory of sampling can now be consid-
ered to be complete.

References
1. G. J. Lyman, “Determination of the Complete Sampling Distribution for a 

Particulate Material”, Proceedings of Sampling 2014, 29-30 July 2014, 

Perth, Australia, AusIMM, Publication series No 5/2014, pp. 17-24.

2. F. S. Bourgeois and G. J. Lyman, “Getting high added-value from sam-

pling”, in Proceedings of the 7th International Conference on Sampling 

and Blending, Ed by K.H. Esbensen and C. Wagner, TOS forum Issue 

5, 95–100 (2015). doi: 10.1255/tosf.46

3. G.J. Lyman and F. S. Bourgeois, “Sampling, Corporate Governance and 

Risk Analysis”, to be presented at MetPlant 2015, Perth, Australia, in 

press.

http://dx.doi.org/10.1255/tosf.46




Issue 5  2015 93TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

Getting high added-value from sampling
F.S. Bourgeoisa,b and G.J. Lymanb

aUniversité de Toulouse, Laboratoire de Génie Chimique, Toulouse, France. E-mail: florent.bourgeois@inp-toulouse.fr 
bMaterials Sampling & Consulting Pty Ltd, Southport, Queensland, Australia. E-mail: glyman@iprimus.com.au

Determination of the complete sampling distribution (Lyman, 2014), as opposed to estimation of the sampling variance, represents 
a significant advance in sampling theory. This is one link that has been missing for sampling results to be used to their full potential. 
In particular, access to the complete sampling distribution provides opportunities to bring all the concepts and risk assessment 
tools from statistical process control (SPC) into the production and trading of mineral commodities, giving sampling investments 
and results their full added-value. The paper focuses on the way by which sampling theory, via the complete sampling distribution, 
interfaces with production and statistical process control theory and practice. The paper evaluates specifically the effect of using the 
full sampling distribution on the Operating Characteristic curve and control charts’ Run Length distributions, two SPC cornerstones 
that are essential for quality assurance and quality control analysis and decision-making. It is shown that departure from normality of 
the sampling distribution has a strong effect on SPC analyses. Analysis of the Operating Characteristic curve for example shows that 
assumption of normality may lead to erroneous risk assessment of the conformity of commercial lots. It is concluded that the actual 
sampling distribution should be used for quality control and quality assurance in order to derive the highest value from sampling.

Introduction

A
ny engineering, quality or business analysis that deals 
with a real situation seeks to quantify a performance 
indicator and its associated uncertainty. This uncertainty 
comes from the propagation of the uncertainties associ-

ated with all the variables that contribute to the analysis. Sampling 
is concerned with providing the user with the uncertainty about any 
property of a commercial lot that cannot be observed fully.

Sampling is the starting point for anything that has to do with 
analysis and improvement of engineering, quality and commerce in 
the production and trading of minerals. The added-value of sam-
pling comes not from the sampling itself, but from the use to which 
sampling data are put. Of course, the added-value of sampling is 
entirely dictated by the quality of sampling.

While estimation of sampling variance for the grade of a com-
mercial lot is one important objective pursued by sampling theory, 
it must be remembered that sampling grade is a random variable. 
Tracking the variance only of this random variable implies that one 
assumes normality, which could lead to erroneous analyses and 
decisions once sampling data are put to the purpose for which they 
have been acquired should such an assumption be untrue. At any 
rate, it is always preferable to use the full sampling distribution over 
the sampling variance. The sole objective of this paper is to illustrate 
this point, through examples related to production control, quality 
assurance and quality control.

The assumption one has to make in order to use sampling data 
to any practical end, once sampling variance has been estimated 
using accepted sampling theory, is that the underlying full sam-
pling distribution is Gaussian. It is difficult to ascertain whether this 
assumption is sound, and one may claim that it is perhaps so 80% 
of the time. In some situations, it is not the case (Venter, 1982). 
Recently, Lyman (2014, 2015) has shown that it is possible to esti-
mate the full sampling distribution from sampling measurements, 
so that the limitation associated with the normality assumption can 
now be lifted altogether.

Figure 1 gives four distributions with identical mean m = 42% and 
standard deviation s = 0.5%, which will be used throughout the 
paper. These distributions represent realistic sampling distributions, 

some of which exhibit skewness and bimodality. Standard sampling 
theory would state that these distributions are one and the same as 
their variances are equal, which implies that they should yield identi-
cal downstream analysis and decision-making.

The results presented in this paper show that not only it is imper-
ative that the full sampling distribution be estimated and used in 
order to get the maximum added-value from sampling, but that 
assuming a Gaussian sampling distribution can lead to erroneous 
and damaging analysis and decision-making.

The paper makes compelling arguments for using the actual full 
sampling distribution to get the full added-value of sampling, by 
examining three major uses of sampling data:
1. Production control, by looking at grade variation during the mak-

ing of a commercial lot.
2. Quality assurance, with the Operating Characteristic curve (OC 

curve) as a risk analysis and decision-making tool for the con-
formity of commercial lots.

Figure 1. Four distributions with identical mean m = 42% and stand-
ard deviation s = 0.5%. The skew-normal distribution has parameters 
a = –8, x = 42.65%, w = 0.82%. The bimodal (a) and (b) distributions 
have parameters a = 0.2, m1 = 41.20%, s1 = 0.20%, m2 = 42.20%, 
s2 = 0.32% and a = 0.17, m1 = 41.00%, s1 = 0.40%, m2 = 42.20%, 
s2 = 0.15% respectively (see appendix for details).
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3. Quality control, with the Run Length (RL) distribution of control 
charts used for monitoring quality during production or in the 
laboratory.

Full sampling distribution and production 
control
Sampling can be used for optimising the revenue during production 
of a lot. In particular, sampling should be used to optimise shipment 
grade during production of metal concentrates, by ensuring that 
commercial lots contain the maximum amount of valueless material 
acceptable under the terms of the client’s contract. This optimiza-
tion requires knowledge of the full sampling distribution.

Figure 2 shows the 95% confidence interval for a 50000 t ship-
ment loaded at a rate of 500 tph, sampled every 250 t for all four 
sampling distributions from Figure 1. The sampling distributions are 
assumed not to change during the making of the commercial lot.

In all cases, the narrowing confidence interval is a direct con-
sequence of the propagation of variance from one sample to 
the next. Given that 200 samples are taken during the mak-
ing of the lot, all four sampling distributions yield the same final 
sampling uncertainty, as per the central limit theorem. With the 
example shown, the 95% confidence interval of the lot assay is 
±1.96(0.5%/ Ö200) = 0.07% absolute. The 95% confidence inter-
vals differ between the sampling distributions only at the start of 
the making of the lot. The differences are small with the example 
chosen, whose RSD = (0.5% / 42%) = 0.12% only. As expected, 
after approximately n = 50 sampling assays, all four sampling distri-
butions converge toward

0.5%
42%,

n

æ ö÷çÀ = = ÷ç ÷ç ÷è ø
m s . <Eq A> 

It is worth noting that the width of the confidence interval, as well as the rate at which it narrows during the making of a lot, can be 
improved by improving sampling precision and increasing sampling frequency respectively. 

From the point of view of production control during the making of a lot, the data that have been presented indicate that knowledge 
of the full sampling distribution is not necessary for quantifying the precision of the final lot assay, provided a sufficient number of 
samples (more than 50) are taken during the making of the lot. If one wants to use a small number of samples during the making of a 
lot, and yet make a correct estimation of the precision of the final lot assay, knowledge of the actual sampling distribution would be 
necessary. When considering that the loading of a commercial shipment may involve say 200 increments that are combined into 1 to 
10 partial samples, using the full sampling distribution for assessment of shipment grade uncertainty is significant. Knowledge of the 
full sampling distribution would also prove useful should one want to optimise grade control during the making of a lot, since different 
sampling distributions will yield a different grade confidence interval at the beginning of the making of the lot. 

Full sampling distribution and quality assurance 
The Operating Characteristic curve, or OC curve, is the main risk analysis tool for practical acceptance sampling (Shmueli, 2014). It 
quantifies the conformity of a lot, by putting a number on the probability of accepting (alt. rejecting) a lot as a function of the true (un-
known) assay of the lot and an Acceptance Quality Level (AQL). The OC curve truly is a sampling plan’s fingerprint, in that two distinct 
sampling schemes yield different OC curves. The OC curve is relevant to both the consumer and the producer, and it is widely used 
throughout the manufacturing industry and the food industry. The minerals industry however does not appear to make much use of 
the concept at the present time. 

The OC curve has been accepted and is being used by the food industry as a key food safety risk analysis tool for mycotoxins in 
cereal grains (FAO, 2014; Bourgeois and Lyman, 2012; Lyman et al., 2011). The similarities between sampling mycotoxins in cereal 
grains in the food industry and sampling valuable metals in mineral concentrates in the minerals industry implies that the OC curve 
should also be of significant value to the trading of mineral commodities, and ought to be developed as a minerals trading risk analysis 
tool. 

The link between sampling and the OC curve 
Construction of the OC curve, for a given sampling plan, requires access to the full sampling distribution. This may partially explain why 
it has not been developed in the minerals industry, as it is only recently that a solution for estimating the full sampling distribution has 
been published (Lyman, 2014). This however is a partial explanation only, as it is possible to estimate the OC curve from estimation of 
sampling variance from standard sampling theory, under the assumption of normality of the sampling distribution. 

The basic elements for constructing and interpreting an OC curve are briefly presented hereafter. Quantifying the risk of accepting or 
rejecting a lot with a true (unknown) assay requires that one defines an Acceptance Quality Level (AQL), which may be a Lower Ac-
ceptance Quality Level (LAQL), an Lower Acceptance Quality Level (UAQL) or both. A supplier may want for example to produce a 
shipment of metal-bearing concentrate that bears no less than 41% metal, and no more than 43% metal. Depending on the AQL 
levels, the probability P

a
 of accepting the lot from sampling is calculated from the cumulative sampling distribution F

X
 according to: 
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Let us assume that the lot, whose true (unknown) assay is 42%, is characterized by a full sampling distribution F
X
 = À(m = 42%, 

s = 0.5%), and that LAQL = 41% is the quality acceptance level criterion of interest. The probability of accepting the lot is then 

P
a
 = 1 – À(X = 41% | m = 42%, s = 0.5%) = 97.73%. The acceptance probability can be calculated for any true (unknown) value m of 

the lot assay, which yields the OC curve. 
The dotted line in Figure 3 is the ideal OC curve, which corresponds to a sampling distribution with a variance equal to zero. This ideal 
case yields a lot acceptance probability strictly equal to 0 or 1 on either side of the AQL. In practice, there will always be a finite 
probability of accepting a non-conforming lot, or rejecting a conforming lot, for any true (unknown) assay of the lot. The steepness of 
the OC curve is entirely dictated by the nature of the sampling distribution, in particular its skewness, and by its variance, which is a 
measure of sampling precision. The effect of sampling variance s2 on the steepness of the OC curve is illustrated in Figure 4, for 

F
X
 = À(42%, s%). 

The OC curve gives the actual value of the acceptance probability, which in turn quantifies the risk of accepting a non-conforming 
lot or rejecting a conforming lot. The OC curve is therefore a powerful risk management and decision making tool, whose construction 
relies entirely on the full sampling distribution. 

The full sampling distribution and the OC curve 
Figure 5 shows the OC curves obtained with the sampling distributions of Figure 1. It is recalled that all four sampling distributions 
share the same mean m = 42% and standard deviation s = 0.5%. In all cases, the acceptance quality level used to calculate the OC 

curves is set to LAQL = 41%. 
The first observation is that the OC curves calculated using the non-Gaussian sampling distributions are all different from the one 

obtained with the Gaussian sampling distribution. The OC curve being the basis for quality assurance, it is concluded that the actual 
full sampling distribution must be used whenever sampling results are to be used for quality assurance purposes. 

It is found that both the skewness and the bimodality of the sampling distributions have a significant effect on the OC curve. For the 
sake of clarity, Table 1 gives acceptance probabilities that are extracted from Figure 5 for lots whose true (unknown) assays are in the 

It is worth noting that the width of the confidence interval, as well 
as the rate at which it narrows during the making of a lot, can be 
improved by improving sampling precision and increasing sampling 
frequency respectively.

From the point of view of production control during the making of 
a lot, the data that have been presented indicate that knowledge of 
the full sampling distribution is not necessary for quantifying the pre-
cision of the final lot assay, provided a sufficient number of samples 
(more than 50) are taken during the making of the lot. If one wants 
to use a small number of samples during the making of a lot, and 
yet make a correct estimation of the precision of the final lot assay, 
knowledge of the actual sampling distribution would be necessary. 

When considering that the loading of a commercial shipment may 
involve say 200 increments that are combined into 1 to 10 partial 
samples, using the full sampling distribution for assessment of ship-
ment grade uncertainty is significant. Knowledge of the full sampling 
distribution would also prove useful should one want to optimise 
grade control during the making of a lot, since different sampling 
distributions will yield a different grade confidence interval at the 
beginning of the making of the lot.

Full sampling distribution and quality 
assurance
The Operating Characteristic curve, or OC curve, is the main risk 
analysis tool for practical acceptance sampling (Shmueli, 2014). 
It quantifies the conformity of a lot, by putting a number on the 
probability of accepting (alt. rejecting) a lot as a function of the true 
(unknown) assay of the lot and an Acceptance Quality Level (AQL). 
The OC curve truly is a sampling plan’s fingerprint, in that two dis-
tinct sampling schemes yield different OC curves. The OC curve is 
relevant to both the consumer and the producer, and it is widely 
used throughout the manufacturing industry and the food industry. 
The minerals industry however does not appear to make much use 
of the concept at the present time.

The OC curve has been accepted and is being used by the food 
industry as a key food safety risk analysis tool for mycotoxins in 
cereal grains (FAO, 2014; Bourgeois and Lyman, 2012; Lyman 
et al., 2011). The similarities between sampling mycotoxins in cereal 
grains in the food industry and sampling valuable metals in min-
eral concentrates in the minerals industry implies that the OC curve 
should also be of significant value to the trading of mineral com-
modities, and ought to be developed as a minerals trading risk 
analysis tool.

The link between sampling and the OC curve
Construction of the OC curve, for a given sampling plan, requires 
access to the full sampling distribution. This may partially explain 
why it has not been developed in the minerals industry, as it is only 
recently that a solution for estimating the full sampling distribution 
has been published (Lyman, 2014). This however is a partial expla-
nation only, as it is possible to estimate the OC curve from estima-
tion of sampling variance from standard sampling theory, under the 
assumption of normality of the sampling distribution.

The basic elements for constructing and interpreting an OC curve 
are briefly presented hereafter. Quantifying the risk of accepting or 
rejecting a lot with a true (unknown) assay requires that one defines 
an Acceptance Quality Level (AQL), which may be a Lower Accept-
ance Quality Level (LAQL), an Lower Acceptance Quality Level 
(UAQL) or both. A supplier may want for example to produce a 
shipment of metal-bearing concentrate that bears no less than 41% 
metal, and no more than 43% metal. Depending on the AQL levels, 
the probability Pa of accepting the lot from sampling is calculated 
from the cumulative sampling distribution FX according to:

0.5%
42%,

n
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It is worth noting that the width of the confidence interval, as well as the rate at which it narrows during the making of a lot, can be 
improved by improving sampling precision and increasing sampling frequency respectively. 

From the point of view of production control during the making of a lot, the data that have been presented indicate that knowledge 
of the full sampling distribution is not necessary for quantifying the precision of the final lot assay, provided a sufficient number of 
samples (more than 50) are taken during the making of the lot. If one wants to use a small number of samples during the making of a 
lot, and yet make a correct estimation of the precision of the final lot assay, knowledge of the actual sampling distribution would be 
necessary. When considering that the loading of a commercial shipment may involve say 200 increments that are combined into 1 to 
10 partial samples, using the full sampling distribution for assessment of shipment grade uncertainty is significant. Knowledge of the 
full sampling distribution would also prove useful should one want to optimise grade control during the making of a lot, since different 
sampling distributions will yield a different grade confidence interval at the beginning of the making of the lot. 

Full sampling distribution and quality assurance 
The Operating Characteristic curve, or OC curve, is the main risk analysis tool for practical acceptance sampling (Shmueli, 2014). It 
quantifies the conformity of a lot, by putting a number on the probability of accepting (alt. rejecting) a lot as a function of the true (un-
known) assay of the lot and an Acceptance Quality Level (AQL). The OC curve truly is a sampling plan’s fingerprint, in that two distinct 
sampling schemes yield different OC curves. The OC curve is relevant to both the consumer and the producer, and it is widely used 
throughout the manufacturing industry and the food industry. The minerals industry however does not appear to make much use of 
the concept at the present time. 

The OC curve has been accepted and is being used by the food industry as a key food safety risk analysis tool for mycotoxins in 
cereal grains (FAO, 2014; Bourgeois and Lyman, 2012; Lyman et al., 2011). The similarities between sampling mycotoxins in cereal 
grains in the food industry and sampling valuable metals in mineral concentrates in the minerals industry implies that the OC curve 
should also be of significant value to the trading of mineral commodities, and ought to be developed as a minerals trading risk analysis 
tool. 

The link between sampling and the OC curve 
Construction of the OC curve, for a given sampling plan, requires access to the full sampling distribution. This may partially explain why 
it has not been developed in the minerals industry, as it is only recently that a solution for estimating the full sampling distribution has 
been published (Lyman, 2014). This however is a partial explanation only, as it is possible to estimate the OC curve from estimation of 
sampling variance from standard sampling theory, under the assumption of normality of the sampling distribution. 

The basic elements for constructing and interpreting an OC curve are briefly presented hereafter. Quantifying the risk of accepting or 
rejecting a lot with a true (unknown) assay requires that one defines an Acceptance Quality Level (AQL), which may be a Lower Ac-
ceptance Quality Level (LAQL), an Lower Acceptance Quality Level (UAQL) or both. A supplier may want for example to produce a 
shipment of metal-bearing concentrate that bears no less than 41% metal, and no more than 43% metal. Depending on the AQL 
levels, the probability P

a
 of accepting the lot from sampling is calculated from the cumulative sampling distribution F

X
 according to: 
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Let us assume that the lot, whose true (unknown) assay is 42%, is characterized by a full sampling distribution F
X
 = À(m = 42%, 

s = 0.5%), and that LAQL = 41% is the quality acceptance level criterion of interest. The probability of accepting the lot is then 

P
a
 = 1 – À(X = 41% | m = 42%, s = 0.5%) = 97.73%. The acceptance probability can be calculated for any true (unknown) value m of 

the lot assay, which yields the OC curve. 
The dotted line in Figure 3 is the ideal OC curve, which corresponds to a sampling distribution with a variance equal to zero. This ideal 
case yields a lot acceptance probability strictly equal to 0 or 1 on either side of the AQL. In practice, there will always be a finite 
probability of accepting a non-conforming lot, or rejecting a conforming lot, for any true (unknown) assay of the lot. The steepness of 
the OC curve is entirely dictated by the nature of the sampling distribution, in particular its skewness, and by its variance, which is a 
measure of sampling precision. The effect of sampling variance s2 on the steepness of the OC curve is illustrated in Figure 4, for 

F
X
 = À(42%, s%). 

The OC curve gives the actual value of the acceptance probability, which in turn quantifies the risk of accepting a non-conforming 
lot or rejecting a conforming lot. The OC curve is therefore a powerful risk management and decision making tool, whose construction 
relies entirely on the full sampling distribution. 

The full sampling distribution and the OC curve 
Figure 5 shows the OC curves obtained with the sampling distributions of Figure 1. It is recalled that all four sampling distributions 
share the same mean m = 42% and standard deviation s = 0.5%. In all cases, the acceptance quality level used to calculate the OC 

curves is set to LAQL = 41%. 
The first observation is that the OC curves calculated using the non-Gaussian sampling distributions are all different from the one 

obtained with the Gaussian sampling distribution. The OC curve being the basis for quality assurance, it is concluded that the actual 
full sampling distribution must be used whenever sampling results are to be used for quality assurance purposes. 

It is found that both the skewness and the bimodality of the sampling distributions have a significant effect on the OC curve. For the 
sake of clarity, Table 1 gives acceptance probabilities that are extracted from Figure 5 for lots whose true (unknown) assays are in the 

Let us assume that the lot, whose true (unknown) assay is 42%, 
is characterized by a full sampling distribution FX = À(m = 42%, 
s = 0.5%), and that LAQL = 41% is the quality acceptance level 
criterion of interest. The probability of accepting the lot is then 

Figure 2. Evolution of grade during the making of a commercial lot, with 
the sampling distributions from Figure 1.
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Pa = 1 – À(X = 41% | m = 42%, s = 0.5%) = 97.73%. The accept-
ance probability can be calculated for any true (unknown) value m of 
the lot assay, which yields the OC curve.

The dotted line in Figure 3 is the ideal OC curve, which corre-
sponds to a sampling distribution with a variance equal to zero. This 
ideal case yields a lot acceptance probability strictly equal to 0 or 
1 on either side of the AQL. In practice, there will always be a finite 
probability of accepting a non-conforming lot, or rejecting a con-
forming lot, for any true (unknown) assay of the lot. The steepness 
of the OC curve is entirely dictated by the nature of the sampling 
distribution, in particular its skewness, and by its variance, which is 
a measure of sampling precision. The effect of sampling variance 
s2 on the steepness of the OC curve is illustrated in Figure 4, for 
FX = À(42%, s%).

The OC curve gives the actual value of the acceptance probabil-
ity, which in turn quantifies the risk of accepting a non-conforming 
lot or rejecting a conforming lot. The OC curve is therefore a power-
ful risk management and decision making tool, whose construction 
relies entirely on the full sampling distribution.

The full sampling distribution and the OC curve
Figure 5 shows the OC curves obtained with the sampling distribu-
tions of Figure 1. It is recalled that all four sampling distributions 
share the same mean m = 42% and standard deviation s = 0.5%. 
In all cases, the acceptance quality level used to calculate the OC 
curves is set to LAQL = 41%.

The first observation is that the OC curves calculated using the 
non-Gaussian sampling distributions are all different from the one 

Figure 3. Example of OC curve for a Gaussian sampling distribution FX = À(42%, 0.5%), with LAQL = 41%.

Figure 4. Illustration of the effect of sampling precision (values are 1 standard deviation s of the full sampling distribution) on the steepness of the OC 
curve. The OC curves are calculated for FX = À(42%, s%) with LAQL = 41%.
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obtained with the Gaussian sampling distribution. The OC curve 
being the basis for quality assurance, it is concluded that the actual 
full sampling distribution must be used whenever sampling results 
are to be used for quality assurance purposes.

It is found that both the skewness and the bimodality of the sam-
pling distributions have a significant effect on the OC curve. For 
the sake of clarity, Table 1 gives acceptance probabilities that are 
extracted from Figure 5 for lots whose true (unknown) assays are 
in the range 40% to 42%, for all four sampling distributions consid-
ered in the paper.

Let us first consider the nonconforming 40% and 40.5% cases 
from Table 1, which correspond to lots whose true (unknown) grade 
is less than LAQL. The buyer wants any such lot to be rejected 
100% of the time. The 40% lot would be rejected 97.7% of the 
time under the Gaussian assumption, whereas all three other sam-
pling distributions would yield a rejection rate significantly closer to 
100%. Using the Gaussian sampling distribution would disadvan-
tage the buyer. With the examples chosen, the bimodal (b) distri-
bution yields the lowest acceptance rate for nonconforming lots. 
This indicates that the stronger the departure from normality of the 
sampling distribution, the more important it is to use the actual full 
sampling distribution in order to make the best decision about con-
formity of the lot.

With a just conforming lot whose true grade is equal to LAQL, the 
acceptance probability is precisely 50% with the Gaussian sam-
pling distribution, which, of all four sampling distributions, is the 
most unfavourable value for the producer. Here again, the highest 
acceptance probability is obtained with the bimodal (b) distribution, 
which departs the most from the Gaussian distribution.

With conforming lots whose true grade is above LAQL, the 
producer expects the lot to be accepted 100% of the time. The 
acceptance probabilities with all four sampling distributions do not 
differ significantly, even though the numbers used indicate that 
the Gaussian  assumption would in this case be better for the pro-
ducer.

The examples presented have demonstrated the value of using 
the full sampling distribution, over that of assuming a Gaussian 
distribution, for assessing the conformity of a commercial lot. It is 
concluded that, for decision making about lot conformity and esti-
mation of the associated risks, which are of significant importance 
in trading of minerals, it is important to determine and use the actual 
full sampling distribution.

Full sampling distribution and quality control
Control charts are the power tools of the statistical process control 
toolkit used for quality control in any industry that seeks to guaran-
tee quantitative quality criteria. Anything to do with control charts, 
from their construction to their interpretation, is built entirely upon 

sampling results. Indeed, the value of the control chart variable is 
calculated directly from sampling measurements, and the control 
limits of a control chart from which process quality is judged are 
also derived from the full sampling distribution.

Figure 5. Illustration of the effect of the full sampling distribution on the 
estimation of the OC curve.

Table 1. Values of acceptance probabilities for lots whose true (unknown) assays are in the range 40% to 42% with all four sampling distributions considered. 
Shaded columns represent conforming lots (true assay ³LAQL), and unshaded columns nonconforming lots.

Sampling distributions 
from Figure 1

True (unknown) lot assay

40% 40.5% 41% 41.5% 42%

Normal 2.2750% 15.87% 50.00% 84.13% 97.72%

Skew-normal 0.0007% 14.68% 57.14% 83.92% 95.59%

Bimodal (a) 0.4985% 13.95% 58.71% 80.18% 96.82%

Bimodal (b) 0.0000% 1.87% 76.30% 84.80% 91.50%
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The link between sampling and control charts
The purpose of a control chart is to record the value of a quality 
criterion, obtained by sampling, and assess its shift, or departure, 
from a target value. From n independent sampling measurements 
of the property of interest, the value of the control chart variable is 
calculated and placed on the associated control chart. Depending 
on the position of the value with respect to the control limits of 
the control chart, it can be found readily with known risks whether 
the process is in-control or out-of-control. If the value is inside the 
control limits, the process is said to be in-control, with an associ-
ated risk b that it is not the case (false negative). If the value is 
outside the control limits, the process is said to be out-of-control, 
with the probability (1 – b) that this is indeed the case, and a risk 
a that this is not so (false positive). The higher the value the prob-
ability (1 – b), also known as statistical power, the greater one’s 
certainty that the process is out of control when a point is outside 
the control chart’s control limits. The settings of a control chart are 
such that the probability (1 – b) is as high as possible for a given 
situation.

There are a number of control charts that can be used depending 
on the nature of the shift that is being monitored, as control charts 
are more or less efficient in their capacity to detect a given shift. 
Perhaps the most relevant ones are Shewhart and Cusum control 
charts. Every time a sample is taken whose value is placed onto 
the control chart, there is a probability b that an out-of-control situ-
ation remains undetected. As successive samples are being col-
lected and placed on the control chart, the probability that an out-
of-control situation remains undetected decreases. The number of 
samples necessary to signal an out-of-control situation defines the 
Run Length (RL). It is a random variable whose distribution, referred 
to as the RL distribution, is the basis upon which one control chart 
is selected and tuned to control any given quality variable that is 
observed by sampling.

The RL distribution is derived from the full sampling distribution. 
Let us define the event Ek as “the kth sample has control chart prop-
erty X greater than UCL or less than LCL”, where LCL and UCL are 
the control chart’s Lower and Upper Control Limits respectively. 
Such an event, which defines an out-of-control situation, may occur 
for sample k = 1, k = 2… The probability p of such an event, for all 
k ³ 1 is given by:

range 40% to 42%, for all four sampling distributions considered in the paper. 
Let us first consider the nonconforming 40% and 40.5% cases from Table 1, which correspond to lots whose true (unknown) grade 

is less than LAQL. The buyer wants any such lot to be rejected 100% of the time. The 40% lot would be rejected 97.7% of the time 
under the Gaussian assumption, whereas all three other sampling distributions would yield a rejection rate significantly closer to 100%. 
Using the Gaussian sampling distribution would disadvantage the buyer. With the examples chosen, the bimodal (b) distribution yields 
the lowest acceptance rate for nonconforming lots. This indicates that the stronger the departure from normality of the sampling 
distribution, the more important it is to use the actual full sampling distribution in order to make the best decision about conformity of 
the lot. 

With a just conforming lot whose true grade is equal to LAQL, the acceptance probability is precisely 50% with the Gaussian sam-
pling distribution, which, of all four sampling distributions, is the most unfavourable value for the producer. Here again, the highest 
acceptance probability is obtained with the bimodal (b) distribution, which departs the most from the Gaussian distribution. 

With conforming lots whose true grade is above LAQL, the producer expects the lot to be accepted 100% of the time. The ac-
ceptance probabilities with all four sampling distributions do not differ significantly, even though the numbers used indicate that the 
Gaussian assumption would in this case be better for the producer. 

The examples presented have demonstrated the value of using the full sampling distribution, over that of assuming a Gaussian dis-
tribution, for assessing the conformity of a commercial lot. It is concluded that, for decision making about lot conformity and estimation 
of the associated risks, which are of significant importance in trading of minerals, it is important to determine and use the actual full 
sampling distribution. 

Full sampling distribution and quality control 
Control charts are the power tools of the statistical process control toolkit used for quality control in any industry that seeks to guar-
antee quantitative quality criteria. Anything to do with control charts, from their construction to their interpretation, is built entirely upon 
sampling results. Indeed, the value of the control chart variable is calculated directly from sampling measurements, and the control 
limits of a control chart from which process quality is judged are also derived from the full sampling distribution. 

The link between sampling and control charts 
The purpose of a control chart is to record the value of a quality criterion, obtained by sampling, and assess its shift, or departure, from 
a target value. From n independent sampling measurements of the property of interest, the value of the control chart variable is cal-
culated and placed on the associated control chart. Depending on the position of the value with respect to the control limits of the 
control chart, it can be found readily with known risks whether the process is in-control or out-of-control. If the value is inside the 
control limits, the process is said to be in-control, with an associated risk b that it is not the case (false negative). If the value is outside 

the control limits, the process is said to be out-of-control, with the probability (1 – b) that this is indeed the case, and a risk a that this 

is not so (false positive). The higher the value the probability (1 – b), also known as statistical power, the greater one’s certainty that the 

process is out of control when a point is outside the control chart’s control limits. The settings of a control chart are such that the 
probability (1 – b) is as high as possible for a given situation. 

There are a number of control charts that can be used depending on the nature of the shift that is being monitored, as control charts 
are more or less efficient in their capacity to detect a given shift. Perhaps the most relevant ones are Shewhart and Cusum control 
charts. Every time a sample is taken whose value is placed onto the control chart, there is a probability b that an out-of-control situa-

tion remains undetected. As successive samples are being collected and placed on the control chart, the probability that an 
out-of-control situation remains undetected decreases. The number of samples necessary to signal an out-of-control situation defines 
the Run Length (RL). It is a random variable whose distribution, referred to as the RL distribution, is the basis upon which one control 
chart is selected and tuned to control any given quality variable that is observed by sampling. 
The RL distribution is derived from the full sampling distribution. Let us define the event E

k
 as “the kth sample has control chart property 

X greater than UCL or less than LCL”, where LCL and UCL are the control chart’s Lower and Upper Control Limits respectively. Such 
an event, which defines an out-of-control situation, may occur for sample k = 1, k = 2… The probability p of such an event, for all 
k ³ 1 is given by: 
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Both events are mutually exclusive so that their probabilities are additive. The value of p is derived from the complete sampling dis-
tribution. 

In the case of Shewhart control charts, the points reported onto the control chart are independent. Hence, the event E
k
 corresponds 

precisely to a Bernoulli trial whose probability of success is p and that of failure is q = 1 – p. This Bernoulli trial is defined for k = 1, 
k = 2… but not for k = 0. It follows that the probability of k – 1 failures (in-control variable) followed by one success (out-of-control 
variable) obeys a geometric distribution with parameter p, defined for k ³ 1. The run length (RL) is defined as the number of samples 

that yields the first event E
k
. Useful properties of the geometric distribution of RL are summarized hereafter: 

 Parameter p = P(X < LCL or X > UCL), defined for all events K ³ 1. The parameter p is derived from the sampling distribu-

tion. 
 Cumulative Distribution Function: P(RL £ k) = 1 – (1 – p)k 

 Density Distribution Function: P(RL = k) = p(1 – p)k – 1 
 Average run length (ARL): ARL = E(ARL) = 1 / P 

.

Both events are mutually exclusive so that their probabilities are 
additive. The value of p is derived from the complete sampling dis-
tribution.

In the case of Shewhart control charts, the points reported onto 
the control chart are independent. Hence, the event Ek corresponds 
precisely to a Bernoulli trial whose probability of success is p and 
that of failure is q = 1 – p. This Bernoulli trial is defined for k = 1, 
k = 2… but not for k = 0. It follows that the probability of k – 1 fail-
ures (in-control variable) followed by one success (out-of-control 
variable) obeys a geometric distribution with parameter p, defined 
for k ³ 1. The run length (RL) is defined as the number of samples 
that yields the first event Ek. Useful properties of the geometric dis-
tribution of RL are summarized hereafter:

 ■ Parameter p = P(X < LCL or X > UCL), defined for all events 
K ³ 1. The parameter p is derived from the sampling distribution.

 ■ Cumulative Distribution Function: P(RL £ k) = 1 – (1 – p)k

 ■ Density Distribution Function: P(RL = k) = p(1 – p)k–1

 ■ Average run length (ARL): ARL = E(ARL) = 1 / P
 ■ 95% RL limit: RLmax = [ln(1 – 0.95)] / [ln(1 – p)]
The probability p is the property which makes the RL distributions 

different. Once the control limits UCL and LCL have been derived 
for the initial in-control sampling distribution, it is a simple matter to 
shift the sampling distribution any amount d and calculate the asso-
ciated probability p of the RL distribution that results.

It is important to note that the shift d can be either positive 
or negative, which corresponds to a sampling distribution that 
shifts to the right or to the left of the initial in-control sampling 
distribution. For a Gaussian sampling distribution, since it is sym-
metrical, the value of p is the same whether the distribution shifts 
right or left. The assumption of normality leads the control limits 
of an x-bar Shewhart chart to be set to ± 3 standard deviation of 
the sampling distribution for a risk a = 0.27% (Minnitt and Pitard, 
2008).

Figure 6 shows the RL distribution for a Gaussian sampling distri-
bution with shift d equal to 0, ± 1 and ± 2 standard deviation, using 
a risk a = 5% and sample size n = 1.

Full sampling distribution and control charts
The effect of departure from normality on control charts has led to 
a number of publications in relation to quality control (Borror et al., 
1999), and yet, the effect is not fully recognised by industry. The 
distribution of run lengths is shown in Figure 7 for the bimodal (b) 
distribution. The first and most important observation is that the RL 
distributions are not the same for positive and negative shifts of the 
mean. This result, which is due to the asymmetry of the sampling 
distribution, does not appear to have been reported elsewhere as it 
is not common for asymmetrical sampling distributions to be used 
in Statistical Process Control.

Figure 8 provides a graphical explanation as to why the RL dis-
tributions are not equal for left and right shift of the mean for asym-
metrical sampling distributions. From one single sample measure-
ment (n = 1), it is apparent that a positive (right) shift will be detected 
significantly faster than a negative (left) shift of equal magnitude. For 
an absolute 1% shift of the mean of the bimodal (b) sampling dis-
tribution, the type II error b for the left shifted distribution is 83.95% 

Figure 6. RL distribution for a Gaussian sampling distribution with shift 
d = 0, ± 0.5, ± 1 and ± 2 standard deviation, for a = 5% and n = 1. 
Average run lengths (ARL) are read at the probability 0.63.
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versus 14.83% only for the right shifted distribution, as highlighted 
by the shaded areas in Figure 8.

At any rate, whether left or right shifts occur, the RL distributions 
for the bimodal (b) sampling distribution are all different from those 
of the normal distribution for shifts of the same magnitude.

It can be concluded that assuming normality in setting up and 
applying control charts for quality control will yield erroneous deci-
sion making for non-Gaussian sampling distributions. Even though 
the above analysis was carried out for Shewhart X-bar charts only 
for the sake of conciseness and clarity, the same conclusions are 
expected to apply to any type of control charts.

Conclusions
Lyman (2014) has shown that it is now possible to estimate the 
actual full sampling distribution from sampling data, as opposed to 
estimating the sampling variance and assuming a Gaussian sam-
pling distribution. The aim of this paper was to assess the benefit 
of using the actual full sampling distribution for some of the impor-
tant uses to which sampling results are put, namely production 
control, quality assurance and quality control. Through a number 
of illustrative examples, it was demonstrated that the actual sam-
pling distribution should be used in order to apply sampling data 
to their full potential in production control, quality assurance and 
quality control. A corollary to that statement is that using sampling 
variance under the assumption of normality of the sampling distri-
bution could yield erroneous analyses, which could lead to wrong 
decision-making related to Quality Assurance and Quality Control 
(QAQC).

 ■ For production control during the making of a lot, it was found 
that knowledge of the full sampling distribution is not necessary 
for quantifying the precision of the final lot assay, provided a suf-
ficient number of samples are taken during the constitution of 
the lot. However, knowledge of the actual sampling distribution 
is imperative if a few samples only are used to quantify the as-
say of a lot. Since different sampling distributions yield different 
confidence intervals at the beginning of the making of the lot, us-
ing the full sampling distribution is deemed necessary for grade 
control optimization during production of a commercial lot.

 ■ Assuming normality of the sampling distribution for quality assur-
ance can be to the advantage of the seller or the buyer, however 
there is no way to know without knowledge of the actual sam-
pling distribution; hence it is necessary to use the actual sam-
pling distribution for quality assurance. These conclusions were 
obtained by studying the effect of sampling distribution on the 
OC curve, one key decision-making tool in quality assurance. It 
was further observed that the greater the departure from normal-
ity, the more important it is to use the actual sampling distribution 
for accepting conforming and rejecting nonconforming lots.

 ■ For quality control, the effect of using the actual sampling 
distribution  on the RL distribution for Shewhart X-bar charts 
was investigated. It was found that the RL distribution, which 
encapsulates the efficiency of control charts for detecting shifts 
in quality in any production process, was highly sensitive to the 
nature of the full sampling distribution. The conclusion is that the 
actual sampling distribution must be used for application of con-
trol charts in quality control. Interestingly, it was observed that 
asymmetrical sampling distributions, which are likely to occur 
with particulates, yield RL distributions that are sensitive to the 
sign of the shift.
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Skew-normal distribution 
The skew-normal distribution is a useful distribution for simulating a skewed Gaussian looking distribution. It is a three parameter 
distribution whose density distribution function is defined by:<Eq D> 

( ) 2 x x
f x

x x
f f a

w w w

æ öæ ö æ ö- - ÷÷ ç ÷ç ç ÷= ÷ ÷çç ç ÷÷ ÷ç÷ ÷ç ç ÷çè ø è øè ø

 

where f is the density distribution function of the standard normal distribution. The parameter a defines the skewness of the distribu-
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The skew-normal distribution, with set skewness parameter a, is set to any true (unknown) mean m and variance s2 of the lot using 
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Figure 9 shows the flexibility of the skew-normal distribution, which provides a mean for simulating left and right skewed distribu-
tions. 

Figure 10 gives an example of shifted skew-normal distributions with a shift in mean value only, as used in the section about the 
OC-curve. It suffices to shift the parameter z to shift the mean of the skew-normal distribution without changing its shape. 

Bimodal distribution 
The bimodal distribution used in this work, with mean m and variance s2, is a mixture of two Gaussian random variables as shown in 

Figure 11. It is a five parameter distribution whose parameters are defined as: <Eq G> 
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shift in mean value only, as used in the OC-curve section of the paper. It suffices to shift the parameters m
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Figure 1. Four distributions with identical mean m = 42% and standard deviation  = 0.5%. The skew-normal distribution has 
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Figure 2. Evolution of grade during the making of a commercial lot, with the sampling distributions from Figure 1. 
Figure 3. Example of OC curve for a Gaussian sampling distribution F

X
 = À(42%, 0.5%), with LAQL = 41%. 

Figure 4. Illustration of the effect of sampling precision (values are 1 standard deviation s of the full sampling distribution) on 

where f is the density distribution function of the standard normal 
distribution. The parameter a defines the skewness of the distribu-
tion. The mean and variance of the distribution are:
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Figure 9 shows the flexibility of the skew-normal distribution, 
which provides a mean for simulating left and right skewed distribu-
tions.

Figure 10 gives an example of shifted skew-normal distributions 
with a shift in mean value only, as used in the section about the 
OC-curve. It suffices to shift the parameter z to shift the mean of the 
skew-normal distribution without changing its shape.

Figure 9. Examples of skew-normal distributions with mean m = 42% 
and standard deviation s = 0.5%. A negative skewness parameter a 
yields a left-skewed distribution, whereas a positive parameter yields a 
right-skewed distribution. a = 0 yields the normal distribution.

Figure 10. Examples of skew-normal distributions with variable mean 
and standard deviation s = 0.5%, as used in the OC-curve section. The 
parameters used are:

the steepness of the OC curve. The OC curves are calculated for F
X
 = À(42%, s%) with LAQL = 41%. 

Figure 5. Illustration of the effect of the full sampling distribution on the estimation of the OC curve. 
Figure 6. RL distribution for a Gaussian sampling distribution with shift d = 0, ±0.5, ±1 and ±2 standard deviation, for a = 5% 

and n = 1. Average run lengths (ARL) are read at the probability 0.63. 
Figure 7. RL distribution for the bimodal (b) sampling distribution, for a = 5% and n = 1. The upper figure is for positive shifts of 
the mean, and the lower figure for negative shifts of the mean. 
Figure 8. Full sampling distributions – bimodal (b) – with mean assay 41% (shift = –1%), 42% (no shift) and 43% (shift = +1%) 
from left to right. The vertical lines show the lower (LCL) and upper (UCL) control limits at the 95% confidence level. 
Figure 9. Examples of skew-normal distributions with mean m = 42% and standard deviation s = 0.5%. A negative skewness 

parameter a yields a left-skewed distribution, whereas a positive parameter yields a right-skewed distribution. a = 0 yields the 

normal distribution. 
Figure 10. Examples of skew-normal distributions with variable mean and standard deviation s = 0.5%, as used in the 
OC-curve section. The parameters used are: <Eq G> 
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Figure 11. Examples of bimodal distributions with mean m = 42% and standard deviation s = 0.5%. 

Figure 12. Examples of bimodal distributions with variable mean and standard deviation s = 0.5%, as used in the OC-curve 
section. The values of the parameters used are: <Eq H> 
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Table 1. Values of acceptance probabilities for lots whose true (unknown) assays are in the range 40% to 42% with all four 
sampling distributions considered. Shaded columns represent conforming lots (true assay  LAQL), and unshaded columns 
nonconforming lots. 
Sampling dis-
tributions from 
Figure 1 

True (unknown) lot assay 

40% 40.5% 41% 41.5% 42% 

Normal 2.2750% 15.87% 50.00% 84.13% 97.72% 
Skew-normal 0.0007% 14.68% 57.14% 83.92% 95.59% 
Bimodal (a) 0.4985% 13.95% 58.71% 80.18% 96.82% 
Bimodal (b) 0.0000% 1.87% 76.30% 84.80% 91.50% 
 

Figure 11. Examples of bimodal distributions with mean m = 42% and 
standard deviation s = 0.5%.
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Bimodal distribution
The bimodal distribution used in this work, with mean m and vari-
ance s2, is a mixture of two Gaussian random variables as shown 
in Figure 11. It is a five parameter distribution whose parameters 
are defined as:

( )

( ) ( )( )
1 1 2 2

1 2

2 2 2 2 2

1

1  where i i

m am a m

s a s d a s d d m m

= + -

= + + - + = -
 

The parameters m1 and m2 are the modes of the distribution, 
whereas the variances s1

2 and s2
2 define the spread of both peaks. 

The parameter a is a weighting factor for the mixture of distribu-
tions. Figure 12 gives an example of shifted bimodal distributions 
with a shift in mean value only, as used in the OC-curve section of 
the paper. It suffices to shift the parameters m1 and m2 by the same 
amount in order to shift the mean of the bimodal distribution without 
changing its shape.

Figure 12. Examples of bimodal distributions with variable mean and 
standard deviation s = 0.5%, as used in the OC-curve section. The 
values  of the parameters used are:

the steepness of the OC curve. The OC curves are calculated for F
X
 = À(42%, s%) with LAQL = 41%. 

Figure 5. Illustration of the effect of the full sampling distribution on the estimation of the OC curve. 
Figure 6. RL distribution for a Gaussian sampling distribution with shift d = 0, ±0.5, ±1 and ±2 standard deviation, for a = 5% 

and n = 1. Average run lengths (ARL) are read at the probability 0.63. 
Figure 7. RL distribution for the bimodal (b) sampling distribution, for a = 5% and n = 1. The upper figure is for positive shifts of 
the mean, and the lower figure for negative shifts of the mean. 
Figure 8. Full sampling distributions – bimodal (b) – with mean assay 41% (shift = –1%), 42% (no shift) and 43% (shift = +1%) 
from left to right. The vertical lines show the lower (LCL) and upper (UCL) control limits at the 95% confidence level. 
Figure 9. Examples of skew-normal distributions with mean m = 42% and standard deviation s = 0.5%. A negative skewness 

parameter a yields a left-skewed distribution, whereas a positive parameter yields a right-skewed distribution. a = 0 yields the 

normal distribution. 
Figure 10. Examples of skew-normal distributions with variable mean and standard deviation s = 0.5%, as used in the 
OC-curve section. The parameters used are: <Eq G> 
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Figure 12. Examples of bimodal distributions with variable mean and standard deviation s = 0.5%, as used in the OC-curve 
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sampling distributions considered. Shaded columns represent conforming lots (true assay  LAQL), and unshaded columns 
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Sampling dis-
tributions from 
Figure 1 

True (unknown) lot assay 

40% 40.5% 41% 41.5% 42% 

Normal 2.2750% 15.87% 50.00% 84.13% 97.72% 
Skew-normal 0.0007% 14.68% 57.14% 83.92% 95.59% 
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Building confidence intervals around the obtained value 
of a sample
Dominique M. Francois-Bongarcon, PhD
Agoratek International Consultants Inc., North Vancouver, Canada. E-mail: dfbgn2@gmail.com

Common practice in sampling for the TOS erudite consists of using the sampling variance obtained from Gy’s numerical theory to 
build confidence intervals around the true sample value. This is usually done to characterise the ‘precision’ of the sample, and, by 
centring that interval on the sampled value, one states for instance that “the true value has 95% chances of being between values x 
and y”, those two values usually being centred on the sampled value”. The somewhat naïve rationale behind this practice is reviewed 
in some details and criticised. It is suggested the confidence interval of real interest to the user of the sampled value, is more difficult 
to define and more delicate and indirect to build. Some methods for doing so are examined and a methodology is recommended.

Introduction

G
y’s Theory of Sampling1 (TOS) has a powerful numeri-
cal section that gives us a wealth of information about 
the behaviour of a sample, provided we know enough 
about some physical characteristics of the matter being 

sampled and basic parameters about the sample such as its mass. 
Armed with it, we can in particular predict the variance we are likely 
to encounter should the sample be taken many times, i.e. charac-
teristics about the distribution of the possible sample values. That 
predicted variance, which measures the dispersion of that sample 
distribution, allows for a characterisation what is often termed the 
‘precision’ of the sample, or in other words, its goodness.

It is not uncommon then to use that variance to build some kind 
of a confidence interval around the obtained sample value to state 
where the true value of the variable to be measured may lie. Indeed, 
what is the use of the sampled value if we have no notion of what 
it really means regarding the unknown, true value we are trying to 
best guess? Building this confidence interval also clearly requires, 
implicitly or not, not only the variance, but also an idea of the distri-
bution type or shape.

This practice, however, can often be applied quite naively, as we 
are going to see, starting with the fundamental question: “What dis-
tribution exactly are we speaking about?”

Better definition of the problem
So, here we are, with a sample value in hand, and the ability to 
predict the dispersion variance attached to it. Now, experience and 
knowledge also give us an idea of the shape of the sample distribu-
tion:

 ■ Normal-like if the variance is relatively small (and the sample ‘pre-
cision relatively good); this is a consequence of the symmetri-
sation of such distributions when their variances diminish, itself 
deeply and implicitly rooted in the general mechanism underlying 
the famed Central Limit Theorem.

 ■ Lognormal-like or binomial-like in the opposite case.
We can therefore predict a ‘histogram of sorts’ of the possible 

sample values. And this, in practice, may not be hugely rigorous, 
but in reality, experience shows it works well enough: when that 
histogram is built experimentally as the result of repeated sampling, 
this method is usually reasonably validated. But there lies an often 
unseen difficulty: we then need to define very clearly the nature and 
full range of what it is, exactly, we are trying to guess.

When a sample is taken, hopefully in a representative fashion, 
we are obviously hoping to be able to use its value in lieu of the 
unknown, true value of the variable measured/estimated by that 
sampling operation, and we would like to know how imperfect 
doing so can eventually be. That is where a confidence interval may 
come into play: a very explanatory view to it consists of trying to 
attach probabilities to the unknown value underlying the sampling, 
saying for instance that there are 95% chances that it is in a spe-
cific, known interval around the obtained sample value.

To quickly understand/illustrate why using the sample distribution 
shape to do so is a rather naive idea, and for the sake of the exer-
cise, let us assume a true value T and that the sample distribution 
around it is skewed towards high values (‘to the right’) like in the 
3-bar histogram of Figure 1 where the true value is the centre value 
of the 3 possible sample outcomes. When we take a sample, we 
do not know the true value, and in this simplistic case, all we know 
is that the sample is one of the possible outcomes, in this case one 
of three, but we do not know which one.

Going in turn to every possible sample value in the distribution, 
and looking where the true value lies in each case with respect to 
that sample value, i.e. on which side of the sample value and how 
often this will happen, the histogram of the possible true values 
that could generate this sample can be drawn (Figure 2). Clearly, 
this is not the distribution of the sample values, it is, at best its mir-
ror image. Skewed distributions calling for asymmetric confidence 
intervals, it becomes clear using the sample distribution directly 
would be very wrong in this case.

It does not mean, however, the solution lies in symmetry. This 
example was simple but also itself quite naive. The models of TOS 
tell us that the variance of the sample distribution is heteroscedas-
tic, meaning it changes with the true value being sampled, i.e. it 
is concentration-dependent. In this example, we had ignored this 
important fact.

It is nevertheless possible to reach the following conclusions:
 ■ The distribution of sample values around a given true value is not 
the same (in dispersion and shape) as the underlying distribution 
of potential true values around a known sample.

 ■ The first one is usually simple and fairly well known (to a good 
enough degree in practical terms), the latter, conversely, is not 
readily known, and its determination would be very complex.

 ■ For confidence intervals characterising the unknown true value, 
unfortunately it is that second, problematic one that really counts.

doi: 10.1255/tosf.48
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The lookup method
The ignorance in which we are of the underlying distribution of the 
possible true values that are able to give raise to a known sample 
value (obtained experimentally), indeed makes the problem of build-
ing a proper confidence interval around the sample value, a rather 
complex one. A method sometimes used is the lookup method, 
based on the likelihood concept. In this method, each possible true 
value (concentration) is considered in turn, and a confidence inter-
val (e.g. 95% confidence as an example) is built around it for the 
sample values, based on what is known of the sample distribu-
tion, including its concentration-dependent variance. By definition 
each interval contains the 95% most likely sample values for a given 
true value. These intervals are plotted on a diagram. The upper and 
lower limits of these intervals define a region in the [True Value, 

Sample Value] space, containing all the sample values belonging to 
their respective 95% confidence intervals around their true values 
(in the example of Figure 3, the sample distributions were assumed 
to be binomial). We will call it the ‘95% Domain’.

Then, when considering a specific sample value, it defines a hori-
zontal line on the diagram. The intersection of the line with the 95% 
Domain is then used as a confidence interval (the red segment on 
Figure 3). It is assumed (intuitive, but not demonstrated) that this 
interval contains approximately the 95% most likely true values able 
to generate that specific sample value.

Testing
The proportion selected by the lookup method was therefore put to 
a test by spreadsheet simulation of sample binomial distributions, 

Figure 1. Hypothetical distribution of sample values around true value T

Figure 2. Resulting distribution of true values around sample value S
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for a full range of true values (concentrations) varying between the 
minimum of 0 and the maximum of 1, using 1,000 binomial trials 
for each. For numbers of success draws lesser than 5, i.e. con-
centrations lesser than 0.005, numerical stability problems altered 
the results to some degree. As kindly pointed out by a reviewer, 
the discrete nature of the binomial distribution is a significant factor 
in this observation. In any case, for these low numbers, the pro-
portion of values within the lookup interval averaged to 95%, but 
with large variations, between 90.4% and 98.8%, with no pattern. 
Above these, the variations around 95% tend to become increas-
ingly smaller, still without pattern, and still averaging to 95%. Given 
the numerical limitations imposed by the spreadsheet precision, the 
method was therefore reasonably validated, in conformity with our 
initial intuition.

Method comparisons
The simulation, however, is too heavy a process for routine applica-
tions, and as mentioned, of imperfect numerical stability. Using it as 

a benchmark, simpler - initially considered naive - methods were 
compared to it, namely:

 ■ Gaussian confidence interval around the experimental sample 
value using the estimated binomial sampling variance.

 ■ Lognormal and binomial confidence interval variants of the 
latter .

 ■ Mirror images of the above two variants (skewed the other way).
As a comparison score, the maximum, relative, unsigned differ-

ence obtained for the two limits of the interval was used, along with 
an eyeball examination.

The following was observed:
 ■ Surprisingly, the mirror images did not perform well, as the 
lookup interval was always slightly skewed to the right, likely a 
consequence of the variance heteroscedasticity we had previ-
ously ignored.

 ■ The binomial intervals fared very erratically, possibly due solely 
to numerical problems. Where they seemed to behave properly, 
their results were however rather poor.

Figure 3. The lookup method basic diagram

Table 1. Comparison of 95% Confidence Intervals on Simulated Sample Distributions

Sample 
Concentration

Lookup Lognormal Normal

LL UL LL UL LL UL

0.005 0.002 0.010 0.002 0.011 0.001 0.009

0.010 0.005 0.017 0.005 0.017 0.004 0.016

0.050 0.038 0.064 0.038 0.065 0.036 0.064

0.100 0.083 0.119 0.083 0.120 0.081 0.119

0.250 0.224 0.277 0.224 0.278 0.223 0.277

0.270 0.243 0.297 0.244 0.299 0.242 0.298

0.350 0.321 0.379 0.321 0.380 0.320 0.380

0.500 0.469 0.530 0.470 0.532 0.469 0.531

0.900 0.880 0.916 0.882 0.919 0.881 0.919
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 ■ The normal and lognormal intervals both performed well at con-
centrations of 0.005 and above. Below these, numerical prob-
lems made the comparison unreliable.

 ■ An approximate concentration threshold of 0.26 on the concen-
tration was found to exist, that differentiated their performances: 
below 0.26 the lognormal intervals worked best, with the normal 
intervals performing better above 0.26.
A selection of these results is offered in Table 1.

Conclusion
In the case of binomial-like sample distributions, the lognormal and 
normal confidence intervals can be used, lognormal below concen-
trations of 0.26, normal ones above. When normal distribution are 

simulated instead, the normal confidence intervals are winning over 
lognormal at all concentrations, which is not surprising, but violates 
the expected distribution shapes at low concentrations. The sim-
ple rule described above and its concentration threshold of 0.26, 
should heuristically give good results in all practical cases.
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Representative samples of ore containing precious metals is a difficult task. The lower the grade and the higher the nugget and/or 
cluster effect, the more complex and difficult extracting samples that are both accurate and precise. Reconciliation practices can 
be used as an effective tool to evaluate sampling accuracy throughout grade control processes. However, a proper reconciliation 
system must be based on reliable data and, therefore, optimisation of sampling techniques is a must for development of a reliable 
reconciliation system. This paper is a result of an extensive reconciliation study carried out at a copper and gold mine in Brazil, 
where a significant reconciliation problem took place while using manual sampling for grade control and short-term modeling. After 
analysing several sampling equipment/sample selection techniques, the authors suggested the use of a reverse circulation drilling 
rig with an automatic sampling system for grade control sampling. The samples generated by this automatic system were compared 
with the manual samples collected from the piles generated by the previous percussion rotary air blast drilling rig. Also, three pairs 
of twin holes were drilled in order to validate the new reverse circulation approach. Results allowed estimation of the bias related to 
the increment weighting error (IWE) generated by manual sampling, and show that the reverse circulation rig eliminates significant 
sampling biases, thus improving the general sample representativeness by increasing both sample accuracy and precision.

Introduction

S
ampling is an essential operation performed in many 
stages of a mining project: before its implementation, 
during mineral exploration for resources and reserves 
evaluation, and after its implementation, during mining 

and minerals processing for short-term planning, process control 
and reconciliation. Sampling is defined as a sequence of operations 
that aims to take a significant part, or sample, of a given lot1. Rec-
onciliation, in turn, consists of comparing the tonnages and grades 
estimated by the geological models with the tonnages and grades 
obtained in the processing plant.

The main objective of this work was to optimise sampling pro-
cedures of a copper and gold mine in Brazil, where sampling for 
reconciliation purposes traditionally has been performed using 
a blast-hole drilling rig, model HCR1500 by Furukawa. After drill-
ing, samples were manually collected from the coarse material pile 
using shovels.

According to Pitard2, the main problems related to blast-hole 
sampling are: upward and downward contamination during drilling, 
upward losses during drilling, refluxing during drilling, sub-drill mate-
rial disposal at the top of the pile, poor recovery of the former sub-
drill, pile segregation, pile shape irregularity, loss of fines, determin-
istic and operator-dependent sampling, sampling interfering with 
mining productivity, and a too small sample mass (not enough for 
representativeness), resulting in massive misclassification of ore and 
waste. The same author lists the many advantages of separate drill-
ing campaigns using reverse circulation drilling rigs, which includes: 
absence of a sub-drill, possibility to drill several benches at once, 
possibility to drill at an appropriate angle (perpendicular to the min-
eralisation structure), limited contamination and losses, no interfer-
ences with mining productivity, possibility of drilling many months 
ahead of mining time, smaller representative sample masses (since 
the chips are usually smaller than the ones generated by blast-hole 

drilling rigs), better mining logistics, easier automation of sampling, 
more accurate and precise grade control.

In 20133, the authors presented the results of a sampling cam-
paign in the same mine, which demonstrated the tendency of the 
Furukawa to overestimate both gold and copper grades, especially 
due to poor recovery (only 80%) coupled with segregation between 
fines and coarse material. Therefore, a reverse circulation (RC) drill-
ing rig with automatic sampling system (recovery of up to 99%) was 
recommended, in order to minimise the errors generated by manual 
sampling, such as the increment delimitation error, the increment 
extraction error, the increment weighting error and the grouping and 
segregation error (IDE, IEE, IWE, GSE).

This paper presents the results of sampling optimization for rec-
onciliation purposes, based on the validation of the RC ROC L8 
drilling rig with an automatic sampling system by Atlas Copco. The 
advantages of working with this type of rig offset the cost of acquisi-
tion, especially when dealing with very heterogeneous and geologi-
cally complex deposits.

Methodology
The mine selected for this study has a very complex geology. Gold 
and copper do not correlate with one another and are not prefer-
ably associated with any of the geological structures, requiring a 
versatile and appropriate sampling system to determine the limits 
between ore and waste. In addition, low grades and variable rock 
type occurrences make sampling even more difficult.

Earlier sampling procedure
The previous sampling approach was carried out using a Furukawa 
HCR1500, a percussion rotary air blast drilling rig with a 3.5” drill 
bit. This rig has two outputs originating from the cyclone under-
flow (front discharge: coarse and medium fragments) and overflow 
(rear discharge: fine fragments). The rig also has 5 filters, through 

doi: 10.1255/tosf.58
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which all fine material passes before being discharged, constituting 
one of the likely sources of contamination, as part of the material is 
retained in the filters and is first eliminated later together with mate-
rial from the next hole.

The previous method consisted in manual collection of 12 incre-
ments from the medium and coarse pile, using a shovel. The fines 
were discarded because (according to the sampling team): “the 
fines ‘salt’ the sample, which does not reconcile with the plant”[sic].

The previous work3 proved that this drilling rig is not able to 
recover all the material from the hole, especially the coarse and 
consequently lower grade material. Thus, the fragments sent to the 
surface piles (finer fragments) are richer than the original lot (all frag-
ments composing the drill hole: fines, medium and coarse). It was 
observed that in a 10 m drill hole, approximately 2 m of material 
could remain in the hole. Over time, incorrect sampling of coarser 
material has been compensating the error due to the Furukawa’s 
low recovery, generating excellent, but illusory, reconciliations4.

New sampling procedure
The new equipment acquired for short and medium-term sampling 
is an RC Atlas Copco ROC L8, equipped with a 5.5” drill bit and 
which is capable of recovering up to 99% of the drilled material. 
The RC drilling rod has a lining inside which the fragments are lifted, 
minimizing the material loss inside fractures and avoiding contami-
nation with fragments from the wall of the drill hole. The fragments 
are then sent directly to the automatic sampling system, where they 
are split by a riffle splitter. Figure 1 shows the drilling rig with the 
automatic sampling system.

Compressed air moves between the drill pipes, recovering the 
material and sending it to a ceramic baffle to reduce the speed of 
the particles. Upon reaching the desired depth, the drilling is inter-
rupted and the material is discharged through the automatic quar-
tering system, consisting of three sets of riffle splitters which gener-
ate the sample and the waste (Figure 2).

In order to validate the new sampling system and compare it to 
the old, three twin holes were executed. The samples were taken 
every 5 m, resulting in a total of 10 samples altogether: two from 
hole #1, four from hole #2 and four from hole #3. The remaining 
material was also collected: for the Furukawa, this was composed 
of the fines and the remaining part of the coarse pile; for the RC 
ROC L8, the remaining material was composed of the rejects of 
the riffle splitters and the material deposited on the top surrounding 
the hole.

The twin holes sampling procedure is described as follows:
 ■ Drilling (Furukawa), stopping every 5 meters.
 ■ Collection of 12 increments sample using a shovel.
 ■ Collection of the remaining material.
 ■ Drilling (RC ROC L8), stopping every 5 meters.
 ■ Collection of the sample generated by the automatic sampling 
system.

 ■ Collection of the remaining material.

Results
The data processing is designed to perform the following analyses:

 ■ Accuracy of the Furukawa drilling rig for sampling purposes.
 ■ Quality of samples generated by each sampling method.

Accuracy of the Furukawa drilling rig
Comparing the results of this study with those of the previous study3 
showed that the Furukawa tends to overestimate the actual gold 
and copper grades, with an average relative error of +57.6% and 

Figure 1. RC ROC L8 drilling rig with automatic sampling system.
Figure 3. Furukawa relative errors for copper and gold grades compared 
to RC ROC L8 twin holes.

Figure 2. Drill hole material pathway until reaching the automatic 
sampling  system, consisting of three sets of riffle splitters.
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+18.3% respectively. These errors were calculated relatively to the 
corresponding grades of the material from the twin holes recovered 
by the RC ROC L8. Figure 3 (related to Table 3) shows the gold and 
copper relative errors for all 10 individual samples.

This figure shows that the error dispersion related to gold is much 
higher than the one related to copper, and indeed that all samples 
were overestimated for gold while 80% of the samples were over-
estimated for copper.

Quality of samples – Furukawa
The quality of manual samples taken from the material recovered by 
the Furukawa can be characterised in two ways:

 ■ Comparing the grades of manual samples with the grades of all 
the material recovered by the Furukawa.

 ■ Comparing the grades of manual samples with the grades of all 
the material recovered by the RC ROC L8 (twin holes).
Figure 4 shows that both copper and gold are concentrated in 

the finest size fraction, since most of the contained gold (49.8% Au 
and 53.7% Au) and the contained copper (36.0% Cu and 48.2% 
Cu) is in the -400# fraction. Thus, samples taken from the coarse 
fragments pile will underestimate the grades, due to the increment 
weighting error (IWE).

Table 1 shows the errors associated with manual sampling rela-
tive to the grades calculated for all the material recovered by the 
Furukawa, showing a clear pattern of underestimation.

Table 2 shows the errors associated with manual sampling rela-
tive to the grades calculated for all the material recovered by the RC 
ROC L8, showing a pattern of overestimation.

Interestingly, unlike to the results shown in Table 1, in this case 
manual sampling leads to an overestimation of the hole grades. This 
can be explained by the fact that the Furukawa doesn’t recover the 
coarser/poorer fragments and thus overestimates the gold grades 
in 57.6% and the copper grades in 18.3% (see relative error means 
in Table 3). Even though the samples have an underestimation trend 
(–12.6% for gold and –7.1% for copper: see relative error means in 
Table 1), this is not enough to compensate the error induced by the 
drilling rig. It’s important to note that, if increments were collected 
from the fines pile as well, the overestimation trend of manual sam-
ples would be even greater.

Since one error compensates another in the earlier approach, 
it was often possible to obtain what appeared as excellent 
reconciliations  – even with very poor and biased samples. The 
fact that reconciliation results were deceptively satisfactory did 
not allow, for years, proper recognition of the errors involved and 
the optimization of sampling procedures in order to ensure the 

Figure 4. Distribution of gold and copper content, and mass retained, for 11 size fractions. Calculations are based on size distribution and chemical 
analysis  for all material recovered by the Furukawa rig from hole #3 (0 to 10 m and 10 to 20 m).
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representativeness of samples and hence the reliability of reconcili-
ation results4.

Quality of samples – RC ROC L8
Table 4 shows the errors estimates associated with the automated 
sampling system of RC ROC L8 relative to the grades calculated 
for all the material recovered by the same drilling rig. An important 
aspect is the absence of a systematic error, or bias, i.e., the sam-
ples do not have a tendency to underestimate or overestimate the 
grades (50% of the samples underestimate gold grades and 60% 
of the samples underestimate copper grades).

Figure 5 shows a comparison between the particle size distribu-
tions of the RC ROC L8 sample and the particle size distribution of 
all the material recovered by the RC ROC L8. This figure also shows 

the same comparison for the Furukawa, which presents very differ-
ent distributions, proving the observed bias.

This display proves beyond any doubt that the RC ROC L8 distri-
butions are fully compatible and that there’s no selection of a par-
ticular size fraction at the expense of others. Knowing that if one 
wants to represent the grades, the imperative is to represent the 
complete particle size distribution, it can be stated that the RC ROC 
L8 automatic sampling system generates samples that are fully rep-
resentative of the original lot.

Conclusions
Based on the presented results, the following conclusions can be 
made:

 ■ The Furukawa overestimates both copper and gold grades, 
mainly because of the upward losses during drilling.

Table 1. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample) with all the material recovered 
by Furukawa (Total)
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Figure 1. RC ROC L8 drilling rig with automatic sampling system. 
  

Figure 2. Drill hole material pathway until reaching the automatic sampling system, consisting of three sets of riffle splitters. 
 

Figure 3. Furukawa relative errors for copper and gold grades compared to RC ROC L8 twin holes. 
 

Figure 4. Distribution of gold and copper content, and mass retained, for 11 size fractions. 
Calculations are based on size distribution and chemical analysis for all material  
recovered by the Furukawa rig from hole #3 (0 to 10 m and 10 to 20 m). 
 

Figure 5. Particle size distributions (Sample) compared to the total material  
recovered (Total) for Furukawa and RC ROC L8 respectively. 
 

Table 1. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample) with all the material recovered 

by Furukawa (Total) 

 

 
Table 2. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample FK) with all the material 
recovered by RC ROC L8 (Total L8) 

Hole/Depth Total Sample ABS Error REL Error Hole/Depth Total Sample ABS Error REL Error

H1/0-5 m 0.345 0.294 -0.051 -14.7% H1/0-5 m 0.435 0.408 -0.027 -6.2%
H1/5-10 m 0.110 0.081 -0.029 -26.5% H1/5-10 m 0.179 0.141 -0.038 -21.1%
H2/0-5 m 0.907 0.825 -0.082 -9.0% H2/0-5 m 0.522 0.503 -0.019 -3.6%
H2/5-10 m 0.185 0.131 -0.054 -29.0% H2/5-10 m 0.205 0.188 -0.017 -8.2%
H2/10-15 m 0.081 0.060 -0.021 -25.8% H2/10-15 m 0.138 0.128 -0.010 -7.5%
H2/15-20 m 0.048 0.037 -0.011 -22.9% H2/15-20 m 0.115 0.111 -0.004 -3.8%
H3/0-5 m 0.294 0.282 -0.012 -3.9% H3/0-5 m 0.483 0.506 0.023 4.8%
H3/5-10 m 0.100 0.111 0.011 10.8% H3/5-10 m 0.172 0.193 0.021 12.4%
H3/10-15 m 0.045 0.047 0.002 4.6% H3/10-15 m 0.155 0.102 -0.053 -34.3%
H3/15-20 m 0.043 0.038 -0.005 -11.7% H3/15-20 m 0.105 0.102 -0.003 -2.8%

Mean -0.022 -12.6% Mean -0.011 -7.1%
Variance 0.00085 Variance 0.00061
Standard deviation 0.029 Standard deviation 0.025
Representativeness (r² = m² + s²) 0.0013 Representativeness (r² = m² + s²) 0.00074

%Cu (FURUKAWA)g/t Au (FURUKAWA)

Table 2. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample FK) with all the material recovered 
by RC ROC L8 (Total L8)
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Figure 1. RC ROC L8 drilling rig with automatic sampling system. 
  

Figure 2. Drill hole material pathway until reaching the automatic sampling system, consisting of three sets of riffle splitters. 
 

Figure 3. Furukawa relative errors for copper and gold grades compared to RC ROC L8 twin holes. 
 

Figure 4. Distribution of gold and copper content, and mass retained, for 11 size fractions. 
Calculations are based on size distribution and chemical analysis for all material  
recovered by the Furukawa rig from hole #3 (0 to 10 m and 10 to 20 m). 
 

Figure 5. Particle size distributions (Sample) compared to the total material  
recovered (Total) for Furukawa and RC ROC L8 respectively. 
 

Table 1. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample) with all the material recovered 

by Furukawa (Total) 

 

 
Table 2. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample FK) with all the material 
recovered by RC ROC L8 (Total L8) 

 

 
Table 3. Absolute and relative errors for Cu and Au grades comparing all material recovered by Furukawa (Total FK) with 
all the material recovered by RC ROC L8 (Total L8) 

Hole/Depth Total L8 Sample FK ABS Error REL Error Hole/Depth Total L8 Sample FK ABS Error REL Error

H1/0-5 m 0.306 0.294 -0.012 -4.0% H1/0-5 m 0.425 0.408 -0.017 -4.0%
H1/5-10 m 0.071 0.081 0.010 14.3% H1/5-10 m 0.140 0.141 0.001 0.7%
H2/0-5 m 0.532 0.825 0.293 55.2% H2/0-5 m 0.538 0.503 -0.035 -6.4%
H2/5-10 m 0.096 0.131 0.035 36.0% H2/5-10 m 0.166 0.188 0.022 13.3%
H2/10-15 m 0.028 0.060 0.032 116.8% H2/10-15 m 0.086 0.128 0.042 48.2%
H2/15-20 m 0.025 0.037 0.012 47.7% H2/15-20 m 0.096 0.111 0.015 15.1%
H3/0-5 m 0.282 0.282 0.000 -0.1% H3/0-5 m 0.446 0.506 0.060 13.4%
H3/5-10 m 0.095 0.111 0.016 16.9% H3/5-10 m 0.187 0.193 0.006 3.2%
H3/10-15 m 0.040 0.047 0.007 18.6% H3/10-15 m 0.102 0.102 0.000 -0.3%
H3/15-20 m 0.031 0.038 0.007 23.1% H3/15-20 m 0.104 0.102 -0.002 -2.1%

Mean 0.040 32.5% Média 0.009 8.1%
Variance 0.0081 Variância 0.00075
Standard deviation 0.090 Desvio Padrão 0.027
Representativeness (r² = m² + s²) 0.010 Representatividade (r² = me² + se²) 0.00083

g/t Au (ROC L8 × FURUKAWA) %Cu (ROC L8 × FURUKAWA)
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 ■ The earlier manual sampling procedure tends to select only the 
coarser particles, thereby underestimating gold and copper 
grades – but this trend has been masked by an overestimation 
tendency by the drilling rig.

 ■ The fines discard from the manual sampling procedure is 
incorrect . However, its positive results were due to a particular 
compensation of errors that led to a completely illusory reconcili-
ation.

 ■ Comparing with the grades of all the material recovered by the 
RC ROC L8, the samples generated by its automatic sampling 
system do not result in any systematic errors. This new system 
is unbiased.

 ■ The samples generated by the RC ROC L8 are representative 
with respect to both total particle size distribution and to the gold 
and copper grades for individual particle size fractions .

 ■ Knowing that the reliability of the reconciliation results depends 
on the quality of the input data, the authors conclude that the RC 
ROC L8 sampling system has been validated for reconciliation 
purposes.
The economic impact generated by incorrect sampling proce-

dures should never be underestimated. In this study, the intrinsic 
errors in the process were being masked by compensations, and 
may have eventually led to erroneous interpretation of the recon-
ciliation results, from which significant ore losses and ore dilution 
take place. These problems are amplified when production reaches 
poorer or more heterogeneous regions of the deposit.

Knowing that errors are amplified for lower grades, and consider-
ing the high geological complexity of the deposit, implementation 
of the new automatic sampling system is the only logical solution 
for effective control of mining operations. The new RC drilling rig 

Table 3. Absolute and relative errors for Cu and Au grades comparing all material recovered by Furukawa (Total FK) with all the mate-
rial recovered by RC ROC L8 (Total L8)
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Figure 1. RC ROC L8 drilling rig with automatic sampling system. 
  

Figure 2. Drill hole material pathway until reaching the automatic sampling system, consisting of three sets of riffle splitters. 
 

Figure 3. Furukawa relative errors for copper and gold grades compared to RC ROC L8 twin holes. 
 

Figure 4. Distribution of gold and copper content, and mass retained, for 11 size fractions. 
Calculations are based on size distribution and chemical analysis for all material  
recovered by the Furukawa rig from hole #3 (0 to 10 m and 10 to 20 m). 
 

Figure 5. Particle size distributions (Sample) compared to the total material  
recovered (Total) for Furukawa and RC ROC L8 respectively. 
 

Table 1. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample) with all the material recovered 

by Furukawa (Total) 
 
Table 2. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample FK) with all the material re-

covered by RC ROC L8 (Total L8) 

 
Table 3. Absolute and relative errors for Cu and Au grades comparing all material recovered by Furukawa (Total FK) with all the 

material recovered by RC ROC L8 (Total L8) 

 

Table 4. Absolute and relative errors for Cu and Au grades comparing RC ROC L8 samples (Sample) with all the material 
recovered by the RC ROC L8 (Total) 

Hole/Depth Total L8 Total FK ABS Error REL Error Hole/Depth Total L8 Total FK ABS Error REL Error

H1/0-5 m 0.306 0.345 0.038 12.5% H1/0-5 m 0.425 0.435 0.010 2.3%
H1/5-10 m 0.071 0.110 0.039 55.6% H1/5-10 m 0.140 0.179 0.039 27.7%
H2/0-5 m 0.532 0.907 0.375 70.5% H2/0-5 m 0.538 0.522 -0.016 -2.9%
H2/5-10 m 0.096 0.185 0.088 91.7% H2/5-10 m 0.166 0.205 0.039 23.4%
H2/10-15 m 0.028 0.081 0.053 192.2% H2/10-15 m 0.086 0.138 0.052 60.2%
H2/15-20 m 0.025 0.048 0.023 91.7% H2/15-20 m 0.096 0.115 0.019 19.7%
H3/0-5 m 0.282 0.294 0.011 4.0% H3/0-5 m 0.446 0.483 0.037 8.2%
H3/5-10 m 0.095 0.100 0.005 5.5% H3/5-10 m 0.187 0.172 -0.015 -8.2%
H3/10-15 m 0.040 0.045 0.005 13.4% H3/10-15 m 0.102 0.155 0.053 51.7%
H3/15-20 m 0.031 0.043 0.012 39.4% H3/15-20 m 0.104 0.105 0.001 0.8%

Mean 0.065 57.6% Mean 0.022 18.3%
Variance 0.013 Variance 0.00067
Standard deviation 0.112 Standard deviation 0.026
Representativeness (r² = m² + s²) 0.017 Representativeness (r² = m² + s²) 0.0011

g/t Au (ROC L8 × FURUKAWA) %Cu (ROC L8 × FURUKAWA)

Table 4. Absolute and relative errors for Cu and Au grades comparing RC ROC L8 samples (Sample) with all the material recov-
ered by the RC ROC L8 (Total)
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Figure 1. RC ROC L8 drilling rig with automatic sampling system. 
  

Figure 2. Drill hole material pathway until reaching the automatic sampling system, consisting of three sets of riffle splitters. 
 

Figure 3. Furukawa relative errors for copper and gold grades compared to RC ROC L8 twin holes. 
 

Figure 4. Distribution of gold and copper content, and mass retained, for 11 size fractions. 
Calculations are based on size distribution and chemical analysis for all material  
recovered by the Furukawa rig from hole #3 (0 to 10 m and 10 to 20 m). 
 

Figure 5. Particle size distributions (Sample) compared to the total material  
recovered (Total) for Furukawa and RC ROC L8 respectively. 
 

Table 1. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample) with all the material recovered 

by Furukawa (Total) 
 
Table 2. Absolute and relative errors for Cu and Au grades comparing Furukawa samples (Sample FK) with all the material re-

covered by RC ROC L8 (Total L8) 

 
Table 3. Absolute and relative errors for Cu and Au grades comparing all material recovered by Furukawa (Total FK) with all the 

material recovered by RC ROC L8 (Total L8) 

 

Table 4. Absolute and relative errors for Cu and Au grades comparing RC ROC L8 samples (Sample) with all the material recovered 

by the RC ROC L8 (Total) 

 

 

Hole/Depth Total Sample ABS Error REL Error Hole/Depth Total Sample ABS Error REL Error

H1/0-5 m 0.306 0.282 -0.024 -8.0% H1/0-5 m 0.425 0.320 -0.105 -24.7%
H1/5-10 m 0.071 0.069 -0.002 -2.6% H1/5-10 m 0.140 0.140 0.000 0.0%
H2/0-5 m 0.532 0.578 0.046 8.7% H2/0-5 m 0.538 0.551 0.013 2.5%
H2/5-10 m 0.096 0.121 0.025 25.6% H2/5-10 m 0.166 0.166 0.000 0.0%
H2/10-15 m 0.028 0.025 -0.003 -9.7% H2/10-15 m 0.086 0.081 -0.005 -6.2%
H2/15-20 m 0.025 0.037 0.012 47.7% H2/15-20 m 0.096 0.093 -0.003 -3.5%
H3/0-5 m 0.282 0.277 -0.005 -1.8% H3/0-5 m 0.446 0.422 -0.024 -5.4%
H3/5-10 m 0.095 0.082 -0.013 -13.6% H3/5-10 m 0.187 0.168 -0.019 -10.1%
H3/10-15 m 0.040 0.044 0.004 11.1% H3/10-15 m 0.102 0.097 -0.005 -5.1%
H3/15-20 m 0.031 0.036 0.005 16.6% H3/15-20 m 0.104 0.105 0.001 0.8%

Mean 0.0046 7.4% Mean -0.015 -5.2%
Variance 0.00039 Variance 0.0011
Standard deviation 0.020 Standard deviation 0.033
Representativeness (r² = m² + s²) 0.00041 Representativeness (r² = m² + s²) 0.0013

g/t Au (ROC L8) %Cu (ROC L8)
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showed very encouraging results with respect to sample represent-
ativeness and significantly increased reconciliation reliability.
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Figure 5. Particle size distributions comparing the samples with the total recovered material for Furukawa and RC ROC L8.
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Determination of the precision of sampling systems and 
on-line analysers
Geoffrey J Lymana and James Asburyb
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There is a simple and relatively inexpensive way of determining the precision of sampling systems and on-line analysers when a data 
base of output values from the sampling system or on-line analyser can be accessed and there exists serial correlation in the data 
sets. For a sampling system, if it is possible to construct a variogram from the routine data collected, it is possible to extract the 
component of the precision estimate due to material intrinsic heterogeneity, preparation and analysis as this variance is simply given 
by the intercept (nugget variance) of the variogram. To determine the last component of uncertainty, a punctual variogram determined 
from a sampling campaign is necessary. The method is much superior to interleaved sampling, which gives incorrect estimates of 
the precision when serial correlation exists. It is rare to find that there is no serial correlation in plant data. For on-line analysers that 
interrogate a process stream continuously, the variogram constructed from the gauge output for short time intervals can be used to 
determine the precision with no additional effort. The gauge ideally should be operated in such a way that the output is not smoothed 
by some statistical procedure. This paper outlines the methods and illustrates the procedure with data sets from a coal washery.

Introduction

I
t is very useful to be able to determine the precision with which 
a sampling system operates. The ISO Standards say that this 
precision can be found by a process of interleaved sampling, 
but this statement is incorrect when the assays in the process 

stream from which the samples are taken show a serial correlation 
in time (Lyman1). Interleaved sampling also demands that sampling 
be carried out at double the rate of the routine sampling. Building 
this capability into a sampling system increases the system cost.

What is desired is a simple and cost-effective means of estimat-
ing sampling system precision. This can be done by taking advan-
tage of the serial correlation in time that is present in virtually all 
process streams.

Similarly, it is of great importance to be able to estimate the preci-
sion of an output value from an on-line analyser which is interrogat-
ing a process stream continuously. A variogram constructed from 
unfiltered output from the gauge will provide the precision estimate.

This paper provides the mathematical background behind the 
methods of precision determination and illustrates the method 
using data from a coal washery.

Mathematical development
When a process stream is observed by intermittently taking incre-
ments of material from the process stream and analysing them, the 
assay of the increment can be modelled as the sum of a random 
function and a random variable. The random function describes the 
true value of the assays as a function of time and the random vari-
able describes the uncertainty introduced in the determination of 
the assay as a result of the intrinsic heterogeneity of the increment 
and the sample preparation and analysis uncertainties. The relation-
ship can be described as
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There is a simple and relatively inexpensive way of determining the precision of sampling systems and 
on-line analysers when a data base of output values from the sampling system or on-line analyser can be 
accessed and there exists serial correlation in the data sets. For a sampling system, if it is possible to con-
struct a variogram from the routine data collected, it is possible to extract the component of the precision 
estimate due to material intrinsic heterogeneity, preparation and analysis as this variance is simply given by 
the intercept (nugget variance) of the variogram. To determine the last component of uncertainty, a punctual 
variogram determined from a sampling campaign is necessary. The method is much superior to interleaved 
sampling, which gives incorrect estimates of the precision when serial correlation exists. It is rare to find that 
there is no serial correlation in plant data. For on-line analysers that interrogate a process stream continu-
ously, the variogram constructed from the gauge output for short time intervals can be used to determine the 
precision with no additional effort. The gauge must be operated in such a way that the output is not smoothed 
by some statistical procedure. This paper outlines the methods and illustrates the procedure with data sets 
from a coal washery. 

Introduction 
It is very useful to be able to determine the precision with which a sampling system operates. The ISO Standards say that this preci-
sion can be found by a process of interleaved sampling, but this statement is incorrect when the assays in process stream from which 
the samples are taken show a serial correlation in time (Lyman1). Interleaved sampling also demands that sampling be carried out at 
double the rate of the routine sampling. Building this capability into a sampling system increases the system cost. 
What is desired is a simple and cost-effective means of estimating sampling system precision. This can be done by taking advantage 
of the serial correlation in time that is present in virtually all process streams. 

Similarly, it is of great importance to be able to estimate the precision of an output value from an on-line analyser which is interro-
gating a process stream continuously. A variogram constructed from unfiltered output from the gauge will provide the precision esti-
mate. 

This paper provides the mathematical background behind the methods of precision determination and illustrates the method using 
data from a coal washery. 

Mathematical development 
When a process stream is observed by intermittently taking increments of material from the process stream and analysing it, the assay 
of the increment can be modelled as the sum of a random function and a random variable. The random function describes the true 
value of the assays as a function of time and the random variable describes the uncertainty introduced in the determination of the 
assay as a result of the intrinsic heterogeneity of the increment and the sample preparation and analysis uncertainties. The relationship 
can be described as 
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where X(t) is the random function describing the true value of the process stream assay at time t and e is a uncorrelated random vari-

able having a distribution corresponding to that of the intrinsic heterogeneity of the increment plus the distributions due to the sample 
preparation and analysis. The random variable is statistically independent from the random function. 

The random function can be characterised by a covariance function or variogram. Consider increments taken at a set of times {t
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where X
0
 and e

0
 are the expected values of the random function and random variable. Note that the cross-terms between the random 

function and the random variable vanish due to the independence of the two statistical quantities. Taking the expectations above, 
those involving the random variable are zero except when i = j, that is the covariance is the variance of the random function plus that of 
the random variable. We have 
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If the random function is stationary, the value above is the value of the covariance function for Y at the origin, which can be denoted 
as C(0). The variogram or covariance function estimation will provide a picture of the rest of the function, C(t) which in fact now de-
pends only on the properties of the random function X(t). The covariance function will have the form as shown in Figure 1. The corre-
sponding variogram function is shown at the right of Figure 1. 
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where X(t) is the random function describing the true value of the 
process stream assay at time t and e is a uncorrelated random 

variable having a distribution corresponding to that of the intrinsic 
heterogeneity of the increment plus the distributions due to the 
sample preparation and analysis. The random variable is statisti-
cally independent from the random function.
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If the random function is stationary, the value above is the value of 
the covariance function for Y at the origin, which can be denoted as 
C(0). The variogram or covariance function estimation will provide 
a picture of the rest of the function, C(t) which in fact now depends 
only on the properties of the random function X(t). The covariance 
function will have the form as shown in Figure 1. The corresponding 
variogram function is shown at the right of Figure 1.
The relationship between the (semi)variogram and the covariance 
function is

 

 
Figure 1 near here 
 

The relationship between the (semi)variogram and the covariance function is 

 ( ) ( ) ( )0t C C t= -g  (4) 

so the variogram starts at zero and rises to a sill value equal to the value of the covariance function at the origin. 
In the operation of an on-line gauge, which may be of the nuclear type (prompt gamma neutron activation), gamma ray (transmission 

gauges) or x-ray fluorescence, the gauge interrogates the process stream and periodically provides an output which is an estimate of 
the composition of the stream with respect to one or more analytes. The output of the gauge can be modelled statistically in the same 
way as above, where X(t) is the true analyte content averaged over some relatively short time period t and e is a random measurement 

error which is uncorrelated from one output value to the next. Some caution must be exercised here as the output from on-line gauges 
can involve the application of an exponentially weighted moving average process to the raw signals, or some other methodology that 
smoothes the output values. The use of such smoothing methods will cause serial correlation of the measurement error component of 
the output and well as modifying the covariance function of the component due to the changing analyte content of the stream. 

The last circumstance to be considered is that in which increments are collected from a process stream over a period of time (a shift 
or day) and then analysed together as a whole. When values from this data stream are analysed variographically, the variogram ob-
served is not the punctual variogram but a punctual variogram which has been regularised (a change of support having been made 
from single points to a set of points) over the period of sampling. This has important implications for the determination of the total 
sampling uncertainty as the punctual variogram is obscured. 

Application to sampling of process streams 
When a sampling system for a process stream is designed and the sampling is mechanically correct, there are three components of 
uncertainty that must be considered: 

• the component due to the fact that there is a difference between the true average analysis of the increments extracted and 
the true average analysis of the process stream over the entire sampling period 

• the component due to the intrinsic heterogeneity of the increments collected and that introduced within the sample prepara-
tion protocol 

• the final analytical uncertainty 
The first component is due to the distributional heterogeneity of the process stream, the second due to intrinsic heterogeneity of the 

material as sampled and at various stages in the sample preparation protocol and the last due to random error in the analysis proce-
dure be it classical or instrumental. 

The first component of uncertainty is determined by the shape and range of the variogram, that is by the time-wise serial correlation 
of the target analyte content of the stream. The second and third components are uncorrelated with the time variation and together 
are a measurement uncertainty. With a punctual variogram determined from the analysis of individual increments, the variogram can 
be extrapolated back to zero to make an estimate of the size of the jump after the origin, as in Figure 2. 

 
Figure 2 near here 
 
The magnitude of the jump is equal to the measurement variance. This determines the sum of the last two components of uncer-

tainty in sampling. The first component can be calculated from the shape of the variogram, providing an estimate of the total sampling 
uncertainty. There is a potential issue, however, with this procedure, namely that the sample preparation protocol for the individual 
increments may differ in a significant manner from that for the usual shift or daily sample. While the analytical variance will be the same 
as for the shift or daily sample (unless multiple assays are routinely carried out and only single assays applied to the individual incre-
ment), the second variance component due to the intrinsic heterogeneity of the material sampled may not match that involved in the 
preparation of the daily sample due to differences in the protocol. 

When dealing with relatively small data sets, as is common when a special sampling program has been carried out, estimation of the 
value of the variogram and intercept can be made by maximum likelihood methods (Lyman2) which are very effective especially when 
the increments have not been extracted on a strictly constant time base. In such a case, the variance of the estimate of the meas-
urements variance can be calculated as well. 

When dealing with a variogram estimated from shift or daily samples, it is still possible to find a variogram and fit or extrapolate to 
find a measurement variance. However, this variogram cannot be used to find the sampling variance due to distributional heterogene-
ity as the compositing of the increments taken into a single sample has obscured the original punctual variogram. In particular, the sill 
of the variogram found will be lower than that for the punctual variogram and the range of the variogram will be longer as a result of the 
averaging process. It is not possible to work backwards to find a unique variogram that, when regularised using the actual sampling 
pattern, will match the observed variogram. There are many possible punctual variograms that will match the observed variogram after 
regularisation. But the intercept of this variogram is equal to the variance due to sample preparation and analysis for the protocol used 
routinely. This variance can be combined with the variance due to distributional heterogeneity determined from the punctual variogram 
to arrive at the correct estimate of the sampling system. 

Therefore the analysis of the data set for shift or daily samples can be combined with the punctual variogram to provide the correct 
answer for the total sampling variance. 

Note that it is an estimation of precision that is made, not an estimation of accuracy; bias cannot be detected in this way. 

 (4)

so the variogram starts at zero and rises to a sill value equal to the 
value of the covariance function at the origin.
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In the operation of an on-line gauge, which may be of the nuclear 
type (prompt gamma neutron activation), gamma ray (transmission 
gauges) or x-ray fluorescence, the gauge interrogates the process 
stream and periodically provides an output which is an estimate of 
the composition of the stream with respect to one or more analytes. 
The output of the gauge can be modelled statistically in the same 
way as above, where X(t) is the true analyte content averaged over 
some relatively short time period t and e is a random measurement 
error which is uncorrelated from one output value to the next. Some 
caution must be exercised here as the output from on-line gauges 
can involve the application of an exponentially weighted moving 
average process to the raw signals, or some other methodology 
that smoothes the output values. The use of such smoothing meth-
ods will cause serial correlation of the measurement error compo-
nent of the output and well as modifying the covariance function of 
the component due to the changing analyte content of the stream.

The last circumstance to be considered is that in which incre-
ments are collected from a process stream over a period of time (a 
shift or day) and then analysed together as a whole. When values 
from this data stream are analysed variographically, the variogram 
observed is not the punctual variogram but a punctual variogram 
which has been regularised (a change of support having been made 
from single points to a set of points) over the period of sampling. 
This has important implications for the determination of the total 
sampling uncertainty as the punctual variogram is obscured.

Application to sampling of process streams
When a sampling system for a process stream is designed and the 
sampling is mechanically correct, there are three components of 
uncertainty that must be considered:

 ■ the component due to the fact that there is a difference between 
the true average analysis of the increments extracted and the 
true average analysis of the process stream over the entire sam-
pling period

 ■ the component due to the intrinsic heterogeneity of the incre-
ments collected and that introduced within the sample prepara-
tion protocol

 ■ the final analytical uncertainty
The first component is due to the distributional heterogeneity of 

the process stream, the second due to intrinsic heterogeneity of the 
material as sampled and at various stages in the sample preparation 

protocol and the last due to random error in the analysis procedure 
be it classical or instrumental.

The first component of uncertainty is determined by the shape 
and range of the variogram, that is by the time-wise serial correlation 
of the target analyte content of the stream. The second and third 
components are uncorrelated with the time variation and together 
are a measurement uncertainty. With a punctual variogram deter-
mined from the analysis of individual increments, the variogram can 
be extrapolated back to zero to make an estimate of the size of the 
jump after the origin, as in Figure 2.

The magnitude of the jump is equal to the measurement variance. 
This determines the sum of the last two components of uncertainty 
in sampling. The first component can be calculated from the shape 
of the variogram, providing an estimate of the total sampling uncer-
tainty. There is a potential issue, however, with this procedure, 
namely that the sample preparation protocol for the individual incre-
ments may differ in a significant manner from that for the usual shift 
or daily sample. While the analytical variance will be the same as for 
the shift or daily sample (unless multiple assays are routinely carried 
out and only single assays applied to the individual increment), the 
second variance component due to the intrinsic heterogeneity of 
the material sampled may not match that involved in the preparation 
of the daily sample due to differences in the protocol.

 
Figure 1. Covariance (left) and variogram (right) functions in the presence of measurement error.

Figure 2. Backward extrapolation of a variogram to estimate the meas-
urement variance.
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When dealing with relatively small data sets, as is common when 
a special sampling program has been carried out, estimation of the 
value of the variogram and intercept can be made by maximum like-
lihood methods (Lyman2) which are very effective especially when 
the increments have not been extracted on a strictly constant time 
base. In such a case, the variance of the estimate of the measure-
ments variance can be calculated as well.

When dealing with a variogram estimated from shift or daily sam-
ples, it is still possible to find a variogram and fit or extrapolate to 
find a measurement variance. However, this variogram cannot be 
used to find the sampling variance due to distributional heterogene-
ity as the compositing of the increments taken into a single sam-
ple has obscured the original punctual variogram. In particular, the 
sill of the variogram found will be lower than that for the punctual 
variogram and the range of the variogram will be longer as a result 
of the averaging process. It is not possible to work backwards to 
find a unique variogram that, when regularised using the actual 
sampling pattern , will match the observed variogram. There are 
many possible  punctual variograms that will match the observed 
variogram after regularisation. But the intercept of this variogram 
is equal to the variance due to sample preparation and analysis for 
the protocol used routinely. This variance can be combined with 
the variance due to distributional heterogeneity determined from the 
punctual variogram to arrive at the correct estimate of the sampling 
system precision.

Therefore the analysis of the data set for shift or daily samples can 
be combined with the punctual variogram to provide the correct 
answer for the total sampling variance.

Note that it is an estimation of precision that is made, not an esti-
mation of accuracy; bias cannot be detected in this way.

Application to on-line analysers
If the output from the on-line analyser has not been interfered with 
by averaging methods, the precision of the analyser on a punctual 
basis can be estimated. Note again that it is precision that is being 
estimated, not accuracy.

The current practice in the estimation of the precision of on-line 
analysers usually rests with the use of the Grubbs estimator (Lyman 
et al.3), which requires the use of two reference measurements in 
addition to the data from the gauge. It is necessary to coordinate 

the recording of signals from the gauge and the collection of physi-
cal samples of the material analysed in two independent ways in 
order to put this method into place. It is also desirable to ensure that 
the precision of the two reference measurements are better than 
that of the gauge; this can be difficult, given sampling problems.

By contrast the variogram approach for estimating analyser pre-
cision requires no additional effort. The estimate is derived directly 
from the gauge output. It is therefore very inexpensive and effective. 
On-line analysers produce a large volume of data as they generally 
produce an output value at any desired interval. A largest source of 
measurement variance may be the counting statistics for nucleonic 
systems, which ensures that the component of measurement error 
is independent from one reading to the next.

As for sampling, the estimate of measurement variance involves 
only the estimation of a variogram with backward extrapolation to 
the origin to find the intercept. With the large data sets from on-line 
analysers, the maximum likelihood method of variogram estimation 
is not practical.

Example
This example is drawn from data collected both from an on-line 
analyser and a conventional sampling system producing assays 
about every 6 hours. The operation of the conventional sampling 
system is somewhat erratic. The washery in question treats a num-
ber of types of coal with widely varying ash content. The on-line 
analyser interrogates all these feed coals on the same belt.

The conventional sampling system data was analysed on a per 
coal type basis in order to pick up the serial correlation for those 
coal streams. Figure 3 shows the data for coal type A as a function 
of tonnes of coal sampled.

The upper trace in Figure 3 is the actual coal ash content as 
sampled and the solid dark line is the trend line through the data 
determined by locally weighted regression. The lower trace is the 
deviation from this trend line. De-trending of the data is mandatory 
before calculating a variogram as this method can be applied only 
to stationary data. It is also desirable to apply the method to data 
that follows a Gaussian distribution as all theory and tools attached 
to variogram estimation assumes normality of the data. Figure 4 
shows the deviation data after having been transformed to z-scores 
(standard Gaussian deviates of zero mean and unit variance). The 

Figure 3. Ash content of coal type A as a function of tonnes of coal sampled. Lower curve shows deviations from trend (black).
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variogram is calculated using this transformed data using the con-
ventional Matheron estimator. Note that the variogram is based on 
actual assay results rather than a measure of heterogeneity as is 
often done when following Gy’s methodology. The interest here is in 
the assay uncertainty and not a measure of heterogeneity. The error 
bars on the variogram represent a ± 1 SD interval for the variogram 
estimate at the given lag. The variogram derived from the data of 
Figure 4 is shown in Figure 5.

The intercept of the z-score variogram can be found either using 
the first two points on the variogram or by fitting an admissible vari-
ogram function to the data. The intercept value is rescaled using 
the variance of the untransformed deviation data about their mean. 
Dividing the square root of the scaled intercept value by the mean 
ash content of the un-detrended data then provides a relative 
standard deviation for the measurement uncertainty. In this case 
the RSD is 17.2% ash. This indicates that there are serious prob-
lems with the sampling system or the manner in which the sample 
is prepared and analysed.

The corresponding data for coals B and C are shown in Figures 
6 and 7. The RSD for coal B is 14.3% and for coal C 16.0%. The 

consistency of the estimates of the RSD underlines their validity, 
given that they are passing through the same sampling system. The 
ranges of the variograms are similar for coals A and B; that for coal 
C is longer. However, the last data set is relatively small and the 
variogram less well-defined.

The analysis of the gauge precision is based on one month of 
outputs at two minute intervals. The gauge is a prompt gamma 
neutron activation type (Realtime Group Allscan gauge).

The data for low ash coal is shown in Figure 8; there are just over 
7000 data points in the data set. The z-score variogram is shown in 
Figure 9. The right hand frame shows a closer view of the behaviour 
of the variogram near the origin. The SD of a two minute reading is 
2.12% ash or 23.7% relative.

The corresponding data for high ash coal is shown in Figure 10 
with the z-score variogram in Figure 11. The SD of a two-minute 
reading is 3.04% ash or 12.0% relative.

It is interesting to consider the gauge measurement uncertainty 
over a period longer than 2 minutes. Because the gauge is meas-
uring continuously, there is no uncertainty due to distributional 
heterogeneity such as would arise if punctual increments were 

Figure 5. Variogram for coal A as sampled using z-score values, with a fitted exponential variogram. The intercept value is 0.284 from the fit.

Figure 4. Z-scores for the deviation data of Figure 3.
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being taken as in conventional sampling (the gauge misses noth-
ing). Consequently, the measurement variance is simply inversely 
proportional to the number of two minute readings that are aver-
aged. For a 6 hour period, there are 180 readings so the RSDs 

are reduced to 1.77% (SD = 0.158% ash) for the low ash coal and 
0.894% (SD = 0.227% ash) for the high ash coal. As long as there 
is no bias in the gauging system, the gauge accuracy over a 6 hour 
period is extremely good. Over a daily period, the figures above 

Figure 8. On-line analyser data for low ash coal (yellow) showing de-trending (black) and deviation values from the trend (green).

 
Figure 6. Data, detrending and z-score variogram for coal B.

 
Figure 7. Data, detrending and z-score variogram for coal C.
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are reduced by half to deliver standard deviations of 0.076% ash 
and 0.114% ash respectively. These figures can be compared to 
the standard deviations of a single ash determination by Australian 
Standard 1038 of 0.05% ash and 0.085% ash.

By comparison, as long as the gauge is bias free (and the sam-
pling system as well), the sampling system performance leaves a 
great deal to be desired.

This example points up the problems of attempting to calibrate 
an on-line gauge for coal ash and coal ash constituents against 
routine samples taken over the measurement period. To be of value 
in this setting, the sampling system must be unbiased and very pre-
cise. Conventional sampling systems rarely deliver this accuracy, so 
calibration against such sampling systems is impractical. A gauge 
manufacturer must offer a robust factory calibration procedure and 
this must be accepted by the buyer.

Conclusions
The determination of the precision of a sampling system requires 
that the punctual variogram for the process stream be known with 
some accuracy and that the variance due to the intrinsic heteroge-
neity of the primary increments as well as the variance added during 
sample preparation and analysis be known. The latter measurement 
uncertainty can be determined from analysis of a variogram based 
on consecutive samples (not increments) taken by the sampling 
system. With both these sources of information, the total sampling 
variance can be calculated.

 
Figure 9. Variogram for low ash coal derived from on-line analyser z-score data. The right hand frame shows a closer view of the behaviour of the vari-
ogram near the origin.

Figure 10. On-line analyser data for high ash coal showing de-trending and deviation values from the trend.

Figure 11. Variogram for high ash coal derived from on-line analyser 
z-score data.
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The precision of an on-line analyser can be determined from a 
variographic analysis of the gauge output, as long as the gauge has 
not been set up to smooth the output by some statistical procedure 
such as a moving average. The unadulterated output on a small 
time interval must be available for construction of the variogram. 
The precision of the gauge over longer measurement time intervals 
is not affected by the time variation of the analyte content in the 
process stream because the gauge ‘sees’ all of the stream all of the 
time; there is no error due to distributional heterogeneity. Therefore 
the precision over longer time intervals can be determined by the 
classical formula for the standard deviation of the mean of inde-
pendent quantities. If there are N measurements in the gauging 
period, the final precision is simply 1/ÖN times the precision deter-
mined from the variogram.
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Sample station design and operation
Ralph J Holmes
CSIRO Mineral Resources Flagship, Private Mailbag 10, Clayton South, Victoria 3169, Australia. E-mail: ralph.holmes@csiro.au

Accurate sampling practices in the mineral industry are critical for determining the chemical, mineralogical and physical characteristics 
of ores and mineral products for resource evaluation and utilisation, feasibility studies, process design and optimisation, quality 
control, metallurgical accounting, and ultimately commercial sales. Sampling is the first step in the measurement chain and is where 
the measurement process all begins, so if the sample that is collected is not representative, then the whole measurement chain is 
compromised at the outset. However, frequently the responsibility for sampling is entrusted to personnel who do not fully appreciate 
the significance and importance of collecting representative samples for analysis, and quite often everyone seems satisfied as long 
as some material is collected and returned to the laboratory for analysis. In the case of sample stations, cost is often the main 
consideration rather than sampling correctness (unbiasedness), which is unacceptable and needs to change. It is important that 
sampling experts are involved in the design stage at the outset to avoid structural design flaws and the subsequent need for expensive 
retrofits to address major and sometimes even fatal problems. Furthermore, ongoing audits of performance need to be conducted to 
ensure sample stations are adequately maintained and continue to conform to correct sampling principles. Provision also needs to 
be made for duplicate sampling to monitor the precision achieved in practice on an ongoing basis for quality assurance purposes. 
The examples used and commented upon here relate to one of the more difficult industry sectors with respect to correct sampling 
practices, material and constituent type (e.g. ores, concentrates and mineral aggregates), tonnages, process stream flow rates, and 
wear and tear, and as such provides the ideal showcase for the intended message which applies essentially to all technologies and 
industries.

Introduction

S
amples are taken from many different locations in the 
mineral industry for optimising resource utilisation, pro-
cess and grade control, metallurgical accounting and 
ultimately commercial transactions1,2. These locations 

include diamond and percussion drill holes, blast holes, feed and 
product streams, conveyor belts, trucks, railway wagons and stock-
piles, a number of which present major, if not impossible, problems 
in extracting representative samples, e.g. in-situ sampling from a 
large stockpile. Notwithstanding this, it is surprising how frequently 
sampling is left to personnel who do not understand its critical impor-
tance in providing representative samples for analysis, and quite 
often everyone is happy as long as just some material is collected 
and sent back to the laboratory for analysis. This approach is totally 
wrong and completely unacceptable. Representative samples are 
essential to obtaining meaningful analyses that can be relied upon 
to make correct resource and quality control decisions and ensure 
equitable payment for the sale of mineral commodities. Sampling is 
where the measurement chain begins and the whole measurement 
process is corrupted at the outset if all samples are not representa-
tive. Furthermore, accurate analysis of non-representative samples 
submitted to the laboratory can very often be a waste of time, lead-
ing to reduced mine life, poor recovery in processing plans, and loss 
of sales revenue. It is therefore critical to ensure that the samples 
collected are free of significant bias and that the overall precision of 
the final analyses is appropriate for the required task, both of which 
are important in the design and operation of sample stations, which 
is the focus of this paper.

The “golden rule” for correct sampling is that “all parts of the 
material being sampled must have an equal probability of being 
collected and becoming part of the final sample for analysis”, i.e. 
the Fundamental Sampling Principle (FSP in the Theory of Sam-
pling).1-7 If this golden rule is respected at the outset, then extraction 
of representative samples is largely assured. Otherwise, a sampling 

bias is easily introduced, which is particularly serious because no 
amount of replicate sampling and analysis is able to reduce bias 
once it is present, far less eliminate it1. There is no point in being 
“precisely” incorrect. As pointed out by Gy4, the sources of bias that 
can be eliminated include incorrect delimitation of sample “incre-
ments” (i.e. incorrect cutter geometry), incomplete extraction of 
sample increments, preferential exclusion of specific size fractions, 
sample loss and sample contamination, while other errors due to 
the fundamental, grouping, segregation, long-range quality fluctua-
tion, periodic quality fluctuation and weighting errors can never be 
totally eliminated, but they can be minimised or at the very least 
reduced to acceptable levels. Unfortunately, many of these require-
ments are frequently ignored in the design of sample stations to 
reduce capital costs, which is a dangerous false economy because 
the samples taken are likely to be seriously biased, the precision 
may be compromised, and the subsequent cost of retrofitting a 
correct sampling system can be large. The design of subsequent 
sampling stages is also very important, particularly in terms of the 
relationship between particle size and the sample mass that needs 
to be retained to achieve acceptable precision.

Sample station design
While samples are taken from many locations in mineral process-
ing plants, by far the best method is to sample a moving stream at 
the discharge point at the end of a conveyor belt or at the end of 
a slurry pipe.1-3, 8, 9 Here the process stream can be intersected at 
random or regular times or tonnages, and sample “increments” can 
be collected by taking a full cross-section of the stream with a sam-
ple cutter such as shown in Figure 1, and subsequently combining 
them into representative composite samples for specified time peri-
ods or tonnages of material passing through the processing plant. 
This is guaranteed to satisfy the Fundamental Sampling Principle. 
Having satisfied this requirement, the sample mass collected then 
needs to be large enough taking into account the particle size of the 
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material being sampled to reduce the fundamental, grouping and 
segregation errors to acceptable levels and sufficient increments 
need to be taken to reduce the long-range quality fluctuation error 
to an acceptable level. In addition, the sampling location should 
be selected to avoid the presence of periodic variations in quality 
due to equipment such a bucket wheel reclaimers and centrifugal 
pumps. Clearly, accessory errors4 such as sample contamination, 
sample spillage, particle degradation and operator mistakes also 
need to be eliminated at the outset. An example of such an error 
is shown in Figure 2, where the sample mass collected exceeded 
the minimum mass requirement by a large margin, and, instead of 
using a rotary sample divider or a riffle to reduce the sample mass, 
the operator simply tipped out part of the sample on the ground. 
Such practices are clearly unacceptable in the context of represent-
ative sampling, but it does indicate the need to design the sampling 
regime to generate samples of manageable mass for operators and 
provide lifting aids if required.

In contrast to full cross-stream sampling, examples of poor plant 
sampling practices include scooping material from the surface of 
a conveyor belt (see Figure 3), intercepting only part of a falling 
ore stream (see Figure 4), taking cuts from a fixed location within 
a launder or extracting slurry from a fixed position within a pipe as 
shown in Figure 5. Segregation occurs both vertically and horizon-
tally across a conveyor belt due to the action of the idlers and the 
manner in which the material is fed onto the conveyor, and particles 
suspended in a slurry segregate under the effects of gravity and 
centrifugal forces. Consequently, partial stream cuts or extracting 
only part of the stream are structurally unable to provide represent-
ative samples. In Figure 4, the primary cutter is pivoted on the side 
of the head chute. Consequently, when the cutter is rotated into the 
ore stream, it does not traverse the complete ore stream and hence 
increments are extracted from only part of the falling stream, which 
is clearly incorrect.

Focussing on sampling at the discharge point of a conveyor 
belt or chute where the complete stream can be intersected with 
comparable ease at regular intervals, an important consideration 
is the design of the sample cutter, which must satisfy a number of 
requirements to eliminate both increment delimitation and extrac-
tion errors.4

Figure 1. Cross-stream sample cutter (background) designed for taking 
a full cross-section of an ore stream at the discharge point of a conveyor 
belt.

Figure 3. Manual sampling from the top of a conveyor belt most 
emphatically does not sample the complete ore stream and raises 
serious  safety concerns.

Figure 2. Accessory error caused by an operator tipping out part of a 
sample on the ground instead of using a rotary sample divider or a riffle 
to reduce its mass. The supervisor is not doing his/her job.

Figure 4. Example of a poorly designed sample cutter that does not 
traverse the full ore stream.
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Correct increment delimitation
One of most important requirements for correct increment delimita-
tion is that the sample cutter must take a complete cross-section of 
the process stream with both the leading and trailing edges of the 
cutter completely clearing the stream at the end of each traverse. 
Furthermore, the length of the cutter aperture must be large enough 
to intercept all the material in the stream, including particles that 
bounce off the inside edges of the cutter aperture in the direction 
of its long axis.

The cutter aperture must also be designed so that the cutting 
time at each point in the stream is equal. To achieve this, the cutter  
lips must be parallel for linear-path cutters, while the cutter lips 

must be radial for cutters travelling in an arc such as “Arcual” and 
“Vezin” cutters, where Arcual cutters rotate about their axis back 
and forth through the stream being sampled with the leading and 
trailing edges of the cutter completely clearing the stream at the 
end of each traverse while Vezin cutters rotate continuously in the 
one direction only. A correctly designed Vezin cutter with radial cut-
ter lips is shown in Figure 6, while the original correct design of 
the Vezin cutter shown in Figure 7 has been compromised through 
poor maintenance practices, i.e. the cutter lips closer to the axis of 
rotation are no longer radial. An alternative radial cutter design that 
is also acceptable is the “rotating tube sampler”, which consists of 
a tubular distributor rotating around a vertical axis that feeds the 
material being sampled across a stationary radial cutter aperture 
as shown in Figure 8. In contrast, flap or diverter type cutters that 
divert one side of the stream for a longer period of time than the 
other do not satisfy the requirement that the cutting time at each 
point in the stream is equal and hence are also structurally unable 
to provide representative samples.

A further requirement is that the cutter must travel through the 
stream at a uniform speed, accelerating up to its cutting speed 
before entering the stream and decelerating to a stop only after 

Figure 5. Pressure pipe samplers do not extract a full cross-section of 
the slurry stream so the samples collected can never be representative.

Figure 7. Vezin cutter aperture that is no longer radial due to poor main-
tenance.

Figure 6. Example of a correctly designed radial Vezin cutter aperture 
just before interacting with the vertical falling stream of ore. Figure 8. Example of a rotating tube sampler.
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leaving the stream cross-section, thereby ensuring that the cutting 
time at each point in the ore stream is equal. Consequently, the cut-
ter drive must have sufficient power to ensure that the cutter does 
not slow down as it enters the stream and/or speed up as it leaves 
the stream. Electric cutter drives are best for ensuring uniform cutter 
speed, although hydraulic drives can also be satisfactory provided 
they are well maintained. Pneumatic drives are not recommended, 
because gas is compressible and hence it is usually impossible to 
adequately control the cutter speed.

If a belt scraper is required to remove material adhering to the 
belt, the scraped material must fall within the area traversed by the 
cutter, although in many instances the amount of material removed 
by belt scrapers is negligible, particularly for dry materials. A belt 
scraper installed on the head pulley in an iron ore sample station is 
shown in Figure 9. In this case the belt scrapings are quite signifi-
cant and the primary cutter needs to be moved closer to the head 
pulley or alternatively the length of the cutter aperture extended to 
intersect all the belt scrapings.

Correct increment extraction
A key requirement for correct increment extraction is that the sam-
ple cutter must be non-restrictive and self-clearing, discharging 
completely each increment without any reflux, overflow or hang-
up in the cutter aperture. This is particularly important for so-called 
“reverse spoon” type cutters, where the material being sampled has 
to change direction as it strikes the back of the cutter body, which 
can cause sample reflux at high flow rates if the cutter does not 
have sufficient capacity. Furthermore, fine material that is damp has 
a tendency to hang-up in the cutter aperture, resulting in blockages 
and subsequent sample reflux. A bad case of sample reflux from a 
primary cutter in an iron ore sample station is shown in Figure 10. 
This problem can be overcome by incorporating generously large 
cutter bodies and chutes in the sample station design as well as 
setting the angle of the back of the cutter to deflect material down 
and away from the incoming stream (see Figure 11), thereby avoid-
ing sample reflux and overflow from the cutter aperture. It should 
be noted, however, that the material removed by the belt scraper in 
Figure 11 is not sampled by the cutter in this case, so there is still 
room for improvement in this particular design. For sticky materials, 

steep chute angles (>60o) and stainless steel or polythene chute lin-
ings are generally used to reduce adhesion, and the cutter aperture 
is often increased above the minimum to prevent bridging of the 
aperture.

An additional important requirement is that the cutter aperture 
must be at least 3 times the nominal top size (d) of the material 
being sampled, i.e. 3d, to prevent preferential loss of the larger par-
ticles, subject to a minimum of 10 mm for fine dry solids4. However, 
the cutter aperture is often significantly increased above this mini-
mum to make absolutely sure that no large particles are excluded 
from the sample. In addition, the cutter should intersect the stream 
either in a plane normal to, or along an arc normal to, the mean 
trajectory of the stream to reduce the distance that particles bounce 
along the length of the cutter aperture after striking the inside edge 
of the cutter lips and consequently need to be collected as part of 
the sample. Notwithstanding this, the plane of the cutter aperture 
must not be vertical or near vertical, because particles that strike 
the inside edge of the cutter aperture and which should therefore 
end up in the sample are deflected downwards and away from the 

Figure 9. Belt scraper on a head pulley. The primary cutter needs to be 
moved closer to the head pulley or the cutter aperture extended to inter-
sect all the belt scrapings.

Figure 10. Massive reflux from a poorly designed primary cutter aperture 
at high flow rates.

Figure 11. Cross-stream cutter with a large cutter body to eliminate 
sample reflux at high flow rates.
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cutter aperture by gravity into the reject stream, resulting in sample 
loss1,2,6.

The cutter speed is also an important consideration and accord-
ing to Gy4 must not exceed 0.6 m/s unless the cutter aperture 
exceeds 3d, because the “effective” cutter aperture decreases as 
the cutter speed increases, leading to the preferential exclusion 
of the coarser particles and hence the introduction of bias. How-
ever, Gy and Marin10 showed experimentally on a sample of cal-
cined bauxite at low flow rates that when the cutter aperture (w) is 
increased above the minimum cutter aperture w0 (i.e. 3d or 10 mm, 
whichever is the greater), the maximum cutter speed (vc) could be 
increased as follows, subject to an absolute maximum of 1.2 m/s:

 0
c

w
v  = 0.3 (1 + )

w

 

 
(1)

Notwithstanding the above relationship, the maximum cutter speed 
is usually limited to 0.6 m/s in the design of sample stations to allow 
for the high ore flow rates now routinely encountered and provide a 
reasonable safety margin.

Recently a few criticisms have appeared in the literature, and at 
World Sampling and Blending conferences, that the above cutter 
speed stipulations developed by Gy4 may not always apply as the 
variety and type of materials sampled around the world increases. 
Needless to say there may be exceptions for some materials and 
flow regimes, but the above cutter speed guidelines are designed 
to provide a safe approach to sample station design for the majority 
of materials and applications.

While cutter-chute type sample cutters need to be designed to 
be non-restrictive and self-clearing, bucket-type cutters must have 
sufficient capacity to accommodate the entire increment mass 
extracted at the maximum flow rate of the stream without any reflux 
or overflow of sample from the cutter aperture. In addition, care 
needs to be taken to ensure that the gate on the bottom of the 
cutter bucket does not jam in the open position while traversing the 
stream or in the closed position when parked, and that no sample 
is lost from the bucket during each traverse. An example of a poorly 
designed and maintained bucket-type cutter used for secondary 
sampling in shown in Figure 12. The gap between the gate and the 

bottom of the cutter is much too large and part of the sample col-
lected is lost while traversing the stream.

The final design requirement for sample cutters is that no materi-
als other than the sample must be introduced into the cutter or the 
sample delivery chute, and there must be no loss of sample from 
the sample delivery chute(s) or change in quality of the sample. If 
necessary, the sample cutter needs to be covered in the parked 
position between increments to prevent ingress of dust or spillage 
from within the sample station. Furthermore, possible sample loss 
due to the action of wind and air currents in sample stations needs 
to be eliminated by sealing and/or covering feeders, crushers, sam-
ple transfer conveyors and chutes, particularly when fine particles 
are being sampled, and any holes in chutes need to be rectified 
without delay to eliminate sample loss.

Cross-belt cutters
The sample cutters discussed so far have been cross-stream cut-
ters where the cutter passes through a falling stream at the dis-
charge point of a conveyor belt, chute or pipe. Provided suitable 
access is provided, it is reasonably straightforward to visually check 
that the cutter intercepts the complete stream and that increment 
delimitation and extraction are correct, thereby providing confi-
dence that the samples collected are representative.

On the other hand, cross-belt cutters that take samples directly 
off conveyor belts are also used in the mineral industry. However, 
it is virtually impossible to check visually whether cross-belt cut-
ters are operating correctly and remove a complete and correctly 
delimited cross-section of material from the conveyor belt. Con-
sequently, while they may be less expensive to install than cross-
stream cutters, cross-belt cutters have major deficiencies and are 
not recommended for the following reasons, particularly for high 
capacity streams:

 ■ Cross-belt cutters tend to leave a layer of material on the con-
veyor belt if the profile of the conveyor belt is not matched to the 
path of the tip of the cutter or the skirts at the bottom of the cutter 
are not correctly adjusted as they gradually wear out. Further-
more, the wear of the skirts may not be uniform, resulting in gaps 
between the tip of the cutter and the conveyor belt, and mainte-
nance staff often deliberately increase the gap between the cut-
ter skirts and the conveyor for fear of damaging the conveyor 
belt. In each case the increment extraction is incorrect. Conse-
quently, cross-belt cutters can be seriously biased, because the 
material on the bottom of the belt can be different in grade from 
the bulk of the material on the conveyor belt.

 ■ As already pointed out above, it is virtually impossible to check 
visually whether a cross-belt cutter is performing correctly in 
terms of correct increment delimitation and increment extraction.
A typical example of a cross-belt cutter installation is shown in 

Figure 13. For safety reasons the cutter is fully enclosed, so it is 
impossible to visually check its operation. Figure 14 shows an ore 
stream after taking a cross-belt sample cut using a similar cutter to 
that in Figure 13, which indicates that almost certainly the cutter did 
not remove a full cross-section of ore from the conveyor belt, while 
Figure 15 is a photograph of an actual cross-belt cutter showing 
the poor condition of the rubber skirt on the bottom of the cutter. 
The sample cut shown in Figure 14 is clearly unsatisfactory. Cross-
stream cutters must therefore be recommended in preference to 
cross-belt cutters to be sure of obtaining representative samples.

Figure 12. Poorly designed and maintained secondary cross-stream 
bucket cutter resulting in sample loss during its traverse.
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Increment mass
Returning to cross-stream cutters, the increment mass mI (kg) 
collected  by such cutters is determined by the cutter aperture A 
(m), the cutter speed vc (m/s), and the flow rate of the stream G 
(tonnes/hr) as follows:8,11

 

 

I
c

GA
m  = 

3.6 v  
(2)

Consequently, for a given flow rate, the smallest increment mass 
that can be taken and conform to correct sampling principles is 
determined by the minimum cutter aperture (3d) and the maximum 
cutter speed (usually limited to 0.6 m/s). While increments of larger 
mass can be taken using a larger cutter aperture and/or a lower cut-
ter speed, it is not possible to take unbiased increments of smaller 
mass unless the flow rate is reduced or the material being sam-
pled in crushed prior to sampling so that the cutter aperture can 
be safely reduced. Sample stations therefore need to be designed 
taking into account these important requirements. Contrary to what 
may be found in a number of old national and international sam-
pling standards, there is no absolute minimum increment mass for 
a given particle size, just the correct increment mass determined by 
the flow rate, cutter aperture and cutter speed.

The “extraction ratio” is a very useful parameter for checking the 
design and operation of sample cutters,12 ie, the ratio of the actual 
increment mass collected to the calculated increment mass using 
equation (2). If this ratio is significantly less than one, then the cause 
needs to be identified and corrective action taken to rectify the 
problem. Possible problems include reflux from the cutter aperture, 
hang-up in the cutter chute due to capacity problems or blockages 
in the cutter chute. The extraction ratio should be determined as a 
function of flow rate, because problems with reflux and hang-up in 
cutters become more serious as the flow rate increases.

Minimum sample mass
In contrast to increment mass, there is a minimum sample mass 
that needs to be extracted and retained for a given particle size 
to control the fundamental error variance4, which is determined by 
the particulate nature of the material being sampled, in particular 
the variation in quality between individual particles. Clearly, the fun-
damental error variance can be progressively reduced by includ-
ing more and more particles in the sample that is collected, i.e. 
by increasing the sample mass. This is a very important sampling 
requirement, which applies and needs to be checked at every stage 
of the sampling flowsheet, i.e. at the primary, secondary, tertiary 
and if necessary quaternary stages of sampling, to ensure that the 
total sample mass collected at each stage meets the minimum 
requirement for the particle size at that stage.

However, unfortunately the minimum sample mass requirements 
are often ignored in the design of sample stations to reduce the 
masses that sampling personnel need to carry back to the sample 
preparation laboratory. While this might be desirable from the occu-
pational health and safety perspective, it will seriously compromise 
the integrity of the sample. The correct approach is to crush the 
sample to a smaller particle size, thereby enabling the sample mass 
to be reduced by correct sample division (sub-sampling). An alter-
native is to provide mechanical lifting aids for sampling personnel to 
avoid the appalling situation shown earlier in Figure 2 where part of 
the sample is tipped out on the ground before taking the remaining 
sample material back to the laboratory for analysis.

Figure 13. Typical fully enclosed cross-belt sampler installation. While 
‘hidden’ from view, the very poor sampling performance with respect to 
extraction of a complete cross-section of the stream remains.

Figure 14. Sample cut taken by a cross-belt sampler indicating that a 
full cross-section of ore was not removed from the conveyor belt.

Figure 15. Poor condition of the rubber skirt on the bottom of a cross-
belt cutter.
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There are several ways of determining the minimum sample mass 
that needs to be retained for a given particle size. One approach 
is to experimentally determine the precision by analysing replicate 
samples for a range of sample masses and particle sizes.11 The 
relationship between sample mass and particle size that provides 
the required precision can then be plotted. An example of this 
approach may be found in ISO 3082 (Iron ores – Sampling and 
sample preparation procedures),14 where an equation and a table 
are provided for determining the minimum mass of divided sample 
as a function of nominal top size and division precision. While not 
as rigorous as for iron ore, the minimum sample mass requirements 
as a function of particle size for other commodities are specified in 
their respective national and international (ISO) standards, e.g. ISO 
13909 (Hard coal and coke – Mechanical sampling – Part 2: Coal 
– Sampling from moving streams)16, and these mass requirements 
must be observed when designing sample stations. The alternative 
is to estimate the minimum sample mass from the well-known fun-
damental error (sFE) equation first derived by Gy4 and subsequently 
expanded on by Pitard6, ie, for a “binary” type ore when the divided 
sample mass is much less that the initial sample mass:

 

3 2
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FE

c f g d a
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(3)

where mS =  divided sample mass (g)
 sFE =  fundamental error as a fractional concentration
 c =  mineralogical composition factor
 ø =  liberation factor
 f =  particle shape factor, which can usually be taken to be 

0.5
 g =  size range factor, usually between 0.25 and 1.0.
 d =  nominal top size of the material (cm)
 a =  fractional concentration of the component of interest.
Further details on this approach together with worked examples are 
provided in text books by Gy4 and Pitard,6 as well as publications by 
other authors such as François-Bongarçon15 and Holmes.1,3

Number of increments
Assuming the sample cutters have been designed to eliminate 
increment delimitation and extraction errors, and that the minimum 
sample mass requirements have been determined to reduce the 
fundamental error variance to acceptable levels, a sufficient number 

of increments now need to be taken to reduce the long-range 
quality  fluctuation error variance to the desired level. A number of 
methods are used to determine the required number of increments.

For iron ores, the standard deviation of individual primary incre-
ments within strata is determined experimentally using ISO 3084 
(Iron ores – Experimental methods for evaluation of quality varia-
tion).17 This parameter is known as the quality variation sW, and the 
number of increments n required to achieve the desired primary 
sampling precision bS, i.e. 2sS, is calculated using the following 
equation:
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The ISO standard for sampling iron ore (ISO 3082)14 also provides 
a table specifying the minimum number of primary increments 
required to achieve the required sampling precision for large, 
medium and small quality variation, which is reproduced in Table 1.

On the other hand, the required number of increments for sam-
pling coal is determined experimentally from the variance VI of 
successive primary increments using the method specified in ISO 
13909-2.16 The number of primary increments n to be taken from 
each sub-lot is then calculated for the desired overall precision PL 
(95% confidence limit) after correcting for the sample preparation 
and analysis variance VPT using the following equation:
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The relationship between sample mass and particle size that provides the required precision can then be plotted.  An example of this 
approach may be found in ISO 3082 (Iron ores – Sampling and sample preparation procedures)14, where an equation and a table are 
provided for determining the minimum mass of divided sample as a function of nominal top size and division precision.  While not as 
rigorous as for iron ore, the minimum sample mass requirements as a function of particle size for other commodities are specified in 
their respective national and international (ISO) standards, e.g. ISO 13909 (Hard coal and coke – Mechanical sampling – Part 2: Coal – 
Sampling from moving streams)16, and these mass requirements must be observed when designing sample stations.  The alternative 
is to estimate the minimum sample mass from the well-known fundamental error (

FE
) equation first derived by Gy4 and subsequently 

expanded on by Pitard6, ie, for a “binary” type ore when the divided sample mass is much less that the initial sample mass: 

             (3) 

 

where m
S
 = divided sample mass (g) 

  
FE 

= fundamental error as a fractional concentration 
  c = mineralogical composition factor 
  l = liberation factor 
  f = particle shape factor, which can usually be taken to be 0.5 
  g = size range factor, usually between 0.25 and 1.0. 
  d = nominal top size of the material (cm) 
  a = fractional concentration of the component of interest. 

Further details on this approach together with worked examples are provided in text books by Gy4 and Pitard6, as well as publications 
by other authors such as François-Bongarçon15 and Holmes1, 3. 

Number of increments 
Assuming the sample cutters have been designed to eliminate increment delimitation and extraction errors, and that the minimum 
sample mass requirements have been determined to reduce the fundamental error variance to acceptable levels, a sufficient number 
of increments now need to be taken to reduce the long-range quality fluctuation error variance to the desired level.  A number of 
methods are used to determine the required number of increments. 
 For iron ores, the standard deviation of individual primary increments within strata is determined experimentally using ISO 3084 
(Iron ores – Experimental methods for evaluation of quality variation)17.  This parameter is known as the quality variation 
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The ISO standard for sampling iron ore (ISO 3082)14 also provides a table specifying the minimum number of primary increments 
required to achieve the required sampling precision for large, medium and small quality variation, which is reproduced in Table 1. 
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 On the other hand, the required number of increments for sampling coal is determined experimentally from the variance V
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where m is the number of sub-lots in the lot  
 V
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is the preparation and analysis variance  

 
 While the above methods for determining the number of increments differ in detail, the general approach is similar, i.e. the required 
number of increments is determined by dividing the variance between individual increments by the required sampling variance. 
 In principle, the same approach can be used at the secondary, tertiary and quaternary sampling stages, and this approach is 
described in detail in ISO 12743 (Copper, lead, zinc and nickel concentrates – Sampling procedures for determination of metal and 
moisture content)18, but the variance of individual cuts in hardly even determined.  Instead, the number of cuts is usually set at a 
minimum of approximately four, although in many cases Vezin dividers are used for subsequent sampling stages, particularly at the 
tertiary and quaternary stages, and hence in practice a much larger number of cuts are taken.  

Sampling regime 
Assuming that the sample cutters to be used are correctly designed, that the relationship between particle size and minimum sample 
mass has been established for the desired fundamental error has been established for sample division, and that the number of in-
crements required to achieve the required sampling precision has been determined, there are usually a range of sampling regimes that 
can be successfully used in sample station design.   
 The usual strategy after collecting the primary increments is to crush the increments first so that they can then be safely divided 
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where m is the number of sub-lots in the lot
 VPT  is the preparation and analysis variance

While the above methods for determining the number of 
increments  differ in detail, the general approach is similar, i.e. 
the required number of increments is determined by dividing the 
variance  between individual increments by the required sampling 
variance.

In principle, the same approach can be used at the second-
ary, tertiary and quaternary sampling stages, and this approach is 
described in detail in ISO 12743 (Copper, lead, zinc and nickel con-
centrates – Sampling procedures for determination of metal and 
moisture content),18 but the variance of individual cuts is hardly ever 
determined. Instead, the number of cuts is usually set at a minimum 

Table 1. Example from ISO 3082 of the minimum number primary of increments required to achieve specific sampling precisions (sS) for iron ore14.

Mass of lot (1000 t) Sampling precision (sS) Number of primary increments

Over Up to
Fe, SiO2 or 
moisture 
content

Al2O3 content P content

Quality variation
Large (L), Medium (M) or Small (S)

L M S

270
210
150
100
70
45
30
15
0

270
210
150
100
70
45
30
15

0.155
0.16
0.17
0.175
0.185
0.195
0.21
0.225
0.25

0.045
0.045
0.05
0.05
0.055
0.055
0.06
0.065
0.07

0.00115
0.0012
0.00125
0.0013
0.00135
0.00145
0.00155
0.0017
0.00185

260
240
220
200
180
160
140
120
100

130
120
110
100
90
80
70
60
50

65
60
55
50
45
40
35
30
25
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of approximately four, although in many cases Vezin dividers are 
used for subsequent sampling stages, particularly at the tertiary and 
quaternary stages, and hence in practice a much larger number of 
cuts are taken.

Sampling regime
Assuming that the sample cutters to be used are correctly designed, 
that the relationship between particle size and minimum sample 
mass has been established for the desired fundamental error has 
been established for sample division, and that the number of incre-
ments required to achieve the required sampling precision has been 
determined, there are usually a range of sampling regimes that can 
be successfully used in sample station design.

The usual strategy after collecting the primary increments is to 
crush the increments first so that they can then be safely divided 
down to a smaller sample mass. However, it may be beneficial to 
divide primary increments down to a smaller sample mass first, 
particularly when sampling high capacity streams where the pri-
mary increment mass can be quite large (possibly as much as 
1,000 kg or more), provided of course that the minimum sample 
mass requirement for the composite sample comprising all incre-
ments is respected. This approach can be beneficial in reducing 
the load on crushers in the sample station, thereby reducing wear 
and tear and significantly reducing the need to adjust crusher gaps 
to ensure that the required particle size of crusher products meets 
design specifications. This is particularly important in sample sta-
tions, because if the particle size of the crusher product increases 
due to wear and tear and is not re-adjusted, then the sample mass 
retained after crushing and subsequent division will almost certainly 
not meet the minimum sample mass requirements for the larger 
particle size. This is a common fault in sample stations, so crushers 
need to be selected that can comfortably perform their duty and 
their performance needs to be carefully monitored and adjustments 
made if required.

As alluded to above, it is critical that the minimum sample mass 
requirements be respected at all subsequent sampling stages as 
well, e.g. that the sum of the masses of all secondary increments 
collected to constitute an analysis sample meets the minimum sam-
ple mass requirements for the particle size of the material at that 
stage which may be preceded by a crushing step so that the sam-
ple mass can be safely reduced. It is also good practice to ensure 
that the secondary, tertiary and if required quaternary cutters are 
triggered to take their first cut independent of the timing of opera-
tion of the preceding cutter.
Example. As an example of the design of a sampling regime, 
assume that a 180,000 tonne shipment of iron ore lump is being 
sampled according to ISO 3082.14 The particle size of the ore is 
-31.5 + 6.3 mm and the quality variation is assumed to be “small”. 
Hence, according to Table 1, 55 primary increments are required.
(a) Primary stage
The primary cutter is a cross-stream sample cutter

Flowrate = 12,000 tonnes/hr
Cutter aperture = 0.15 m
Cutter speed = 0.4 m/s
From equation 2, the primary increment mass = 1,250 kg

Consequently, the total sample mass collected at the primary 
stage = 1,250 × 55 = 68,750 kg, which far exceeds the minimum 
sample mass of 180 kg in ISO 308214 for a division precision of 
0.1% Fe (see Table 2).

(b) Secondary stage
Because the primary sample mass is very large, use a cross-stream 
sample cutter taking 5 cuts from each primary increment to reduce 
the sample mass without crushing.

Flowrate = 10 t/hr to completely clear the sample station between 
primary increments

Cutter aperture = 0.15 m
Cutter speed = 0.4 m/s
From equation 2, the secondary increment mass = 1.04 kg

Consequently, the total sample mass collected at the secondary 
stage = 1.04 × 5 × 55 = 286 kg, which safely exceeds the minimum 
sample mass of 180 kg for a nominal top size of 31.5 mm in ISO 
308214 for a division precision of 0.1% Fe (see Table 2).
(c) Tertiary stage
Because the sample mass cannot be reduced much below 286 kg 
at a nominal top size of 31.5 mm, a cone crusher is used to reduce 
the nominal top size of the lump ore to 6.3 mm prior to division using 
a Vezin divider with a single radial cutter dimensioned to extract 5% 
of the sample fed to the divider.

Total secondary sample mass = 286 kg
Nominal top size after crushing = 6.3 mm

Consequently, the total divided sample mass at the tertiary 
stage = 286 × 0.05 = 14.3 kg, which safely exceeds the minimum 
sample mass of 3.2 kg for a nominal top size of 6.3 mm in ISO 
308214 (see Table 2).

This sample mass is also suitable for transfer to the laboratory for 
subsequent sample preparation and analysis.

Performance verification
Verification of the correct performance of sample stations is an 
important part of initial and ongoing quality assurance. For this 
purpose, comprehensive check lists are available,12 including in a 
number of ISO standards, eg, for iron ore14 and coal and coke.19 
Consequently, as pointed out by Pitard,7 large and readily acces-
sible inspection ports are required to enable inspection of sample 
cutters to ensure that they intercept the whole stream and are in 
good condition and free of build-up and blockages. Unfortunately, 
practical experience indicates that this is not always the case and 
inspection ports are often non-existent, inconveniently and/or inap-
propriately located, or bolted shut on safety grounds. However, 

Table 2. Examples from ISO 3082 of minimum mass of divided gross sample 
for moisture and/or chemical analysis of iron ore14.

Nominal top size 
(mm)

Minimum mass of divided gross 
sample (kg)

sD = 0.1% Fe sD = 0.05% Fe

40 325 1,300

31.5 180 710

22.4 75 300

10 10 40

6.3 3.2 13

2.8 0.5 1.7

1.4 0.5 0.5

0.50 0.5 0.5

0.25 0.5 0.5
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safety concerns associated with inspection ports can be overcome 
by installing steel mesh on the inside of inspection ports behind 
the access doors to prevent physical access. This enables inspec-
tion of cutters “live” as they intercept the stream to validate correct 
operation, provided of course that the steel mesh provides good 
visibility of cutter operation. Inspection ports should also be pro-
vided for checking chutes, crushers and sample dividers, such as 
Vezin dividers and rotating tube samplers, for blockages and main-
tained condition. An example of excessive sample build-up and 
partial blockage of a bucket cutter is shown in Figure 16. Further-
more, the ability to monitor increment mass and/or the extraction 
ratio also provides valuable information for checking performance.

When conducting routine inspections and verifying the perfor-
mance of sample stations, the key items that need to be checked 
include the following:

 ■ The size and geometry of cutter apertures, including checking 
that cutters take a complete cross-section of the stream being 
sampled

 ■ The cutter speed and its uniformity while cutting the ore stream
 ■ The condition of cutter lips, including identifying any missing cut-
ter lips

 ■ The presence of build-up on cutter lips and/or blockages in cut-
ter apertures and chutes

 ■ Sample reflux from cutter apertures, particularly at high flow rates 
and for fine moist materials

 ■ Ingress of extraneous material into the cutter aperture when the 
cutter is parked

 ■ The location of belt scrapers and whether material removed by 
belt scrapers is significant and if so intercepted by the sample 
cutter

 ■ The increment mass and whether it corresponds with the calcu-
lated increment mass

 ■ The number of primary, secondary and tertiary cuts depending 
on the number of sampling stages

 ■ Holes in cutters, chutes and bins, as well as the action of exces-
sive air currents or wind, resulting in sample loss

 ■ Crusher performance, in particular blockages and whether the 
product particle size conforms to specification

 ■ The condition of vibratory feeders

 ■ Sample mass as a function of particle size at each sampling 
stage to ensure that it conforms to minimum sample mass re-
quirements.

Overall precision
The overall precision of sampling, sample preparation and analy-
sis must be appropriate for the required task and decided at the 
outset so that an appropriate sampling regime can be designed. 
For example, it is impossible to control plant, stockpile or shipment 
grades to high precision if the overall precision of measurement 
is poor and instances of plant operators responding to apparent 
changes in grade that are no more than measurement “noise” are 
not uncommon. Furthermore, target grades can be moved closer to 
contract specifications without incurring penalties if the overall pre-
cision of grade measurements is high, thereby significantly improv-
ing resource utilisation.

The actual precision achieved in practice can be determined via 
duplicate “interleaved” sampling, where alternate primary incre-
ments are directed to duplicate samples A and B, which are subse-
quently prepared and analysed in duplicate under strictly identical 
conditions.20 This enables separate estimates of the precision of 
sampling, sample preparation and analysis to be obtained. Con-
sequently, duplicate sampling facilities should be incorporated into 
sample stations at the outset (see Figure 17) so that the precision 
achieved in practice can be determined and monitored on an ongo-
ing basis. A number of well-designed, efficient and user-friendly 
approaches to this type of “agreement analysis” are available21, 
which enable a full range of precision assessments to be made for 
quality control purposes.

Conclusion
Accurate sampling practices are critical for characterising ores and 
mineral products in the mineral industry for resource evaluation, 
resource utilisation, feasibility studies, process design and opti-
misation, quality control, metallurgical accounting, and ultimately 
commercial sales. Sampling is the first step in the measurement 
chain, so if the sample that is collected is not representative, the 
whole measurement chain is compromised at the outset. On the 
other hand, it is still surprising how often sampling is entrusted 
to personnel who are not appropriately trained or do not fully 

Figure 16. Excessive sample build-up and partial blockage of a second-
ary cutter aperture.

Figure 17. Duplicate sampling system installed in a sample station.
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appreciate its importance, and everyone seems satisfied as long as 
just some material is collected and dispatched to the laboratory for 
analysis. Cost is often the overriding consideration instead of sam-
pling correctness (unbiasedness) when designing sample stations, 
which is unacceptable. Sampling experts need to be fully involved 
in the design of sample stations and have the final sign-off to avoid 
structural flaws and the subsequent need for expensive retrofits 
to address major problems. Provision also needs to be made for 
duplicate sampling to monitor the precision achieved in practice on 
an ongoing basis for comprehensive quality assurance. After com-
missioning sample stations, regular performance audits need to be 
conducted to ensure they are adequately maintained and continue 
to conform to correct sampling principles. It is high time that sam-
pling is given the necessary attention by company management 
right through to sample station operators as the first critical step in 
the quality measurement chain.
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Review of a non-probabilistic sampler versus a Vezin 
sampler on low weight percent solids slurries
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a2425 Stevens Center Pl, MSN-H0-55, Richland, WA 99354 USA. E-mail: steven_e_kelly@rl.gov 
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The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are 
both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Radioactive 
Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at 
Hanford – the TOC’s ability to adequately sample high-level waste feed to meet the Waste Treatment and Immobilization Plant (WTP) 
Waste Acceptance Criteria Data Quality Objectives. A full-scale sampling loop was used at a cold test facility to evaluate sampler 
capability. The sampler under investigation for deployment is non-probabilistic but radioactive environment friendly. A Vezin sampler 
(probabilistic) was used to obtain reference samples and accurately characterize the simulant as it flowed through the test loop. 
The two samplers are located in series, allowing for multiple samples to be taken from both samplers over the same time period 
(sample pairs) and direct sample comparison. The Vezin sampler was modified to minimize material build up allowing for steady-state 
operation. This report discusses modifications made to the Vezin sampler and the results of sampler comparison.

Introduction

T
he U.S. Department of Energy, Office of River Protection 
manages the River Protection Project. The River Protec-
tion Project mission is to retrieve and treat Hanford’s tank 
waste and close the tank farms to protect the Columbia 

River. As a result, the Office of River Protection is responsible for the 
retrieval, treatment and disposal of approximately 208 million litres 
of radioactive waste contained in the Hanford Site waste tanks.

The Waste Treatment and Immobilization Plant will process the 
waste feed it receives from the Tank Operations Contractor into 
its final disposal form. Waste staged as feed will be sampled to 
ensure it meets Waste Treatment and Immobilization Plant – Tank 
Operations Contractor interface agreements. The Tank Operations 
Contractor’s Waste Feed Delivery Mixing and Sampling Program is 
tasked with developing and demonstrating waste feed capabilities.

Implementation of the sampling concept on a Hanford million gal-
lon double-shell tank will utilize the tank’s transfer pump for recir-
culating waste feed through a sample loop where a small portion of 
the waste will be captured before the waste is returned to the tank. 
Sampling will occur while the tank is being mixed by two rotating jet 
mixer pumps. The sampling method must minimize contamination 
and be remotely operated to minimize operator exposure to radia-
tion—. The total amount of material to be sampled for qualifica-
tion of a feed tank will be between four and ten litres (most of the 
sampled material will be used for process evaluation, not analytical 
analysis). Sample container volume will be between 250 mL and 
1000 mL; most likely 500 mL to best utilize current transportation 
systems.

A modified Isolok® MSE sampler, by Sentry, is the sampler of 
choice to meet safety, handling, and volume flexibility requirements. 
Because mixing cannot be assumed to produce a consistent 
homogenous feed the test loop, a custom two stage Vezin sampler, 
manufactured by FLSmidth USA Inc., was used to obtain reference 
samples during the same time period as the Isolok® samples were 
taken. A sketch of the test loop is below in Figure 1.

The test loop is primarily 3” schedule 40 pipe which is prototypic 
and allows for visual measurement of critical velocity through two 

clear sections; the method was developed during prototype testing 
for an ultrasonic pulse echo method for determine critical veloc-
ity.1 A Coriolis meter was used to monitor flow rate. Temperature 
of slurry was control to approximately 21 °C using a chiller. The 
Isolok® is located ten pipe diameters above a 90º elbow and transi-
tion from 80 mm schedule 40 pipe to 50 mm schedule 40 pipe. The 
Isolok® captures a fixed sample volume using a plunger and cyl-
inder which are each independently controlled pneumatically. A cut 
away figure of the Isolok® sampler for testing is show in Figure 2, 
and an animation of the Liquid Isolok® MSE sampler can be found 
at http://sentry-equip.com/Resources/Sentry-product-videos.htm. 
Each Isolok® sample was comprised of 115 increments; the final 
volume was ~630 mL. The two-stage Vezin sampler used is shown 
in Figure 3. The primary stage took approximately 77 cuts, and the 
secondary Vezin took approximately 170 cuts of the primary’s sam-
ple; the final volume was ~1900 mL.

Two simulants (slurries) were used for testing.2,3 Both slurries 
utilized the same carrier fluid, 31 % thiosulfate in water having a 
density of 1.29 g/mL and a viscosity of 3.3 cP. Six undissolved sol-
ids were used in the proportions outlined in Table 1. The typical 

Figure 1. Test Loop

doi: 10.1255/tosf.49
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simulant recipe is primarily fine particulate, less than 75 µm, with 
a minor amount of fast settling solids – solids >75 µm. The high 
simulant recipe is a conservative (at the upper limit of fast settling 
solids relative to planned WTP feed) mix with a higher percentage 
of fast settling particles. Only the fast settling solids were targeted 
for analysis by sieving; large sand <710 µm (25 mesh) and >180 µm 
(80 mesh) and stainless steel <180 µm and >75 µm (170 mesh). All 
analytical sieves were American Society for Testing and Materials 
(ASTM) E161-12

Break-in and final test operations
Testing was performed in two phases3 – a break-in test using the 
high simulant followed by final testing where both simulants were 
sampled and formal analytical data obtained. The break-in test was 
designed to allow the operators to practice sampling (capturing Iso-
lok® and Vezin samples simultaneously) and work out any issues 
with the system. Two issues were resolved.

Accurate capture of Vezin samples for this type of test typically 
requires flushing of the cutters to make sure all material cut by the 
Vezin is included with the sample. Flushing the Vezin sampler is 
both time-consuming and has many steps, which increases the 
likelihood of operator error. The first goal of the break-in test was 
to determine if steady-state sampling could be performed. Material 
build up in the Vezin over time was estimated and modifications to 
the sampler were made to reduce material build up. Inspections 
showed that little, to no, material was left in the primary Vezin. Since 
only about 2.3% of the primary cutter material would be expected 
to be caught by the secondary Vezin, no changes were made to 
the primary Vezin.

Material did build up in the secondary Vezin. Rinsing the cutter 
and the flow path between the cutters and sample container sepa-
rately resulted in an estimate that 40% of the material that was held 
up in the Vezin was held up by the cutters and 60% in the flow 
path. The cutters were modified to remove a lip at the bottom of the 
cutter where build up was most visible. The flow path was modified 
by reducing the size of the last section of pipe between the rotating 
cutters and sample container. See Figures 4 and 5 for photos and 
sketches of modifications made to the sampler.

Based on data review, the sampler was allowed to run 40 min-
utes before test samples were taken, and the modifications to the 
sampler reduced material build up during one sampling period (~9.5 
minutes) from about 1 gram to less than 0.34 grams. Ideally, for 
sampling of slurries where concentration of material is the goal, the 
flow paths through the Vezin should be sized appropriately to the 
flow that they will carry. In the case presented here the secondary 
Vezin was sized identically to the primary Vezin, resulting in excess 
surface area along the flow path.

The second issue found during break-in testing was foaming 
caused by the free fall of slurry through the Vezin sampler. The 

Figure 2. Isolok® Sampler

Figure 3. Two Stage Vezin Sampler
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addition of ~30 mL of a silicon based defoamer eliminated foaming 
in the high simulant and 3x that amount in the typical simulant.

During two formal test runs, 34 sample pairs were taken for each 
test — 30 (pairs 3 through 32) were analyzed for stainless steel 
and large sand. Parameters controlled during testing were flow 
rate, 530 ± 20 Lpm, and temperature 21 ± 1.7 ºC [3]. During first 
test, using the typical solids slurry, sample number 14 was mishan-
dled and could not be submitted to the laboratory for analysis and 
the second sample pair was analyzed as a replacement. The only 

other issue occurring during the formal tests was increased Isolok® 
volume, from ~650 mL to over 800 mL, during the high simulant 
test. The root cause was found to be worn Isolok® surfaces (due to 
previous testing using harsh simulants) and worn O-rings. Compo-
nents estimated to have been removed from the test were added 
back to the test loop, sampler O-rings were replaced, and the test 
was repeated. Only the results of the repeat high simulant test are 
reviewed here.

Results and data review
Data obtained for each sample pair was:
 ■ Critical velocity of slurry.
 ■ Density, sample mass/sample volume.
 ■ Concentration of solids <710 µm and >180 µm, captured on a 

#80 mesh – primarily large sand.
 ■ Concentration of solids <180 µm and >75 µm, captured on a 

#170 mesh – primarily stainless steel.
 ■ Limited results on slow settling solids, <75 µm.

Analytical method
Five control sample pairs were sent to the laboratory mixed with 
test samples for each test. By pre-sieving solids with one full mesh 
size on each side of the analytical sieve, analytical error was very 
low. See Table 2. The low analytical error is also evident by the tight 
spread of data, percent relative standard deviation (%RSD), over 
the course of the 30 sample pairs analyzed for each test.

Typical and high slurry
Critical velocity was determined for each test simulant before and 
after testing to verify the simulants were within test parameters. This 
was determined by incrementally dropping the test loop flow rate 
and observing the solids flow along the bottom of the clear sections 
using a high resolution video camera. The flow rate at which a sta-
tionary bed was formed was designated the slurry’s critical velocity. 
The typical simulant had initial and final critical velocities of 0.82 m/s, 
and the high simulant had a starting critical velocity of 1.25 m/s and 
a final critical velocity of 1.22 m/s.

Figure 4. Vezin Inspection Photographs

Table 1. Simulant Solids Components.

Component

Particle
Density

Particle Size
(d50)

Mass Fraction of Undissolved Solids
By Simulant

g/cm3  µm Typical High

Small Gibbsitea 2.42 2.2 0.27 0

Large Gibbsiteb 2.42 9.9 0.44 0.053

Small Sandb 2.65 20.8 0.09 0.616

Large Sandc 2.65 414.3 0.04 0.074

Zirconium Oxidea 5.7 17.6 0.10 0.141

Stainless Steeld 8.0 122.3 0.06 0.116

Bulk Solids Density (g/cm3) 2.7 3.1

Solids Loading in Slurry (wt %) 9.0 5.3
a Verified to be less than 63 µm.
b Pre-sieved through a 63 µm mesh.
c Pre-sieved, passed 710 µm and captured on 210 µm mesh.
d Pre-sieved, passed 150 µm and captured on 90 µm mesh.

Note: All pre-sieving was performed with sieves having 70% of the tolerances specified in ASTM E11-13.
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Sample pair densities and analytical data in terms of solids con-
centrations of material on each sieve are shown in Figure 6 for the 
typical slurry and Figure 7 for the high slurry. Both samplers were 
very consistent, sample to sample, without taking into account 
dynamic relationships (i.e., we assumed that the simulant did not 
change as material was removed and simply grouped all samples); 
see percent relative standard deviation data, Table 3.

As is quickly evident from review of Figure 6 and Figure 7, the 
accuracy for fast settling solids was highly biased for the Isolok® 
sampler, as shown in the figures. Although only three samples from 
each test were analyzed for particles less than <75 µm (particle 
density about the same as for large sand), the very good analytical 
performance allows the conclusion that the typical slurry may have 
a slight bias and the high slurry bias may be slightly higher, around 
3.7%. These biases are much less than the bias found for the large 
sand in these two simulants.

Review of the data was also performed by using variogram tech-
nique,4,5 further confirming Isolok® sampler performance – as it 
relates to over sampling particles based on size and density. The 
variograms are shown in Figure 8 and Figure 9. The patterns in 
the plots for all three parameters, density, 180 µm sieve, and 75 µm 
sieve, are different between the two samplers. Changes in the Vezin 
plots are more smooth and orderly. This means that the Isolok® 
see’s patterns that are not there, but given the relative standard 
deviation of the samples this error is most likely acceptable.

From information in Figure 6 and Figure 7 we know that the Iso-
lok® was removing material at rates different from the bulk flow 
concentrations. The Vezin sampler variogram review is key to 
understanding the resulting slurry changes and therefore providing 

Figure 5. Modifications to Secondary Vezin Sampler

Table 2. Control Sample Data (for samples where slow settling solids were analysed)

Sample
Analysis By Sieve (g) Prepared Mass (g) % Recovered

<75 µm 75 µm 180 µm <75 µm MSS MLS <75 µm % Total

Typical-Isolok®
RSD-0804

108.1  7.3  4.8 109.7  7.3  4.9 98.5 98.5

Typical-Vezin
RSD-0805

217.5 14.8  9.6 219.3 14.6  9.7 99.2 99.3

Typical-Isolok®
RSD-0828

109.2  7.3  4.9 109.7  7.3  4.9 99.1 99.2

Typical-Vezin
RSD-0829

217.9 14.6  9.7 219.3 14.6  9.7 99.4 99.4

High-Isolok®
RSD-1023

 53.9 13.6  8.4  58.0 13.3  8.4 93.0 95.3

High-Vezin
RSD-1024

112.3 27.1 17.1 116.1 26.6 19.9 96.7 98.1

Note: SS = stainless steel and LS = large sand.

Table 3. Sampler Consistency Review – % Relative Standard Deviation

Sampler
Sample 
Property

N Typical Slurry 
% RSD

High Slurry % 
RSD

Isolok®

Volume 34 0.58% 0.61%

Density 34 0.11% 0.12%

[180 µm] 30 3.20% 2.23%

[75 µm] 30 2.97% 3.21%

Vezin

Volume 34 0.26% 0.30%

Density 34 0.06% 0.04%

[180 µm] 30 2.21% 2.84%

[75 µm] 30 2.54% 2.84%
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Figure 6. Typical Simulant – data Run Charts and Slow Settling Solids Analysis

Figure 7. High Simulant – Data Run Charts and Slow Steeling Solids Analysis
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Figure 8. Typical Simulant – Variogram Review

Figure 9. High Simulant – Variogram Review
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more insight to Isolok® sampler performance. The Vezin typical 
slurry variograms have trends, but they are not strong or without 
the presence of noise. Slow settling solids make up 90 wt% of the 
solids in the typical slurry, and are 78% gibbsite (the smallest and 
lightest particles in the simulant). The lack of strong trends relative 
to sampling noise, and no measurable change in critical velocity 
from start to end of test shows there was little change in slurry 
properties over the course of this test.

The variograms for the high slurry Vezin samples show a differ-
ent picture; trends are clear and with little noise. All three figures, 
slurry density as well as the 180 µm sieve, and 75 µm sieve con-
centrations, have very precise and predictable trends. The weight 
percent of fast settling solids between the two slurries was very 
similar, about 0.9 wt % for the typical and about 0.95 wt % for the 
high. The slow settling solids in the high slurry solids was primarily 
(76%) sand, larger and denser than the gibbsite used in the typi-
cal slurry. A slight drop in critical velocity was measured from start 
to end of the high slurry test. (If sampling was ideal, no change in 
simulant composition would occur and the critical velocity would 
be constant.)

Therefore, review of both the standard data analysis techniques 
and variograms show that the Isolok® oversamples particles at dif-
ferent rates based on particle size, particle density, and simulant 
component make up. This supports the <75 µm sample analysis 
results. The typical simulant showed no (or possibly a small) bias is 
present for the slow-settling solids. For the high simulant there was 
a marketable drop in the estimated sand bias from ~45% for the 
large sand to ~5% for the small sand.

Conclusions
Vezin samplers are well documented as being equiprobabilistic, 
proportional, and following good sampling protocol [4]. But more 
than just selection of the Vezin type should be considered during 
sampler design and installation. Results presented here show mod-
ification of features that can instigate particle accumulation should 
be performed during design and construction. Surface areas which 
are in excess of those needed to ensure a smooth flow path from 
the sampler’s cutter to sample container should be minimized. 
Implementing modifications to mitigate these items allowed test-
ing to be performed much more efficiently and most likely with less 
error. Review of Vezin data by standard run charts and variogram 
analysis showed that:
 ■ The test loop was consistent throughout each test run.
 ■ No spikes in slurry densities were observed from start to end of 

testing.
 ■ The Vezin itself was telling the truth, i.e., it reflected what was in 

the test loop during any given sample pair.
The Sentry Liquid Isolok® MSE sampler, which does not follow 

good sampling protocol, was tested to determine its performance 
versus a two stage Vezin sampler for two relatively low weight per-
cent solids slurries. Review of Isolok® data versus the Vezin data 
show that the Isolok® sampler oversamples undissolved solids 
based on particle size and density. See Table 4. As either particle 
size or density increase, so does the rate of over sampling. The 
rate of over sampling is also influenced by other particles and their 
concentrations in the slurry. The Isolok® also saw patterns in the 
test loop that were not there, however the error due to these signals 
were not significant compared to the sampling bias.

When reviewing the Isolok®, we should remember that it was 
designed for sampling of homogeneous liquids. See Table 5. How-
ever, due to its features (compact, enclosed, and easily automated), 
its use can easily be desired for applications outside its applica-
tion; provided its limitations are understood and accounted for. The 
use of an Isolok® MSE sampler for obtaining Hanford’s radioactive 
waste material will be based on its sampling performance (includ-
ing data presented here) and its physical attributes as they relate 
to operational goals and data quality objectives to be applied to 
the sampled material. The data quality objectives have not been 
defined yet.

Table 4. Isolok® Bias by Slurry Type

Sample 
Property

Typical Slurry 
(%Bias)

High Slurry (%Bias)

Density 0.7 ± 0.1% 0.7 ± 0.1%

[180 µm] (g/mL) 43.0 ± 4.4% 46.9 ± 3.6%

[75 µm] (g/mL) 112.6 ± 4.4% 78.2 ± 7.1%

[<75 µm] (g/mL)
Not statistically 
significant at the 95% 
confidence interval.

3.7%

Table 5. Isolok® Bias by Slurry Type

Isolok® Vezin

 n Cons
 n Not Equiprobabilistic

 n Delimitation Error
 n Extraction Error
 n Segregation Error
 n Periodic Heterogeneity Fluctuation Error

 n Pros
 n Handling

 n Preparation Error
 n Good Contamination Control

 n Size / Increment
 n Fundamental Error
 n Long-Range Heterogeneity Fluctuation Error
 n Periodic Heterogeneity Fluctuation Error

 n Cons
 n Handling

 n High Possibility of External Contamination
 n Pros

 n Handling
 n Preparation Error

 n Equiprobabilistic
 n Delimitation Error
 n Extraction Error
 n Segregation Error
 n Periodic Heterogeneity Fluctuation Error

 n Size / Increment
 n Fundamental Error
 n Long-Range Heterogeneity Fluctuation Error
 n Periodic Heterogeneity Fluctuation Error



Issue 5  2015136 TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

Acknowledgements
Kearn Pat Lee: Co-author of the test plan RPP-PLAN-51625 and 
final RSD Accuracy final report – currently in draft.

References
1. Hanford Tank Farms Waste Feed Flow Loop Phase VI: PulseEcho Sys-

tem Performance Evaluation, Pacific Northwest National Laboratory, 

Richland, Washington. PNNL-22029 Rev. 0 (2012).

2. Waste Feed Delivery Mixing and Sampling Program Simulant Definition 

for Tank Farm Performance Testing, Washington River Protection Solu-

tions, LLC, Richland, Washington. RPP-PLAN-51625 Rev. 0 (2012).

3. One System Waste Feed Delivery Remote Sampler Accuracy Test Plan, 

Washington River Protection Solutions LLC, Richland, Washington. 

RPP-PLAN-56125 Rev 0 (2014).

4. F.F. Pitard, Pierre Gy’s Sampling Theory and Sampling Practice, 2nd 

Edn. CRC Press (1993). ISBN 0-8493-8917-8.

5.  P. L. Smith, Primer for Sampling Solids, Liquids, and Gases: Based on 

the Seven Sampling Errors of Pierre Gy, Alpha Stat Consulting Company 

(2001).



Issue 5  2015 137TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

Evaluation of sampling error sources in a multiple cutter 
metallurgical sampler
J. Loimia, P. Minkkinenb, C. von Alfthana, J. Lohilahtia and T. Korpelaa

aOutotec, Rauhalanpuisto 9, P.O. Box 1000, FIN-02231 Espoo, Finland, E-mail: janne.loimi@outotec.com 
bLappeenranta University of Technology PO Box 20, FIN-53851, Lappeenranta, Finland. E-mail: Pentti.Minkkinen@lut.fi

The head loss caused by metallurgical sampling for slurry streams can be significantly reduced by appropriate sampler 
design. When the process flow is sampled by vertical static cutters before an equal number of moving cutters, the installation 
requires less installation head space than other sampling arrangements and is easy to accommodate at suitable process 
locations. Low head loss reduces building costs for the processing plant and operational costs during the life time of the plant. 
 The presence of a possible systematic bias in the particle size distribution or the chemical composition between the 
vertical static cutters caused by segregation in the metallurgical sampler can be estimated by a designed sampling 
campaign where sub-samples are cut from each of the moving cutter sample streams simultaneously. The sub-sample 
assay results can be evaluated by an F-test to reveal if there exists significant variance between the cutter assays. 
 The Minimum Possible Error (MPE) caused by the sampling and analysis system can be estimated in another sampling campaign 
where spot samples are collected at equal intervals to perform a variographic experiment to characterise process heterogeneity and 
MPE by estimating the V(0) intercept. The V(0) is the variability of a single measurement and furthers an indication of the minimum 
sampling variance that can be expected in practice. MPE includes the Fundamental Sampling Error (FSE), the Grouping and 
Segregation Error (GSE), the Total Analysis Error (TAE) as well as preparation errors and the possible Incorrect Sampling Errors (ISE) 
perhaps not fully eliminated. In this paper we present an approach to evaluate the various sampling error sources and magnitudes in 
a multiple cutter metallurgical sampler.

Introduction

O
utotec metallurgical sampler MSA 2/50 has a low head 
loss structure. A structural benefit is that installation is 
easier and operational costs are lower than with high 
head loss metallurgical sampler structures. Figure 1 

shows the design of the sampler. The metallurgical sampler is com-
posed of several parts. The first part consist of mixing tank where a 
flow gate regulates slurry mixing and the speed of the slurry to the 

second part, which is characterised by three static cutters. The third 
part houses three moving cutters.

The metallurgical sampler has been installed in a flotation feed 
process line in hydrocyclone overflow. The process flow rate was 
close to the maximum recommended level, indeed sometimes even 
higher, yet it was found to be able to work well under these con-
ditions. In the first part of the study sub-samples were collected 
immediately behind the moving cutters, with a purpose to reveal if 

Figure 1. Metallurgical slurry sampler MSA 2/50. The cover of the sample collection launder was removed and three specially made boxes were placed in 
the launder for the taking the sub-samples used in this study. See Figure 10 for details of the moving cutters.

doi: 10.1255/tosf.64
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these show systematic differences with respect to chemical com-
position. If so, this would reflect an extraction error (IEE). Secondly, 
spot sample data were collected from a Courier on-line analyser 
and used in a variographic experiment to study process heteroge-
neity and to assess the Minimum Possible Error (MPE) by estimating 
the V0 intercept. V0 represents the short-range error variance of a 
single measurement.

Because sub-sample collection and variographic data collection 
was conducted as two different events, the ore fed to the process 
had changed in the particle size distribution and elemental content 
altering the scale of the fundamental sampling and, consequently, 
all analysis results of the studies are not directly comparable.

Sub-sample study
When sub-samples are taken simultaneously by the three moving  
cutters, the sampling error is caused by three error sources: long-
range fluctuation in the process stream during the study, between 
cutters variation and short range variation consisting of the funda-
mental sampling error (FSE). If the error source variances are sig-
nificantly larger than nil, their magnitude can be estimated from the 
experimental design shown in Figure 2 by using analysis of variance 
(ANOVA). In the following calculations s2 denotes theoretical vari-
ances and s2 denotes estimated variances.

Due to the sample collection and preparation design used in this 
study the analytical error variance s2

a cannot be separated from the 
short term variance s2

sh. Instead, their sum can be estimated:

 
2 2 2
0 sh as = s +s   (1)

Two other sampling variances, the between-cutter variance (s2
bc) 

revealing the local segregation, and the long-range variance (s2
lr) 

which includes all process changes during the experimental study, 
can be resolved from the four experimental variance estimates (s1

2, 
s2

2, s3
2 and s4

2) shown in Figure 2 (ANOVA). These are linear com-
binations of the three contributing error sources; they can there-
fore be used to calculate estimates for the individual error source 

variances (Equations 2–12). Here n = 10 is the number of primary 
samples from each cutter, j = 3 is the number of parallel cutters and 
df is the number of degrees of freedom for variance.
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The significance of the experimental variances was analysed 
by using an F-test with the ratio of the sample variance estimates 
as the test statistic. The significance of the long-range variance is 
tested with Eq. 6 and the between-cutters with Eq. 8.
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In cases where the F test (6) is insignificant the long-range pro-

cess variance does not differ significantly from zero and s2
lr can be 

assumed to be close to zero. In cases where the test results are sig-
nificant, the estimate of long-range variance caused by long-range 
process fluctuation is:
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Similarly, the significance of the between-cutters variance can 
also be tested Eq. 8.
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ANOVA showed that the between–cutter variance was insig-
nificant, and consequently, the between-cutters variance can be 
assumed to be nil (s2

bc≈ 0). The sum of the analytical error and short 
term process variance, s2

0, and total variance of a single sample, 
s2

tot , can also be estimated (Eqs. 10 and 11). The total variance is 
the sum of all error generating variances.

 = -2 2 2
0 1 bcs s s  (9)

The total variance of a single measurement is the sum of all vari-
ances
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If each j parallel cuts from n primary cuts are analysed the vari-
ance of the mean from the test period, excluding the possible auto-
correlation discussed in the next chapter, is
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2 0bclr
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s
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⋅ ⋅   
(11)

Because the sampling variance between cutters was not signifi-
cant according this study (see above), the total observed variance is 
simply the sum of the long and short range process variances and 
the analytical variance. The design of feed box eliminates the hori-
zontal segregation in the process stream and differences between 
the points of vertical cross cuts of the process stream were 

Figure 2. Experimental setup for ANOVA and calculation of four 
variances  s1

2–s4
2 needed to estimate variances generating the total 

sampling  error.
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insignificant, no systematic bias caused by the MSA 2/50 cutters  
could be observed in this study. The results of ANOVA are pre-
sented in Table 1. Because the data are confidential it was decided 
to denote the “analytes” as A and B without loss of generality.

Variographic experiment
The most complete theory on sampling for chemical analysis of par-
ticulate and solid matter in mineral processing industry that takes 
into account both the technical and statistical aspects of sampling, 
has been developed by Pierre Gy’s and presented in two funda-
mental books1,2 and in many later developments. Pitard3 has also 
published a book based on Gy’s sampling theory explaining variog-
raphy in detail. A generic variogram is shown in Figure 3.

Gy has shown that the long-range Point Selection Errors, (PSE1 
and PSE2), and the short term Point Selection Error (sum of Funda-
mental sampling error, FSE and Grouping and Segregation Error, 
GSE) can be estimated with a variographic experiment, in which 
N, a sufficient number of samples (minimum of 30 preferably more 
than 100) are collected systematically most often with equal time 
intervals. According to Gy’s definitions the heterogeneity contribu-
tion is a structural property of the material. The heterogeneity con-
tribution of every sample can be estimated,

 
, 1,2, ,i L i

i
L

a a M
h i N

a M
-
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(12)

in which i is the sample or increment number, ai is the analysis result 
of sample i, aL average of the process sequence, Mi is the weight 
of sample i and M is the average sample mass. If the sample size 

is proportional to the process flow or the flow rate correlates with 
the analysis result, the heterogeneity contributions and the average 
concentrations must be statistically weighted.

 

i i
L

i

M a
a

M

⋅
= å

å   
(13)

The heterogeneity contributions are the most often used format 
used as the basis for the variogram, Vj (as a function of sample lag 
interval j )
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From the variogram variance and standard deviation estimates 
can be solved for the three principal sampling modes (systematic, 
random or stratified) thus providing useful information for optimising 
specific sampling plans4,5.

Variographic analysis provides an estimate of the intercept V0, 
also known as nugget effect, at zero lag. The intercept V0 is a sum 
of several components, FSE, GSE and the variance of all the other 
components of the incorrect sampling errors, ISE, e.g. delimitation 
error and extraction error that potentially were not partially or fully 
eliminated. Because all the random errors of the sampling process 
are included in the intercept V0, it provides an estimate of the preci-
sion of online sampling and analysis system. N.B. A proper vari-
ographic analysis must be made on accurate (unbiased) data.

The intercept V0 is related to the zero point variability; it is the vari-
ance that would occur if the same sample could have been taken 
twice. It is the best obtainable estimate of the minimum sampling 
variance (minimum possible error, MPE) expected in process sam-
pling in a one-dimensional lot such as process stream. The theory 
of sampling identifies this value as minimum practical error6.

The variographic analysis of metallurgical 
sampler
The MSA 2/50 variograms were studied using two time series, each 
based on 10 or 15 minute intervals. The data used in the study 
were from a Courier XRF on-line elemental analyser data. Courier 
analyses the multiplexed sample streams at regular programmed 
intervals and provides elemental analysis data suitable for vari-
ographic study. Variograms calculated from the Courier data were 
used to extrapolate the V0 intercept. Estimates of the relative stand-
ard deviations as a function of a sampling interval of systematic and 
stratified sampling modes were calculated by using Gy’s method 
explained in detail in references 1 - 3. Figures 4 and 5 show the time 

Figure 3. Generic variogram and its components. The variogram 
delineates the individual components of random and periodic process 
variances as well as the variance of a zero lag sampling point (plus the 
analysis error); sp

2 is the long-range process variance, aka the sill, of a 
stationary process.

Table 1. Anova variance components. Three replicate sub-samples were taken and analysed from ten primary process increments. 

Measurement Variance
Absolute standard 

deviation (%)
Relative standard 
deviation (RSD%)

A (%)

s2
lr = 0.00989 0.099 0.88

s2
bc ≈ 0 0 0

s2
0 = 0.00872 0.094 0.83

s2
tot = 0.01867 0.137 1.21

B (%)

s2
lr = 0.00586 0.0024 2.30

s2
bc ≈ 0 0 0

s0
2 = 0.00024 0.016 1.48

s2
tot = 0.00083 0.0040 2.74
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series of the elements A and B. Figures 6 and 7 show the corre-
sponding variograms calculated together with the relative standard 
deviation graphs as function of a sampling interval. These values 
can be used to calculate standard deviations of, and confidence 
intervals for, point estimates and the average of several samples for 

the different sampling modes5. If n samples are taken with intervals j 
from a lot (systematic sampling), or one random sample from every 
consecutive substrata of length j (stratified sampling), the relative 
variance of the mean of the lot, aL is

 

2
sy/st2

La

s
s

n
=

  
(15)

where is s2
sv/st is the variance estimate of systematic or stratified 

sampling mode at lag j obtained from the variographic analysis.

Estimation of the Fundamental Sampling Error 
FSE
The fundamental sampling error gives an estimate of the relative 
sampling variance after all other error sources have been eliminated 
(if/when possible). FSE is caused only by the properties and of the 
sampled material.
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in which f is the particle shape factor, g is granulometric factor, c 
is mineralogical composition factor, l = (dl/d )1.5 is liberation factor 
(dl is liberation size), d nominal top size of the sample, MS mass of 
the sample and ML mass of the lot, respectively. If the material is 
ground below the liberation size, as was done here, the liberation 
factor should be set as = 1. If the sampled lot is much larger than 
the sample, equation 17 simplifies to
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Figure 4. Time series plot of elements A and B, measurements at 15 
minute intervals.

Figure 5. Time series plot of elements A and B, measurements at 10 
minute intervals.

Figure 6. Flotation feed variograms of elements A and B instrumental analysis (Courier) in 10 min intervals (upper panels). Lower panels show estimated 
relative standard deviations for stratified (green) and systematic (blue) sampling modes.
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The composition factor is estimated as
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where aL and a are the average concentration in the lot of and in 
the mineral that contains the element to be analysed, respectively 
and rc and rm are the densities of the mineral containing the analyte 
and the gangue (matrix).

Figure 8 shows schematically how the samples were cut with 
the moving cutters. In MSA 2/50 each of the three static cutters 
with equal width cut 8.3% from the process stream as the primary 
sample; in total the static cutters take one fourth of the process 
stream, in this case 600 m3/h. The total flow-rate at the moving 
cutters is 150 l/min. The volume of the increments taken by cutters 
is 1.9 litres (5.6 l total sample). During the study the solids content 
of the slurry was 52% (m/m). Thus the individual sample mass was 
approximately 1.3 kg.

For estimating FSE for element B, some assumptions have to 
be made. The shape factor f is assumed to be 0.5 (meaning that 
particles are assumed to be spherical), and the granulometric fac-
tor g is set as 0.5 assuming that the material is classified. Element 
B concentration in dry slurry was 1%, and the density of the mineral 
containing it, a = 6 g/cm3 while the density of gangue is 2.7 g/cm3. 
Based on these data the composition factor c = 270 g/cm3 can be 
calculated; the liberation factor l = 1 was used. FSE error estimates 
are based on 0.2 litre (180g) final increment size (taken with a sec-
ondary sampler), from which a 20 g laboratory analysis sample was 
finally extracted. The estimates of the relative standard deviation of 
the FSE at different sub-sampling stages and sample preparation 
were calculated and are presented in Table 3. As expected, a 20 g 
sample displays the largest sampling variance, 0.32% as relative 
standard deviation, while the primary increments only contribute 
0.0035%. The reason for these small FSE is the small particle top 
size, which is about 150 µm only. The largest FSE for metallurgi-
cal sampling of elements with approximately 1/10% content in the 

Figure 8. Schematic illustration of the experimental setup of the sub-
sample study.

Figure 7. Flotation feed variograms of elements A and B instrumental analysis (Courier) in 15 min intervals (upper panels). Lower panels show estimated 
relative standard deviations for stratified (green) and systematic (blue) sampling modes.
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flotation feed can be expected to be of the magnitude of relative 
standard deviation less than 0.1%. Much larger errors are caused 
during preparation of the analytical sample from the composite 
sample.

Discussion
Figure 9 shows Gy´s classification of the full complement of sam-
pling errors. According to results of this study it is estimated is that 
the sum of the short term variation and analysis errors is responsible 
for the largest contributions to the total error for the flotation feed, 
in case of element B the relative standard deviation was estimated 
to be s0 = 1.5% (ANOVA) and 0.8–1.1% (variographic experiment). 
These errors are caused by the short-range heterogeneity within 
the 1-D material flow, by the manual preparation of the analysis 
sample and by the laboratory analysis. In the variographic study 
s0 was obtained by extrapolating the variogram to lag zero and it 

includes the short-range and Courier analysis variations. The long 
range variation in the process caused by changes in the process 
feed in ANOVA study was slr = 2.3% and in the variographic study 
6 and 2.1%, by comparison.

The main error sources in the sub-sampling study were likely 
operator errors during manual sub-sampling and manual sample 
preparation for laboratory analysis, and the actual analysis error, 
which could be estimated in this particular experiment. The FSE 
in the sub-sampling study is small due to small particle size SFSE 
(TOTAL) = 0.34%.

According to the variographic experiment, the total element B 
measurement variance (15 min lag), V0 = 6.47E-05, which includes 
the short term process variance and the variance caused by on-line 
XRF analyser. The intercept V0 is the best possible estimate of the 
minimum practical (MPE) error for the present process sampling 
system6.

MPE includes the fundamental sampling error, the grouping and 
segregation error, the analysis error and the point materialization 
errors. Therefore combined variance caused by fundamental sam-
pling error, analysis error, grouping and segregation error and incor-
rect sampling error was during this study.
s2

MPE = s2
FSE + s2

TAE + s2
GSE + s2

PME = 6.47 × 10-5 for analyte B, 
which had on average 0.01052 mass fraction in a mineral form in 
the flotation feed. The relative error is thus: =1.12%.

The analysis of variance of sub-sampling study showed no sig-
nificant bias between moving cutters, that is s2

bc of elements A and 
B in Table 1 are nil. The difference between the dry solid material 
sampling from a conveyer belt and fine particle slurry sampling in 
flotation process is that even with a high solids fraction, e.g. 50% 
w/w, the volumetric solids fractions is about 25% v/v, which means 
that particle trajectories in slurries are also controlled by turbulent 
water flow and not only particle-particle interactions. Consequently, 
although the static cutters are not fully compatible with the theory 
of sampling in the sense that they do not cut a full cross-section 
from the process stream, the present results show that the mixing 
chamber before the static cutters is effective in randomising the 
slurry flow, essentially converting it into a fit-for-purpose 0-D sam-
pling target at the time of cutting the primary increments before the 
moving cutters. For comparison, there has recently been developed 
an analogous full cross-section, vertical increment cutter sampler 
for pneumatically conveyed internally ducted two-phase (air/solid 
particles) aggregate sampling, Wagner & Esbensen7. In this solution 
the mixing is taken care of by the turbulent conducting transpor-
tation itself. Although addressing very different types of materials, 
both approaches share the prime objective of counteracting the 

Table 2. Results of the variographic experiment for flotation feed elements A and B and Solids-%.

Estimated quantity Lag (min) Element A Element B Solids%

V0

15 4.09E-05 6.47E-05 3.90E-05

10 1.71E-05 1.26E-04 5.89E-05

Average, aL (%)
15 7.05 1.03 40.99

10 7.06 1.06 40.63

Relative Standard Deviation s0 (%)
15 0.64 0.80 0.62

10 0.41 1.12 0.77

Relative Long Range Standard Deviation of the 
process, sp (%)

15 1.78 5.96 1.56

10 0.67 2.13 1.13

Figure 9. Gy’s complete classification of sampling errors according to 
source4.
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bias-generation effects of vertical segregation in moving streams 
of matter.

PSE1 and PSE2, together with the analytical error, are the main 
contributors with the largest variation to the total measurement 
uncertainty. Increment and Sample Preparation Errors are largest 
sampling error sources, but it was impossible to estimate these indi-
vidually for which reason they were included in the compound s2

0 
estimation. The fundamental error estimation shows how the total 
measurement uncertainty increases as sample mass is reduced; 
the only way to reduce the fundamental sampling error is to reduce 
the particle size and/or increase the composite sample mass. How-
ever the fundamental error is insignificant in the MSA 2/50 sample 
volumes and the Grouping and Segregation error (GSE) was also 
minimal according to the sub sample study.

Conclusions
Based on this study the Outotec metallurgical sampler is able to 
represent the process variance reliably for elemental content and is 
able to substantiate timely process control actions. In the mineral 
beneficiation process the top particle size is very small, usually much 
less than 300 µm, and process flow velocities have to be sufficient 
effective to prevent the slurry particles from settling in the process 
piping, which reduces segregation in the sampled flow. The MSA 
sampler’s feed box design controls the process stream flow veloc-
ity and randomizes the sample flow. According to the sub-sample 
study, when the process stream was cut by vertical static cutters no 
horizontal segregation could be observed.

If/when the total error budget estimates arrived at are acceptable 
for the operating company, this study has qualified the MSA 2/50 
as a fit-for-purpose metallurgical sampler.

A complete cross section of the primary sample stream is cut 
by the moving cutter stage. The operating principle is shown in 
Figure 10. The moving cutters move at an adjustable velocity and 
frequency across the primary sample streams from the static cut-
ters and thus provide the on-line analyser with a continuous sample 
by-pass flow that represents variations in the process validly and 
which can be sampled with a separate composite sampler for the 
metallurgical accounting purposes.
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Table 3. Estimation of variance and relative standard deviation (%) of the 
fundamental sampling error (FSE) for element B assays at different stages of 
sampling and sub-sampling.

Source of variance MS (g) s2
FSE

Relative Standard 
deviation (%)

s2
FSE static cutters

141120 1.20E-09 0.0035

s2
FSE moving cutters

3780 4.31E-08 0.021

s2
FSE sub sample

1260 8.93E-08 0.030

s2
FSE single increment

180 1.12E-06 0.11

s2
FSE laboratory analysis sample

20 1.00E-05 0.32

s2
FSE TOTAL 1.13E-5 0.34

Figure 10. Operating principle of the MSA 2/50 Metallurgical sampler’s 
moving cutters.
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There is a need in the mineral processing industry for an integrated system to monitor and control ISO compliance of sample 
stations. This paper discusses development and application of a control system toolbox to meet this need and to deliver complete 
ISO compliant functionality. Traditionally, automated sampling systems rely on generic equipment control standards to operate the 
individual sampling components. The design of the sampling equipment in these systems may comply with ISO requirements, but 
does the integrated system also comply? This paper describes application of a standardized software library that integrates the 
requirements of ISO sampling standards with customized equipment control units via a supervisory control module, to bridge this 
gap. These libraries are based on many years of combined sampling, electrical and control engineering experience. This appropriate 
blend of expertise has enabled us to seamlessly integrate standalone, automated, sampling devices into ISO compliant sampling 
systems. All components have well-defined interfaces as well as common functional control and reporting mechanisms. The result is 
a fully integrated sample station that performs as an interconnected, ISO compliant quality system. The benefit of a standardized and 
integrated sample station is consistent production of reliable and accurate results. Trustworthy sample data gives Quality Assurance 
and Quality Control analysts, technicians and plant management a high degree of confidence that they have a full understanding of 
their material’s properties and commercial worth. Confidence in sampling results is essential as the quality of the material is inexorably 
linked to a company’s reputation as a reliable supplier of quality products and, ultimately, to their bottom line.

Introduction

S
ampling systems can be designed, manufactured and 
installed so as to meet the requirements of ISO standards 
and Theory of Sampling (TOS).

However the operation and monitoring of these sam-
pling systems is then left to the user to evaluate and monitor the 
performance of the sampling and to make changes as required to 
ensure continued unbiased performance. Too often the design-
ers are asked to revisit installed systems to try to evaluate why the 
correct sampling protocol is not being achieved. The investigation 
often concludes that vital parameters have been altered and the 
installed control system no longer is able to produce the required 
primary or subsequent sampling.

In order to try to control the sampling process with continual 
monitoring of the necessary sampling parameters FLSmidth Pty Ltd 
embarked on a development program to integrate the various con-
trols into a total control system which could provide the feedback 
necessary to instil operator confidence in the samples taken.

In 2014, the FLSmidth sampling development team designed and 
constructed a suite of software components that:

 n Provided sample station control that follows TOS guidelines and 
complies with ISO standards

 n Accesses software libraries modelled on the FLSmidth range of 
sampling products

 n Ensures safe operation of the equipment
 n Ensures robust and reliable performance of the equipment and 
system

 n Provides user-friendly configuration and operation
The conceptual design of this software was presented at the 

Sampling 2014 conference in Perth, Australia, titled: “Control & 

Monitoring of International Organization for Standardization Com-
pliance for Industrial Sampling Systems” – T Neidel, C Adams and R 
Shaw. This conceptual design has now been implemented in a fully 
automated Mineral Sampling System at a customer’s iron-ore ship-
loader installation. A second system has been constructed and 
waiting commissioning and another two systems are scheduled for 
completion later this year.

This paper presents and discusses the performance and opera-
tion of this Integrated Sampling Control System (ISCS) and demon-
strates the advantages in its use.

Integrating the Sample Station and the Control 
System
The sample system mechanical layout and sampling process was 
designed in conjunction with the customer to provide a sampling 
protocol in accordance with ISO 3082 Iron Ore – Sampling & Sam-
ple Preparation Procedure (ISO 3082).

The sample system mechanical layout design followed accept-
able sampling procedures selecting and integrating proven equip-
ment into an ISO compliant process. The control system was built 
using function block libraries which allow station control system 
development to be simply a matter of selecting the function block 
components in a Lego® building block methodology, where a sys-
tem is constructed by connecting pre-built building blocks. This 
minimises re-design and programming errors while promoting a 
well-defined structure with a consistent interface. In-built simulation 
functionality provided an excellent mechanism for off-line device 
and sequence testing providing a high degree of confidence before 
commissioning the system.

doi: 10.1255/tosf.56
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Standard design principals were applied to the development of 
the ISCS using three standard FLSmidth products;

 n ECS® (Expert Control and Supervision) – is a windows-based 
Human Machine Interface (HMI) for plant supervision and pro-
cess control.

 n Metis™ (Multi-Engineering Tool and Information System) is based 
on an object oriented control methodology especially designed 
for the cement and minerals industry. ACESYS is a standard li-
brary for consistent and reliable PLC programming.

 n ACESys® (Adaptable Control Engineering System) – is a propriety 
tool for alignment of best practice engineering standards.
The control system uses a local, dedicated sub-control system to 

provide machine level control of sampling tasks. The system con-
tains many advanced functions for trending, troubleshooting and 
remote reporting.

Emphasis was given to
 n Safe operation
 n Repeatable control

Figure 1. (a) Control system architecture (b) Sample tower and (c) Process schematics

Figure 2. ISCS HMI graphical overview screen
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 n Adaptable to the customers process
 n Ease of use and maintenance
 n Full lifecycle support
 n ISO 3082 Compliance
Figure 1 shows the relationship of the control system to the sam-

pling station equipment and the ship loading process.
One of the features of the ISCS is the ability to provide transpar-

ency of the sample system activities. The Human Machine Interface 
(HMI) system is the window into the ISCS. It provides a series of 
real-time animated screens that display the current and historical 
status of the sample station. The benefits provided are;

 n Monitor the operation and performance of the sampling 
system in real time – typical graphical overview screen is 
illustrated in Figure 2.

 n Provide alarm and warning information – the notification 
can be related to;

 n ISO violations
 n Sampling equipment failures
 n Process events – such as a chute blockage

 n Provide information on how to rectify faults

Alignment with ISO standards
While ISO standards mostly deal with the mechanical aspects of the 
collection and handling of a sample, there is other functionality that 
the control system must take into account. Therefore the software 
development must also consider the alignment to and application 
of ISO rules.

The ISCS control system we are describing in this paper is generic 
to the mineral sampling industry, but the discussion and examples 
relate to a system installed at an iron-ore ship-loader installation 
where the software was tailored to meet ISO 3082 Iron Ore – Sam-
pling & Sample Preparation Procedure. The control system can be 
adapted to any other sampling standard.

The iron ore control system software has the following ISO 3082 
monitoring and control features embedded in the code:

 n Sampling methodology
 n Cutter velocity control
 n Safety of operations
 n Robustness of sampling installation

Sampling Methodology
The top level function of the control system software is the selection 
of the appropriate sampling method.

 The steps for establishing a sampling scheme are mostly decided 
by the sampling design group. However the control software uses 
ISO3082 to make decisions determining the number of increments 
and timing of the intervals between initiating a primary increment, 
based on QA/QC or production manager input of lot size and qual-
ity variation.

The design of the system is such that the initiation and handling 
of a sample lot is automated, eliminating operator-entry or lot- cal-
culation errors.

 For a customer specified lot, the lot information must be pro-
vided to the sample station control system. When the lot ID and 
size are transferred to the system (via the Plant Control System or a 
Laboratory Management System) a new lot/batch is initiated.

The number of primary increments and the tonnage target are 
automatically calculated by the system and then the tonnage accu-
mulators are reset.

The control system calculates the number of primary increments 
based on Table 3 of ISO 3082 (Figure 3).

ISO 3082 defines three methods for sample collection:
 n 6.1 Mass-Basis Sampling – where increments shall be taken at 
fixed mass intervals

 n 6.2 Time-Basis Sampling – where increments shall be taken at 
fixed time intervals

 n 6.3 Stratified Random Sampling within Fixed Mass or Time In-
tervals – where a randomized sampling interval is introduced to 
either the mass or time based schemes in 6.1 or 6.2
The client’s preference was for Mass-Basis Sampling and the 

control system initiated the primary sampler from an upstream belt 
weigher (weightometer) to provide the ore mass flow rate required. 
Time-Basis sampling was also incorporated as a backup method 
for the Mass-Basis Sampling in case the upstream weightometer 
failure. The software provides the ability to switch from mass based 
sampling to a time based regime (and back) by the selection of a 
check box on an operator interface faceplate. All sample station 
tuning and configuration parameter changes are protected by a 
password control scheme.

 The first increment of a new lot is taken at a randomly gener-
ated target tonnage after commencing the sampling operation (in 
accordance with 3082 – 6.1.4). Subsequent increments are taken 
at the fixed mass intervals until the entire lot has been processed.

The installation uses a variable speed cutter as required by the 
standard to match the cutter velocity to the mass flow rate. The 
system has provision to check the weight of the primary increment 
to determine if the increment is within the ISO 3082 specified 20% 
tolerance. If the primary increment is Out Of Specification (OOS), 
the sample is rejected and an immediate resample is initiated.

Figure 3. Sampling Scheme – Main Data Screen
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Figure 4 shows data from the installed site of the catch weights 
of 104 primary increments, with the 370 kg increment weight target, 
and the blue lines indicating the 20% tolerance level which was 
exceeded by the OOS samples that were rejected. Also displayed is 
comparative data showing the sample mass collected in the sample 
bucket, target mass 8 kg, the orange lines indicating the 20% toler-
ance level.

Cutter Velocity Control and Monitoring
The ISO standard defines in detail the design of the cutter geom-
etry and its positioning for the collection of the primary increment. 
Details of the mechanical design and their meticulous application 
of the ISO standards are outside the scope of this paper. How-
ever section 5.1.4.1 of ISO 3082 covers the velocity of the primary 
cutter moving through the falling ore stream. The installed control 
system software provides a user interface screen (faceplate) for 

velocity control. The object is to minimise Delimitation Error (DE), 
hence eliminating bias in the sampling process. (Refer to “Sampling 
of Particulate Materials Theory and Practice” By Pierre Gy, Chapter 
17, on Increment Delimitation Error).

The ISO standard also defines the mass of the increment to be 
taken (mechanically or manually) by a cutter-type sampler from 
the ore stream at the discharge end of the conveyer belt (ISO 
3082:2009 – 5.1.4.1) by the following equation:

I

1
3,6

l

c

q
m

v
=

 
The relationship between cutter velocity and the production ore 

flow for a defined catch weight (in this case 370 kg) as is shown in 
Figure 5.

The actual velocity deviation through the ore stream can be mon-
itored by a Linear Sampler monitoring system and it reports the 

Figure 4. Primary increments vs. sample bucket mass – selected OOS samples highlighted

Figure 5. Proportional VSD speed vs. ore flow rate
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consistency of the cutter spoon’s velocity through the ore stream 
and displays a reading of the sampler’s motion (as a percentage of 
the average travel against the set point speed).

Figure 6 shows the cutter velocity over a period of 4.2 seconds 
(at 100 msec intervals).

Operational Safety and Standards
Operational safety is of critical importance to industrial operations 
and the control system allows observation, monitoring and control 
of the sample station from a safe environment. The ISCS aligns with 
ISO 3082 Section 7.2 Safety of Operations, and also incorporates all 
necessary safety standards as required by international regulations.

Robustness of the Sampling Installation
Failure of sampling systems is often a result of poor maintenance. 
Cutter blades are not replaced, cutter speeds not checked and 
sample masses not recorded. Bias tests on A and B primary sam-
ples are only checked at significant audits. While the ISO 3082 
refers to the mechanical robustness of the sampling equipment and 
this should also be applied to the control and monitoring process.

Based on reliability data and experience the control system was 
strengthened by incorporating the following features:

 n Redundant Central Processing Units and power supply
 n Sampling equipment retry method (example – if a gate is blocked 
by a rock; retry to open and close the gate to dislodge the rock. 
These are common occurrences and should not cause the sys-
tem to fail on the first attempt).

 n Function to re-sample primary increment if OOS – in compliance 
with ISO 3082 6.1.1. Part C.

 n Maintenance scheduling based on operation time.

Development Challenges
Bridging the gap between theory and reality presents challenges 
such as aligning the timing of the ore flow rate on the feed conveyor 
belt to the activation of the primary sampler. The production belt 
weightometer, being 53.7 meters before the primary sampler, with 
a belt speed of 3.72 meters/sec, resulted in a flow rate lag of 14.4 
seconds.

53.7 m
t 14.4 seconds

3.72 mps
= =  

The inconsistent flow rate presented a problem for the mass 
based sampling method, raising the question of how to align the 
cutter velocity to the instantaneous flow rate. The challenge was 

Figure 6. Cutter velocity vs. time

Figure 7. Production flow – note highly variable feed flow rate
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resolved providing a consistent primary increment mass to meet the 
ISO standard CV requirement. Figure 7 shows the varying flow rate. 
As explained earlier timing is critical to ensure the cutter velocity is 
matched to the actual flow rate of ore, as it enters the cutter spoon, 
to ensure that the correct sample mass is collected in the increment 
as given by the following formula.

Sample Data Tracking
Event logs are an important requirement of any control system. 
The Integrated Sampling Control System provides an audit trail 
of sampling activities, sample masses and events. The software 
collects relevant sample data at every stage of the sampling pro-
cess. The sampling process data is event driven and provided in 
real-time.

The ISCS also provides interpretive graphing of data so that 
trends can be monitored for sampling process analysis and diag-
nostic information.

Benefits of an Integrated Sampling Control 
System
Generally there are two common methods of programming and 
interfacing the vendor package to the plant a mineral handling or 
processing control system. They are:

 n Typically during the construction of a mineral handling or pro-
cessing plant, the principal contractor integrates the sampling 
system into the required area of the plant. Similarly the principal 
contractor integrates the control of the sample system into the 
plant control system; but this may introduces risk, due to the ge-
neric engineering integrator having limited sampling knowledge 
or functional understanding of sampling requirements.

 n The sampling equipment designer provides an integrated pack-
aged solution, where control is implemented with the sampling 
system. This methodology takes into account the complexities of 
sampling systems, conformance to sampling standards and the 
application of the manufactures expert knowledge.
The equipment designer is the expert in understanding and con-

trolling the mechanical components and processes of their prod-
ucts. The operation of a sampling system and the control of the 
sampling equipment is not a material handling application. It is 
far more complex, as has been demonstrated in this paper. Generic 
control system engineers have, at best, a limited understanding of 

TOS and/or ISO requirements and therefore find it difficult to provide 
and integrated control system for the sample station.

A key benefit of correct integration of the sample station and con-
trol system is that the system designer is able to provide support 
(including remote support) over the life cycle of the system.

Conclusions
The Integrated Sampling Control System offers a reliable, safe and 
repeatable control system that allows operators to monitor and 
control the sampling parameters in accordance with TOS and ISO 
3082 guidelines.

It provides the operator with:
 n Security that the sampling system operates as it was de-

signed and installed, and provides an integrated and ac-
countable quality system.

 n Detailed primary sample information.
 n Correct sample increments for variable lot sizes.
 n Monitoring of cutter velocity
 n Advice to ensure programmed maintenance is performed.
 n An audit trial of all sampling operations.

The ISCS can give the confidence when asked “Is your sampling 
system ISO 3082 compliant?”
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Table 1. Device data blocks for sample tracking of primary sampler and splitter

Name Data Type Attributes Description

MinSampleNo Dint retain hidden Minimum Sample Number

MaxsampleNo Dint retain hidden Maximum Sample Number

NoOfMainCuts Dint retain hidden Number of Main Cuts

Weight_SP Real retain hidden Weight Setpoint

Weight_PV Real retain hidden Weight Actual

Weight_Tolerance Real retain hidden Max Allowed Weight Tolerance (kg)

TotAccMass Real retain hidden Total Accumulated Material Current Batch (kg)

BatchNo Dint retain hidden Batch Number

AB_Cut Bool retain hidden 0 = A-cut, 1 = B-cut

LogType Int retain hidden 0 = OK, 1 = Weight Fault
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Design advances and operational studies for the True 
Pipe® Sampler: A symmetry based unit for reliable 
sampling of pressurised particulate streams
A. Foucheea and R.C. Steinhausb

Multotec Process Equipment, P.O. Box 224, Kempton Park, 1620, South Africa. E-mail: a annelizef@multotec.com,b rolfs@multotec.com

Obtaining representative samples with minimised sampling errors, is critical for calculating accurate metallurgical mineral balances on 
process plants. A challenging situation exists, where no acceptable, robust or economically viable sampler has been commercialised 
for sampling of one-dimensional pressurised slurry pipelines yet. The design of the True Pipe® in-line sampler is based on the principle 
of symmetry, as described by Dominique François-Bongarçon7, and also operates on a fail-safe principle for control on the synchronous 
opening and closing of identical valves for the sample chamber. Previous test work on the True Pipe® in-line sampler indicated that 
the prototype sampler is reliable within certain tolerances, initially indicating the concept could well be a viable design option. This 
paper presents the results from further test work, which mainly investigated three sampling phenomena in more detail, by examining 
classical one dimensional sampling, with the aid of an automated valve actuator. Firstly, the transient effect, which originates from the 
disruption in laminar particle flow. Secondly, the effect of split sampling, where the portion of the stream is sampled, as well as the full 
stream. Thirdly, the effect of symmetry is confirmed. The expected accuracy level of the True Pipe® in-line sampler is also evaluated 
for varied material conditions. Advances on the design include the ability to sample the entire pressurised particulate stream in a safe 
operating condition, by making use of a mechanical actuator for synchronous opening and closing of the sample chambers, as well 
as improved control on the valve opening and closing cycles.

Introduction

T
he need for increased accuracy of sampling in a mining 
process plant environment is driven by the reliability and 
confidence level that can be placed on the samples used 
for metallurgical accounting, official company reports and 

financial statements to comply with the increased requirements of 
corporate governance principles and guidelines as laid out in the 
AMIRA code1. Case studies2 show that incorrect sampling proto-
cols and equipment may have a crippling financial effect for the 
mine, but applying correct theory of sampling may save money. 
These studies underline the importance of installing correct sam-
pling equipment on tailings streams.

Tailings streams are often pressurised horizontal one-dimen-
sional pipe lines, which limit the application of conventional cross 
stream sampling equipment and for which there has to date not 
been a robust reliable TOS-compliant sampler solution presented. 
Some options available for sampling pressurised slurry streams are 
the t-piece bypass valve, poppet samplers and pressure pipe sam-
plers. All of which fail to comply with TOS principals3.

To honour the fundamental rule for correct sampling and sample 
processing, all parts of the ore, concentrate or slurry to be sam-
pled must have an equal probability of being collected and becom-
ing part of the final sample for analysis4,5. Poor precision may be 
improved by replicate samples or stringent control on sample 
preparation and analysis6, but this will not eliminate bias once it is 
present. Correct design of sampling equipment and sampling sys-
tems can help to eliminate or at least minimise sources of bias to 
acceptably low levels.

Upholding the principle of symmetry7, proposed by Dominique 
François-Bongarçon, where any biasing mechanism should affect 
the sample and its reject in exactly symmetrical ways, ensures sam-
ple correctness.

Design of the True Pipe® in-line sampler
The designed application for the True Pipe® in-line sampler is for 
sampling of high pressure particulate streams in the mining pro-
cess plant environment, currently specifically focussing tailings pipe 
lines where flow velocity of 6ms-1 and line pressure of 1600 kPa or 
more is common. The True Pipe® in-line sampler, shown in Figure 
1, allows for two parallel flow paths with diameters equal to that of 
the main feed pipe to the device, which is connected with a small 
angle Y-piece at each end. Two valves are present in each of the 
flow paths, delimitating specific sample captured volumes.

Previous True Pipe® in-line sampler test work
Initial exploratory test work conducted on the True Pipe® in-line 
sampler last year showed that at a 95% confidence interval, no 
statistically significant difference could be detected on the differ-
ence in mean between the reference sample and sample from each 
of the two sampler legs, when a synthesized ferrosilicon-silica ore 
was tested in the unit3.

Drawbacks on the initial design included:
 ■ Difficult manual operation of valves
 ■ Insufficient control on valve closing time
 ■ Unsafe operational condition for sampling a full cross stream cut
 ■ Synthesized ore did not fully represent fluid rheology as present 
in mineral processing plants

 ■ Manual sample draining and extraction

Design improvements on True Pipe® in-line sampler
The design optimisation of the True Pipe® in-line sampler calls for 
evaluation of certain theories associated with fluid born particle 
sampling. Transient effect recognition, in order to establish the final 
plant footprint required for the sampler, is where the actuating of 
the valves would cause an upstream disturbance of the particulate 

doi: 10.1255/tosf.60
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fluid stream at the septum of the Y-piece. Provided the valve clos-
ing time is faster than the time required for the disturbed particles 
to reach the first valve, the sample should be identical to the parent 
stream. This was to be evaluated by testing two different lengths of 
flow smoothing sections.

Another design consideration is identification of bias imposed on 
the particulate stream by split sampling. Inherent constitutional and 
distributional heterogeneities dismiss the theory of split sampling, 
where it is accepted that if a fluid stream is halved exactly, that each 
half of the stream is identical to the parent stream. Meticulous care 
was taken in the manufacturing of the device to ensure the best 
possible axial symmetry to halve the particulate flow.

The design of the True Pipe® in-line sampler respects the princi-
ple of symmetry by synchronous closing of actuated valves in the 
pipe line by means of a linked synchronising system. The principal is 
applied where the effect of any improperly delimitated particles mis-
placed into the sample chamber by the first valve would be identical 
to the effect of any particles improperly delimitated to the outside of 
the sample chamber by the second valve. One of the largest design 
improvements of the True Pipe® in-line sampler is the addition of 
actuators for automated control on consistent valve closing. The 
addition of the pneumatic actuators enables synchronous open and 
closing of either both valves in the same line (with the additional 
valves remaining open in the fail-safe position), or opening one 
set of valves and closing the other synchronously to enable cross 
stream sampling of the entire flow. Consistency of the valve closure 
speed was maintained by the addition of a pressurised air reservoir 

to constantly supply air to the control point where the air pressure 
to the valves is measured and monitored.

Methodology
A bias identification approach was followed in the design and oper-
ational assessment of the True Pipe® in-line sampler. This requires 
the sampler in question to be tested against a more recognised, 
reliable, correctly designed and unbiased sampling unit8. The integ-
rity of the reference sample was ensured, by making use of an auto-
mated Multotec vezin sampler, which is TOS compliant, to obtain 
reference samples.

Test rig set-up
A closed re-cycle system as shown in Figure 2, consisting of a 
bottom discharge 5 m3 feed tank and 6/4 AH slurry pump fitted 
with a variable speed drive, which was run at 850 rpm to achieve 
a measured in-line pressure of 300 kPa, which was the maximum 
pressure safely attainable with the test rig. Continuous mixing is 
established by aerating the feed tank with a Pachuca valve and 
recirculation of the particulate stream back into the feed tank. 
Class 10 2.5 inch industrial fibre reinforced rubber hose was used 
to connect the pump outlet to the sampler inlet and the sampler 
outlet to the vezin sampler feed chute. A special support structure, 
to which the sampler was secured with U-bolts, was manufac-
tured to ensure level installation of the True Pipe® in-line sampler 
and to support the two additional 160mm air cylinder valve actua-
tors attached to the synchronization linkage system for automated 
valve closure.

Material handling and sampling
Chrome tailings ore with a top size of 425 µm, from a chrome min-
eral processing plant discard line in the South African Bushveld 
Igneous Complex was sourced for this test work. Additional silica 
sand with a top size of 1mm was used for the test which required 
the ore composition to be synthetically altered. A slurry make up of 
approximately 45% solids by weight was maintained for all tests, 
except on the evaluation of this variable, where the solids were 
decreased to 25%.

Figure 1. True Pipe® in-line sampler assembly

Figure 2. Schematic test rig setup for evaluating the True Pipe® in-line 
sampler
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Samples are extracted from the sample chamber by washing 
particles out of the chamber and draining the sample into a con-
tainer which is sealed immediately after sample extraction. Samples 
were dried at 90°C and the dry samples were dis-agglomerated 
and homogenised before being representatively split to a sample 
mass exceeding the prescribed minimum sample mass3.

Representative sample splits were chemically analysed for major 
elements, specifically %Cr and %Si, by inductively coupled plasma 
atomic emission spectroscopy (ICP with OES), for which a certified 
reference material of similar matrix was used in the calibration of the 
instrument.

 ■ For split sampling evaluation, a sample from the reference vezin 
sampler and each of the True Pipe® in-line sampler streams at 
50% flow was taken. All other samples are collected from a full 
cross cut or slice of the particulate stream for each of the two 
legs.

 ■ Transient effect recognition was enabled by fitting a 250 mm pipe 
extension before the sampling chamber and comparing this to a 
1400 mm pipe extension where no transient fluid effects would 
be expected to be active.

 ■ The application of the principle of symmetry was tested by intro-
ducing different valve closure speeds, all of which were synchro-
nous and now automated.

 ■ The operational effect of a change in solids concentration was 
evaluated by adding more water to the slurry make-up.

 ■ Heterogeneity effects resulting from a change in ore type was 
tested by the addition of coarse silica sand to make up a syn-
thesised ore.

Statistical methodology
The student’s t-test is deemed satisfactory for obtaining 95% con-
fidence limits on sampling data with reasonably consistent sample 
masses8, when sample means or sample mean differences for two 
sample sets are compared. For comparison of three or more sam-
ple sets, repeated analysis of variance (rANOVA) is recommended. 
Both of these tests yield a two tailed p-value, which based upon 
a 95% confidence limit (a = 0.05), is used to evaluate if the null 
hypotheses should be rejected.

Hypothesis tests9 were conducted to evaluate the effect of design 
and operational variables on the %Cr mean difference between 
the reference vezin sample and the True Pipe® sample pair, (H0: 
µReference – µSampler = 0; Ha: µReference – µSampler ≠ 0). This test indicates 
whether the mean of the reference sample and the mean of the 
True Pipe® sample are statistically different.

An additional hypothesis test was conducted to evaluate whether 
the difference in sample mean between the reference vezin sample 
and the True Pipe® sample pair were statistically different under dif-
ferent design and operational conditions, (H0: [µReferenceA – µSamplerA] – 
[µReferenceB – µSamplerB] = 0; Ha: [µReferenceA – µSamplerA] – [µReferenceB – µSampler

B] ≠ 0). When the null hypothesis is accepted, the difference in mean 
between the reference and its corresponding True Pipe® sampler 
sample is not statistically different from the difference between 
another reference sample and its corresponding True Pipe® sampler 
sample. Thus accepting the level of uncertainty was not affected by 
the change in design, or operational variable for that test.

The use of rANOVA to test the equality of sample means is kept to 
analysis of split flow sampling means, where a vezin reference sam-
ple is compared to two samples from the True Pipe® sampler, each 
representing a 50% split of the original particulate stream. When a 
statistically significant difference exists between at least one of the 
True Pipe® sampler sample means and the vezin reference sample 
mean, the rANOVA hypothesis test should reveal this, (H0: µReferenc

e = µSamplerA = µSamplerB; Ha1: µReference ≠ µSamplerA = µSamplerB; Ha2: µReference 
= µSamplerA ≠ µSamplerB; Ha3: µReference ≠ µSamplerA ≠ µSamplerB), although it is 
unable to identify which of the alternative hypothesis are valid.

Results and discussion
Flow 50% split sampling
The results from the split sampling rANOVA evaluation in Table 1 
indicate that there exists a statistically significant difference between 
the sample means of the vezin sampler, True Pipe® Right sample 
and True Pipe® Left sample. The F-value of 9.05 exceeding the criti-
cal F-value of 3.19 and p-value of 0.00004, leads one to reject the 
null hypothesis of equality on sample means. The p-value of 0.044 
on the paired t-test in Table 2, evaluating the mean difference in 
%Cr content between the vezin sample and the corresponding side 

Table 1. Hypothesis rANOVA test on flow 50% stream splitting 

Source of Variation SS df MS F P-value H0: µReference = µSamplerA = µSamplerB

Between 0.51 2 0.26 9.05 0.00004 Reject Null Hypothesis

Within 3.97 72

Subjects 2.61 24

Error 1.36 48 0.03

(a = 0.05, SS = sum of squares, df = degrees of freedom, MS = mean squares, F = F-statistic)

Table 2. Hypothesis paired t-test on flow 50% stream splitting

Sample 
Size (N)

Mean 
%Cr (µ)

Sample 
Variance (s)

Mean Difference 
(µReference – µSampler)

Variance 
(s*)

P-value

Reference 25 11.69 0.061

True Pipe® Right 25 11.62 0.047 0.073 0.043
0.044

True Pipe® Left 25 11.49 0.056 0.200 0.050

H0: [µReferenceA – µSamplerA]- [µReferenceB – µSamplerB] = 0 Reject Null Hypothesis

(a = 0.05)
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of the True Pipe® sample, indicates only a marginally statistically 
significant difference between the bias in True Pipe® Right and True 
Pipe® Left samples.

This indicates that the extreme effort to axially symmetrically split the 
particulate stream in two 50% flow streams does not help to eliminate 
a significant bias between the reference sample mean and the individ-
ual True Pipe® samples, but that this bias could be equal on each side 
of the True Pipe® sampler. This is a significant detail that should not 
be missed when one wishes to employ partial sampling techniques of 
plant process streams during process control operations.

Transient effect recognition
It is clear from both hypotheses tests in Table 3 that not only are 
there significant differences between the samples exposed to the 
transient disturbance and the samples which were subjected to a 
flow smoothing section prior to sampling with respect to their indi-
vidual reference vezin samples, but also that there exists a statisti-
cally significant difference in the bias generated from each scenario. 
A p-value of 0.013 on the mean difference between the two design 
types shows that the non-transient True Pipe® sample, where a 
flow smoothing pipe of 1650mm was added before the sampling 
chamber, has a smaller bias than the transient True Pipe® sample, 
where there was no intentional flow smoothing.

Principle of symmetry
By throttling the main air valve to the system, the speed of automated 
valve closure was reduced consistently by a constant reduction in 

the air supply to the valve actuators from 8 bar to 4 bar. Table 4 
indicates that again the means of the True Pipe® samples were not 
equivalent to the means of their paired reference vezin samples, but 
that the mean difference between the True Pipe® samples and vezin 
reference samples was not statistically significant, where a p-value 
of 0.441 does not reject the hypothesis, that the difference in sam-
ple means are equivalent.

These results validate the principle of symmetry, where the bias 
imposed by a disturbance in the particulate stream will be coun-
tered symmetrically if an identical disturbance is introduced at either 
end of the delineated sample.

Stream composition effect
A change in the particulate stream make-up, where the solids 
by weight concentration was changed from 45% to 25% did not 
improve the equality of True Pipe® sample means and vezin refer-
ence sample means in the 95% confidence limit hypothesis test 
results shown in Table 5, but with a p-value of 0.529 on the mean 
difference evaluation between the two True Pipe® sample sets, the 
bias in these two scenarios appeared to not be statistically sig-
nificantly different. Thus the change in solids content of the fluid 
stream, did not affect the precision of the sampler.

Ore composition effect
The addition of silica sand with a top size of 1mm to the standard 
chrome tailings ore sourced for this test work highlighted the het-
erogeneity effect in sampling in this test. By measuring a statistically 

Table 3. Hypothesis t-tests on transient vs flow smoothing effect recognition

Sample 
Size (N)

Mean 
%Cr (µ)

Sample 
Variance (s)

P-value
Mean Difference 
(µReference – µSampler)

Variance 
(s*)

P-value

Reference A 19 12.19 0.016
0.00000

0.517 0.033

0.013

True Pipe® Transient 19 11.67 0.014

H0: µReference – µSampler = 0 Reject Null Hypothesis

Reference B 18 11.60 0.024
0.00001

0.341 0.050True Pipe® Non-Transient 18 11.94 0.022

H0: µReference – µSampler = 0 Reject Null Hypothesis

H0: [µReferenceA – µSamplerA] – [µReferenceB – 
µSamplerB] = 0

Reject Null Hypothesis

(a = 0.05)

Table 4. Hypothesis t-tests on principle of symmetry

Sample 
Size (N)

Mean 
%Cr (µ)

Sample 
Variance (s)

P-value
Mean Difference 
(µReference – µSampler)

Variance 
(s*)

P-value

Reference A 18 11.94 0.024
0.00001

0.341 0.050

0.441

True Pipe® Slow Valves 18 11.60 0.022

H0: µReference – µSampler = 0 Reject Null Hypothesis

Reference B 19 10.79 0.049
0.00000

0.399 0.050True Pipe® Fast Valves 19 10.39 0.018

H0: µReference – µSampler = 0 Reject Null Hypothesis

H0: [µReferenceA – µSamplerA] – [µReferenceB –
µSamplerB] = 0

Do Not Reject Null Hypothesis

(a = 0.05)
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insignificant difference in the means of the True Pipe® Synthetic 
ore sample and its corresponding reference vezin sample a higher 
level of accuracy is attained with the True Pipe® sampler when this 
change in ore composition is made. A p-value of 0.986 for the syn-
thesized ore means in Table 6 indicates that the means of the True 
Pipe® sample and vezin reference sample are not statistically dif-
ferent. The p-value of 0.003 rejecting the equality of the difference 
in sample means for the original standard and later synthetic ore, 
shows that the performance of the sampling unit will be effected by 
the ore type sampled.

The statistically significant difference in bias between the two dif-
ferent ores may be attributed to fluid rheology effects, where the 
fractional contribution of clay type minerals in the ore can easily 
increase the viscosity of the stream. When the viscosity of the par-
ticulate fluid is decreased, the effect of particle-particle interactions 
on the accuracy of sampling may also be decreased. The addition 
of silica to the original ore decreases the particulate fluid viscosity 
by surface chemical interactions between the silica particles and 
clay minerals. Positively charged ions from the wettened clay min-
erals will chemically bond to the negatively charged sites on silica 
particles, thus decreasing the concentration of dissolved ions in the 
fluid. Although this in turn will decrease the particle stability in the 
fluid, where coarser particles tend to settle faster, maintaining a par-
ticle line velocity of 4.5 ms-1 overcomes particle settling in the pipe 
column.

Conclusion
The design of the True Pipe® in-line pressurised particulate stream 
sampler, based on Dominique François-Bongarçon’s principle 
of symmetry, strives to not only minimise sampler bias, but also 
achieve repeatable sampling results. The principle of symmetry 
inherently accepts a specific level of uncertainty, which is intro-
duced in a symmetric fashion on either end of the delineated sam-
ple, such that a nett zero effect may be obtained. This design called 
for evaluation of certain theories associated with fluid born particle 
sampling to optimise future scale up of the prototype unit for indus-
trial application. This test work confirms that the implementation 
of split sampling does not yield reliable sampling results from 50 
percent cross stream cuts, no matter how careful the design toler-
ances and reliance on trying to control the particle lines of flow. One 
must rather design the unit to accommodate a full cross stream cut 
for meaningful results which once again validates and underpins 
TOS. It also identified that a difference in the magnitude of bias 
imposed by changing the pipe configuration for transient and flow 
smoothed, non-transient fluid conditions. The test work showed 
that a smaller bias was obtained when the particulate stream was 
subjected to a flow smoothing section before symmetric sampling. 
The principle of symmetry was confirmed by results showing no 
statistically significant difference in the magnitude of bias, when dif-
ferent synchronised valve closure speeds were implemented. The 
results of this test work also show that operational changes, such 

Table 5. Hypothesis t-tests on stream composition effects

Sample 
Size (N)

Mean 
%Cr (µ)

Sample 
Variance (s)

P-value
Mean Difference 
(µReference – µSampler)

Variance 
(s*)

P-value

Reference A 9 12.31 0.017
0.00000

0.545 0.011

0.529

True Pipe® 45% solids 9 11.77 0.012

H0: µReference – µSampler = 0 Reject Null Hypothesis

Reference B 9 13.18 0.037
0.00001

0.607 0.070True Pipe® 25% solids 9 12.57 0.099

H0: µReference – µSampler = 0 Reject Null Hypothesis

H0: [µReferenceA – µSamplerA] – [µReferenceB – 
µSamplerB] = 0

Do Not Reject Null Hypothesis

(a = 0.05)

Table 6. Hypothesis t-tests on ore composition effects

Sample 
Size (N)

Mean 
%Cr (µ)

Sample 
Variance (s)

P-value
Mean Difference 
(µReference – µSampler)

Variance 
(s*)

P-value

Reference A 9 12.31 0.017
0.00000

0.545 0.011

0.003

True Pipe® Standard Ore 9 11.77 0.012

H0: µReference – µSampler = 0 Reject Null Hypothesis

Reference B 9 8.97 0.036
0.986

-0.002 0.159True Pipe® Synthetic Ore 9 8.97 0.148

H0: µReference – µSampler = 0 Do Not Reject Null Hypothesis

H0: [µReferenceA – µSamplerA] – [µReferenceB – 
µSamplerB] = 0

Reject Null Hypothesis

(a = 0.05)
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as changes to the solids content of the particulate stream do not 
have a statistically significant effect on the sampling bias. Changes 
in the ore composition show a significant difference in the level of 
uncertainty. This phenomenon is attributed to the particle-particle 
interactions associated with the viscosity changes in the fluid.

The True Pipe® in-line sampler design investigations conducted 
to date, has sufficiently proven the concept of use for this patented 
sampler type as well as recognising certain effects to consider in 
the scale-up design. The next step is to manufacture a scale-up 
design of the True Pipe® sampler and also include an automated 
washing system, which will minimise operator interference during 
sample extraction.
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Historically, the application of nuclear science to borehole logging began with the detection of the natural radioactivity emitted by 
rocks and soils. This simple and effective method found many applications, particularly in sedimentary, coal and uranium deposits. 
Whilst this technique is still widely used today, the industry quickly moved to more sophisticated logging techniques that activate 
rocks with neutrons and measure the induced radiation to infer characteristics of the material surrounding the hole. Neutrons, as 
primary particles, were found to be an excellent radiation source, which opened large opportunities for in-situ material analyses. 
Neutron based commercial instruments were introduced1 for the first time in the 1940’s. Early versions of neutron logging tools used 
isotopic neutron sources that primarily responded to the amount of hydrogen in the formation. These were adopted by the oil industry 
to identify zones of porosity. Common isotopic neutron sources, such as 252Cf or 241Am-Be, are environmentally problematic if, for any 
reason, the tool cannot be retrieved from the borehole. Tools using continuously-on isotopic sources also suffer from limited capacity 
to distinguish between water and oil. Pulsed sources were found to overcome this obstacle since, by exploiting differences in time 
response, they made it possible to distinguish water from oil beds. Thus, the need for switchable neutron generators was driven by 
the oil industry, which in turn prompted the development of compact industrial grade equipment suitable for the requirements of their 
logging tools. There is a variety of active logging techniques based on the use of pulsed neutrons. These can be classified according 
to the implementation of the neutron source and the type of induced particles that are detected. Among the latter, gamma photons 
are of considerable interest as they enable elemental analysis of rocks. Pulsed Fast and Thermal Neutron Activation (PFTNA) is one 
of the most commonly used techniques combining a neutron generator with a gamma scintillation detector. Application of PFTNA for 
borehole logging is not limited to the oil industry. Nevertheless, most commercial tools have been developed to withstand the severe 
pressure and temperature conditions inherent at great depths in oil wells and thus tend to be oversized and too costly for mining 
applications. Without the need to withstand high temperatures and pressures, the technology can be optimized to make it more cost 
effective. This article presents a new PFTNA tool developed for the mining industry.

PFTNA (Pulsed Fast and Thermal Neutron 
Activation)
Neutrons interaction for elemental analysis

P
ulsed Fast and Thermal Neutron Analysis (PFTNA) is a 
technique that exploits several nuclear interactions of 
neutrons with matter in order to identify and quantify a 
large number of elements. Neutron energies are gener-

ally classified according to their kinetic energy into three catego-
ries: fast (E > 1 MeV), intermediate (1 keV < E < 1 MeV), and slow 
(E < 1 keV). This latter category is itself subdivided into epithermal 
(0.1 eV < E < 1 keV) and thermal (E<0.1 eV).

When neutrons penetrate the matter, they progressively lose their 
energy, mostly as results of successive elastic collisions. Each col-
lision causes the transfer of a percentage of neutron kinetic energy 
from the incident to the target nucleus. This process is called slow-
ing down or thermalization, which continues until the neutrons reach 
thermal equilibrium. Note that neutron particles have a mass nearly 
the same as hydrogen, making that element the most effective at 
slowing down neutrons following collision.

Apart from the elastic collision mechanisms, neutrons initiate 
three main types of interactions that results in the production of 
secondary particles:2

 ■ Inelastic scattering: A neutron interacts with a nucleus to form a 
very short lived isotope in an excited state. This returns quickly 
to its ground state by emitting a gamma ray, then a neutron. The 

energy of the incident neutron needs to be above a threshold 
value specific of the element to initiate the reaction.

 ■ Transfer reaction or Activation reaction: A neutron is absorbed by 
the nucleus which in turn releases one or more particles.

 ■ Radiative capture: A neutron, once slowed down to thermal en-
ergy, is absorbed by a nucleus that reaches an excited state; that 
nucleus decays nearly instantaneously to the ground state by the 
emission of one or more gammas. The created isotope may be 
stable or may be itself radioactive.
Particles (gamma photons in particular) resulting from these inter-

actions are characteristics of the target nuclei; and thus can be 
used for their identification. Neutron capture and inelastic scatter-
ing are the most common interactions exploited in neutron based 
borehole logging.

A large variety of elements found as constituents of common min-
erals, such as Si, Fe, Ca, Al and Mg can be measured using gamma 
rays resulting from neutron thermal capture reactions. Yet a few 
major elements, such as C and O display virtually no response to 
slow neutrons. Their direct measurement requires inelastic scatter-
ing interactions, which can only be initiated if the source can pro-
duce neutrons with sufficient energy to activate such reactions.

The use of energetic neutrons as produced by Deuterium-Trit-
ium generators, for example, enables the excitation of surrounding 
material with a wide range of energies from thermal to fast, which 
opens up the opportunity to exploit the different types of reactions.
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Pulsed electric neutron source
The PFTNA technique relies on a pulsed neutron generator (NG). 
The principal part of a neutron generator is a small linear particle 
accelerator, called a neutron tube. Neutron tubes have been built 
for more than 40 years; and they produce fast neutrons by fusion of 
hydrogen isotopes3. Two main nuclear reactions are used in stand-
ard neutron generators.

 ■ Deuterium 2H – Deuterium 2H (D-D)
2H + 2H ® 3He + 1n + 3.266 MeV (neutron energy about 2.4 MeV)
 ■ Deuterium 2H – Tritium 3H (D-T)
3H + 2H ® 4He + 1n + 17.586 MeV (neutron energy about 

14.1 MeV)
The yield of the second reaction is about 100 times that of the 

first. Consequently, it is the DT fusion reactions, which creates high 
energy 14 MeV neutrons, that is more widely used of the two in the 
manufacture of borehole elemental logging tools.

A typical sealed neutron tube includes an ion source, an accel-
erating gap and a beam target; all these components are enclosed 
within a sealed vacuum enclosure. The high voltages for the 

accelerator and the ion source are provided by external power sup-
plies. Tritium is impregnated on the target as solid hydride trapped 
in porous titanium. Deuterium is loaded similarly on a small resistor. 
A small quantity of gas is released on demand inside the tube by 
adjusting the current of the resistor. Plasma created inside the ion 
source produces ions which are accelerated onto the target to initi-
ate DT fusion and neutron production.

The ability to interrupt neutron emission by turning off the power 
supply provides significant benefits for the use of electrical genera-
tors in borehole logging. The most notable is the absence of radia-
tion when the tool is outside the borehole and handled by operators.

But this switchable capability may also be used to control the 
neutron pulse on a short time scale.4 During the pulse of fast neu-
trons, the gamma ray spectrum is primarily composed of rays from 
the inelastic and transfer reactions. Between pulses, neutrons 
lose their energy and can initiate thermal capture reactions. With 
an appropriate gate circuit, it becomes possible to separate the 
gamma-ray spectra produced by neutron inelastic scattering from 
those excited in neutron capture reactions. By further encoding a 

Figure 1. Neutron Interactions with matter. 

Figure 2. Neutron Tube Principle 

Figure 3. Ceramic body sealed neutron tube – Sodilog by Sodern 

Fast 
Neutron 

Gamma 
photon 

Neutron 

ZA  Slow 
Neutron 

Gamma 
photon 

ZA ZA+

ZA 

Gamma 
photon 

 Z*A

Transferred 
particle 

Inelastic scattering  Radiative capture

Transfer 

h  h 

h Neutron 

Accelerating 
Electrode

Ion Source

Tritium 
Target

Exit CathodeDeuterium 
reservoir

D D+

T

D+

14MeV Neutrons

Figure 1. Neutron Interactions with matter

Figure 1. Neutron Interactions with matter. 

Figure 2. Neutron Tube Principle 

Figure 3. Ceramic body sealed neutron tube – Sodilog by Sodern 

Fast 
Neutron 

Gamma 
photon 

Neutron 

ZA  Slow 
Neutron 

Gamma 
photon 

ZA ZA+

ZA 

Gamma 
photon 

Z*A

Transferred 
particle 

Inelastic scattering Radiative capture

Transfer 

h h

hNeutron 

Accelerating 
Electrode

Ion Source

Tritium 
Target

Exit CathodeDeuterium 
reservoir

D D+

T

D+

14MeV Neutrons

Figure 2. Neutron Tube Principle



Issue 5  2015 159TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

delay between the pulse waveforms, it is also possible to store in a 
separate memory events corresponding to decays of isotopes that 
may be created.

For some time, pulsed neutron generators have been widely used 
for oil logging. However, this application required them to be built 
to withstand high temperature and it is arguable that the associated 
high cost and reduced life time has limited their penetration into 
mining industry. Considering much less extreme conditions preva-
lent in most currently mined hard rock environments having bore-
holes that do not exceed a few hundreds of meters, commercial 
manufacturers have since gone to considerable efforts to propose 
reliable systems with extended life times of several thousands of 
hours, suitable for industrial mining applications.

High resolution gamma detectors
A spectrometric technique is used to record the energy of the 
gamma rays emitted by excited nuclei. Commonly found gamma 
rays detectors in logging tools are made of a scintillation material 
coupled with a photo multiplier tube (PMT). Incoming gamma par-
ticles are absorbed in the scintillator, which re-emits the energy in 
the form of light. This light is converted into electrons by the PMT 
photocathode. A series of amplification stages multiplies electrons 

to generate an electrical pulse having area or height that is propor-
tional to the energy of the incident photons.

Specialized electronic circuits measure individual gamma photon 
energies, which build the population histogram. This is referred to 
as a pulse heights spectrum. The incoming gamma rays, originat-
ing from the different elements, have discrete and characteristic 
energies. However, noise and statistical effects in the pulse meas-
urement introduce broadening of the corresponding peaks con-
structed in the spectrum. With respect to the various mechanisms 
of interaction between the gamma photons in the scintillator, the 
pulse heights spectrum is usually a rather complex structure.

Inorganic scintillators are typically used in borehole nuclear log-
ging tools.5 Well-known crystals such as NaI, CsI or BGO have 
been used for decades in both passive and active gamma logging 
techniques. Crystal choice results in several parameters that influ-
ence a tool’s analytical performances and its operability. Spectral 
resolution is one parameter that plays a frequent role. Resolution is 
defined as the width of the peak at a given gamma energy. An abil-
ity to resolve narrow peaks decreases the risk of overlap between 
closely spaced gamma lines and helps in identification. Because 
manual processing is usually not sufficient, it also facilitates unfold-
ing algorithms. This capability is of particular interest for the rich 
spectra composed of thermal capture gamma rays, which contain 
numerous and overlapping peaks.

Another property of the detector that needs to be taken into 
account is the scintillator stopping power, which corresponds to 
the efficiency of the crystal to interact with incoming photons. The 
higher the energy range of gamma photons, the more transparent 
will be the scintillator. Capture gamma rays produced by elements 
typically targeted in borehole logging, such as Si, Fe, Ca, Al and 
Mg, have energies above 3 MeV, and up to 10 MeV, which requires 
rather dense crystal to generate sufficient signal. Conversely, 
gamma rays created by inelastic scattering reactions with carbon 
and oxygen are rather sparse, and can be easily detected and iden-
tified by most crystals. However, for inelastic scattering reactions, 
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event-rates during the neutron burst are high, so scintillators exhib-
iting short durations of the pulses of light are preferred.

Beyond fundamental physical parameters, the sensitivity of the 
detector to operating conditions, including temperature and other 
environmental factors, plus economic considerations, are also usu-
ally taken into account. This leads the PFTNA logging tool design-
ers to a trade-off that usually results in the adoption of BGO as a 
compromise; the down-side being relatively poor energy resolution 
and sensitivity to temperature, potentially limiting the performances 
of such systems.

A breakthrough has taken place since early 2000 with the mar-
ket availability of a new crystal, Cerium-doped lanthanum bromide, 
LaBr3(Ce).6 This crystal offers both excellent energy resolution and 
a fast response. Further, it has a density that makes it usable for 
high energy gammas and low sensitivity to temperature variation. 
Consequently, this crystal has now become a viable solution for 
PFTNA logging tools.

PFTNA logging tool development for mining 
industry
PFTNA logging tools have been used in oil logging for a long time, 
however, their use in the mining industry has remained quite limited 
until now. This is partly to do with the fact that oil logging tools are 
generally oversized and over-engineered for the mining application 
and partly because the high cost of development tends to be pro-
hibitive, even for the larger mining corporations.

Hence the approach that we followed in developing a new PFTNA 
logging tool was to design it compatible with current operating pro-
cedures, field conditions and borehole characteristics common to 
ore extraction sites and, subsequently, through testing and analy-
sis, to refine. A robust tool was designed based on these guidelines, 
so that it would be cost effective for implementation in coal and 
minerals mining activities. The development was undertaken jointly 
by three parties. Sodern, an Airbus company, having knowledge in 
design of compact sealed neutron tubes and neutron generators 
and how to incorporate them into neutron based industrial cross-
belt analytical systems; the Commonwealth Scientific and Indus-
trial Research Organisation (CSIRO) having deep experience in the 

design of nuclear logging tools,7,8 who took responsibility for power, 
communications and overall implementation of the tool in the end 
user’s logging environment; BHP Billiton, a mining company and 
the primary end user, who funded the development and provided 
the end-user specifications in addition to feedback and experience 
gained from thousands of kilometres of drilled and logged bore-
holes.

The new tool called FastGradeTM100 (FG100) is primarily aimed 
at measuring boreholes drilled for exploration and resource estima-
tions. This tool has been extensively tested in the Western Austral-
ian Pilbara iron ore mining district.

A diameter of 4 inches (101.6mm) was agreed for the logging 
tool, enabling it to fit with sufficient clearance inside 140mm diam-
eter (and larger) holes commonly drilled on sites using reverse cir-
culation (RC) drilling.

The overall length of the probe lowered inside the holes is about 
3.3m. It is divided into 3 major sub modules:

 ■ The Emission Module (EM)
 ■ The Detection Module (DM)
 ■ The Service Module (SM)
 ■ The probe is connected to the surface using a regular 4 wires 
steel reinforced cable. The surface station is composed of:

 ■ The Uphole Control Box
 ■ The Uphole Control Computer and,
 ■ A set of peripheral equipment used for radiation monitoring, geo-
location and user-informative safety devices.
Each downhole module is individually housed in a steel metal bar-

rel that connects them all together. Once assembled the tool can 
be used in dry, or water-filled boreholes and is certified for pressure 
up to 40bars.

Emission Module
The heart of the neutron emission subsystem is a Sodern sealed 
neutron tube called Sodilog11. The Sodilog tube is a miniature par-
ticle accelerator having a ceramic body. Originally designed by 
Sodern on request from oil logging companies, the Sodilog tube 
is now a proven technology that is produced in large quantities by 
Sodern for more than 15 years. The neutron tube is enclosed in a 
metal housing called Neutron Emitting Module (NEM), which is filled 
with SF6 dielectric gas to insulate the high voltage elements of the 
tube from its surrounding.

The NEM is connected to a compact very high voltage (VHV) 
power supply providing up to 120kV for accelerating ions to the 
tritiated target. A separate pulsed power supply is connected to 
the ion source to create neutrons bursts with accurate and adjust-
able timing structure. Although the neutron timing must respect the 
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underlying physics, it has sufficient flexibility to allow optimisation 
of gamma rays scattering effects related to inelastic and thermal 
capture.

Detection module (DM)
The Detection Module accommodates a 3 x 4 inch LaBr3(Ce) scintil-
lation crystal. Selected for its intrinsic high performance, the detec-
tor is connected to a fully digitized acquisition and pulse-heights 
processing boards. The system is gated to measure individual tim-
ing windows synchronized with the neutron pulsing mechanism. 
The gamma rays from the different nuclear reactions are recorded 
in separate 1024 channels, one each for inelastic scattering, ther-
mal capture and delayed activation. These are stored and made 
available to end users as well as being passed to the data process-
ing module. Combining the fast response time of the crystal with the 
high speed FPGA processing components, minimizes dead time 
and enable acquisition times down to a few seconds.

Service Module (SM)
The Service Module was designed as the communication and 
power interface for the logging tool. Power is provided from the 
surface to the SM via a 240 VAC power link on two of the wireline 
conductors; communications are supplied on the other two. The 
power is converted into 12 V and 48 V before delivery to all down-
hole components.

Communication to the surface is based on VDSL digital communi-
cation over twin conductors. A proven technology largely deployed 
in industrial data network, VDSL easily covers the bandwidth 
requirements of the tool and allowed implementation of affordable 
commercial solutions. Communication from surface to tool was 
successfully tested down to depths of 650 m. Reliable and straight-
forward, it enables the set-up of an Ethernet network connecting 
all downhole and uphole modules. This approach exemplifies the 

design philosophy of building system components whenever pos-
sible using non-specific off-the-shelf technology.

Uphole Control Box (UHCB)
The Uphole Control Box is the surface counterpart of the ser-
vice module; it manages power, communication and data trans-
fer. Beyond this, it also ensures safe operation of the equipment. 
Design protocols prevent it from allowing users to bypass any of 
the safety interlocks and, in the event of a hazardous situation, it 
will take advantage of the switchable nature of the neutron genera-
tor to turn off the probe in order to provide occupational safety for 
operators.

Cable connection and integrity to the tool is routinely tested 
before allowing any power to be applied. Loss of communication 
with the tool or the UCB will result in power to the tool being auto-
matically disconnected, resulting in a complete shutdown.

The UCB provides interfaces to the logging vehicle, of particular 
importance being winch signals for depth, speed and directional 
information. The box supervises an on-board and independent radi-
ation monitor and, in case of an alert, it will remove power from the 
tool and activate an alarm.

Uphole Control computer (UCC)
The Uphole Control Computer (UCC) is the user-interface to the 
logging tool. It enables the user to control and monitor all aspects of 
the tool operation such as depth, status of the safety loop, control 
of the neutron generator and acquired spectra.

The user interface has been defined in close cooperation with 
logging operators. In effect, this led to a single graphical page tai-
lored to the strict minimum of necessary items to perform logging 
operations safely and reliably. More comprehensive diagnostic 
information on the tool status is available under various tabs on the 
interface.

The logging operation produces a file, written in HDF5 format. It 
contains, for each depth interval, the three different types of gamma 
spectra, as well as the detailed experimental conditions applying 
during the acquisition, such as voltages, currents, temperatures 
and GPS location. Elemental concentration as a function of depth 
may also be included provided a suitable calibration has been 
uploaded into the UCC.
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An important requirement from miners is that, with these data, 
the end-user can recreate all aspects of the logging environment 
and be able to confirm, correct or update results later, when indi-
vidual logs are merged and consolidated into 3D models using mine 
planning software.

Integrated System
The tool is integrated onto a dedicated logging vehicle. Handling 
operations have been mechanized and the tool can be taken out 
and positioned above a borehole, all by remote control. In this way, 
a single operator can drive the vehicle to the designated location 
and undertake a PFTNA log.

The tool is usually lowered to the desired lower depth of the tar-
geted log section. The tool is then switched “on” to enable neu-
tron emission. The tool is lifted and the system then automatically 
records gamma spectra. Operated at 2m/min, measurements are 
recorded every 6s, providing elemental data for each 20cm inter-
vals.

With the intent to provide a new generation of logging tools suit-
able for the mineral industry, a PFTNA probe has been designed 
and manufactured. A neutron pulse generator from Sodern has 
been used on the basis of it being proven long life technology. 
To achieve optimum gamma spectrometry, the tool incorporates 
among the best industrial detectors. The remainder of the tool has 
been intentionally designed using purpose-built technology and off-
the-shelf solutions suitable for the mining environment to strike the 
right balance between cost and reliability. Specifically designed with 
the end-user logging operator in mind, the software and electronics 
provides easy to use tools without any compromise in safety.

PFTNA and sampling methods
Neutrons and gamma rays exploited by PFTNA techniques are 
energetic particles. Consequently, neutrons are able to penetrate 
the surrounding material to considerable depth, following which 
the resulting gamma photons are able to reach the detector 
even through several tens of centimetres of bedrock. In a bore-
hole logging configuration, the collected PFTNA signal, and the 
derived elemental composition, will be representative of a much 
larger volume of surrounding material than the delimited volume 
of the core material that is traditionally used to provide chemical 
analysis. This larger volume  is the key that enables better sampling 
statistics  and improved reliability  in resource estimation using the 
PFTNA approach, especially when heterogeneous deposits are 
explored.

PFTNA provides several additional advantages that make it 
attractive when compared to the traditional approach based on 
material collected as part of a drilling operation followed by labora-
tory analysis:

 ■ Whatever traditional sampling methods and equipment are used 
to sample borehole material, it is recognized that sample and 
core sample recovery is rarely complete, which limits it repre-
sentativeness and introduces some level of sampling error.

 ■ The PFTNA technique is also less sensitive to certain material 
physical parameters, such as density and mineralogical forms of 
rocks constituents. It therefore does not require the critical steps 
of material preparation that conventional laboratory techniques 
do.

Figure 10. Logging software interface – Main page

Figure 11. Equipped logging vehicle and FG100 handling Figure 12. Open holes RC drilling collected samples
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 ■ Even when applying sophisticated algorithms, modern comput-
ers are capable of processing PFTNA spectra within a few sec-
onds and can provide analytical results as soon as they are re-
ceived during logging. Rapidly available analytical data is a strong 
advantage compared with the conventional sampling and assay-
ing approach that extends at best over days and more com-
monly over weeks.
As a consequence, the PFTNA technique, embodied in the 

FG100, seems to offer an excellent alternative solution for the min-
ing industry, eliminating the well-known obstacles caused by sam-
pling and sample preparation, while being affordable and leading to 
substantial reductions in cost and time. However, proposing PFTNA 
for in-situ measurements as an alternative to traditional chemical 
analysis may at times be overly-simplistic. For one thing, such a 
proposal ignores the fact that a laboratory can deploy several differ-
ent techniques that not only provide elemental analysis, but also a 
variety of information that PFTNA alone will not be able to measure, 
such as hardness, grain distribution and crystalline structure.

For another, whilst PFTNA offers acceptable analytical detection 
limits for a large panel of elements of interest found in minerals, 
such as Si, Ca, Fe, Al, Mg, the base metals Cu and Ni and even light 
elements as H, C, and O, it will not necessarily achieve the required 
performance for trace elements. On occasions, these might be 
major indicators of ore quality, such as P in iron ore, or ppm levels 
of valuable elements, such as Au and Ag in some copper depos-
its. Consequently laboratory analysis of samples and PFTNA in-situ 
elemental logging should be considered complementary methods 
and implemented accordingly.

Of the two methods, the greater volume of material measured 
with PFTNA is an advantage, but it should not be idealized. At face 
value, it can be roughly assumed that the sample volume is a factor 
of 10 greater for the FG100 logging tool. However, the response 
function of the system is a complex convolution of the different 
nuclear phenomena that underlie the PFTNA theory. Neutrons 
emitted from the source will be spatially distributed in the material 
according to the slowing-down effect. To first order, this will define 
a population of neutrons that changes in quantity and energy with 
the distance from the source. This is modified by a second-order 
effect that takes account of local material characteristics. Similarly, 
the gamma photons subsequently created at each point in space 
will be measured by the detector according to a collection efficiency 
function that is also dependent on the distance to the detector and 
the characteristics of the material that the gamma rays traverse on 
their way to the detector. Thus, the signal produced by the collec-
tion of volume elements surrounding the tool results from the con-
volution of those effects and each volume element will be weighted 
differently in the sum spectra that is processed to infer an overall 
elemental composition.

During the development of the FG100 logging tool, the measured 
volume was investigated in details. Experimental evaluation (sup-
posing that this would make sense) was not considered achievable 
for reasonable effort. Conversely, the use of Monte Carlo simula-
tions was straightforward and allowed possibility of virtually inspect-
ing the signal characteristics inside the material9,10.

The simulation work has consisted of estimating how the tool 
spatial response function is influenced by variations in material 
physical properties as well as by specific operating parameters, 
such as rock density, moisture content and borehole diameter.

The framework for the simulation was a Western Australia iron ore 
deposit. The volume of material interrogated by the tool was found 
to vary significantly when the composition of the material varied 
widely. This was also the case when there was significant change 
in borehole characteristics along the few hundreds of meters of a 
typical log. For example, it was found that water-filled cavities in 
boreholes may reduce the penetration by up to a factor 2 compared 
to when dry.

To some extent, these “ poor log recovery “ events compare to 
and are similar to “core loss” or poor sample recovery during drilling 
programs with similar consequences and increased uncertainty that 
is then added to the compositional estimates for the corresponding 
depth interval. However, works undertaken during development of 
the FG100 PFTNA tool enabled toidentify some mitigation possi-
bilities. Although calibration of the PFTNA tool is primarily intended 
to account for elemental variations, it was found that calibration 
could also incorporate algorithms that compensate for a variety 
of influencing effects. Multiple calibrations can also be established 
when conditions of use exhibit great difference, allowing optimized 
models to be developed that accommodate significant change of 
material or measurement conditions. This work remain exploratory, 
however, it is expected that Monte Carlo simulations can be used 
to refine the signal processing, offering the potential to extend the 
calibration base without requiring an intensive additional sampling 
campaign.

Conclusion
Pulsed Fast and Thermal Neutron analysis is a nuclear technique 
that can be applied to borehole logging. The technique is used for 
the in-situ and direct determination of elemental concentrations of 
material surrounding the hole. It takes advantage of a switchable 
pulsed neutron generator, overcoming the most significant limita-
tion attached to traditional permanent isotopic sources. This makes 
PFTNA technique inherently safer and significantly improves occu-
pational safety on site. Due to the deep penetration of neutrons 
and gamma rays, the technique is suitable for logging applications. 
Proven equipment is available for both emission of neutrons and 
detection of gamma rays. A next generation tool has been designed 
and produced with the aim of promoting it to industries such as 

Figure 13. Thermal neutron distribution in the surrounding material 
obtained by Monte Carlo simulations
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coal and other mineral commodities. The FG100 tool is built around 
the latest in technology for optimal spectrometric measurement. 
Notwithstanding this, the overall approach is intentionally oriented 
toward using components and technology widely established but 
specified for ore deposit logging conditions. All aspects have been 
considered for taking the instrument up to an industrial grade with 
the expected level of reliability and safety. The new tool has started 
making inroads in the iron ore industry where it can play a key role in 
the early phase of resource evaluation. The benefit of having in-situ, 
real time, chemical analysis will likely lead the industry to reconsider 
the current approach based on samples collection and laboratory 
analysis, although it is acknowledged that the latter will remain the 
method of choice for certain situations. We can expect future tac-
tics will consider how the two methods could complement each 
other. Some improvements have been identified for future consid-
eration. They primarily concern the calibration, particularly efforts to 
streamline this essential step. Also, further data processing work is 
foreseen to extract still underexploited information from the spec-
trometric data.
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Introduction and first ever rigorous derivation of the 
liberation factor
Dominique M. Francois-Bongarcon, PhD
Agoratek International Consultants Inc., North Vancouver, Canada. E-mail: dfbgn2@gmail.com

A simplified approach to the demonstration of Gy’s Theory of Sampling (TOS) sampling variance formula is proposed, with the added 
advantage that it clarifies the real assumptions that are necessary to lead the demonstration to its end. In the process, the introduction 
of the liberation factor in TOS is also clarified and, for the first time, a rigorous definition of that factor is offered, which naturally lead 
to its modelling in past years using geostatistical concepts. A generalised from for the mineralogical factor c is also proposed in an 
appendix.

Introduction
We will use the following notations and conventions:

Large lot L: Mass = ML, made of NL fragments fj(tj, mj) 
where tj and mj are the grades and masses of individual 
fragments 
Sample S: Mass = MS, made of NS fragments fi(ti, mi)

For the lot (summations on sub-index j by convention):

m— L = ML / NL = Sj mj / NL 
 
tL = Sj mj tj / ML = Sj (mj tj / m

—
L) / NL  (grade of the lot)

Similarly for a small sample (summations on sub-index i by conven-
tion):

m— S = MS / NS = Si mi / NS 
 
tS = Si mi ti / MS = Si (mi ti / m

—
S) / NS

Important assumptions
We will assume sampling in number (the equivalence to sampling 
in mass was established by Matheron1 (2015) so that NS is a fixed 
number for all the samples.

Var(mi) is limited and NS is a very large number, so that Var(m— S) = 
Var(mi) / NS is small. Additionally, if the sample is correct, E(m— S) = 
m— L. As a result:

m— S can be assimilated to m— L in “good approximation”

This FUNDAMENTAL approximation is equivalent to assuming 
exact representation in the sample of the average fragment mass 
in the lot. This, which includes the neglecting of the small variations 
in total mass MS from sample to sample, is the origin of the math-
ematical difficulty of Gy’s and Matheron’s rigorous demonstrations, 
and of the first order approximation that characterises their result.

Relative sampling error
Under these conditions, the relative sampling error is:

eRS = (tS – tL) / tL = Si [(mi / m
—

L)(ti – tL) / tL] NS = Si hi / NS  
(i.e. the arithmetic mean of the independent hi in S)

where hi = [(ti – tL) / tL](mi / m
—

L) (see TOS terminology in Appendix 1)
Properties of hi:

h– L = Sj (mj tj / m
—

L) / (tL NL) – tL / tL = 1 – 1 = 0, therefore 
 
Var(hi) = Sj [(tj – tL) / tL]

2(mj / m
—

L)
2 / NL = CHL  

(see TOS terminology in Appendix 1)

Relative sampling variance
Since: e–RS = 0

sR
2 = Var(eRS) = Var(hi) / NS = CHL / NS = (m— L / MS) CHL

And as: CHL = Sj [(tj – tL) / tL]
2 mj

2 / (m— L ML):

sR
2 = (1 / MS) Sj [(tj – tL) / tL]

2 mj
2 / ML (for large lots)

For smaller lots, because (in geostatistical notations):

D2(MS | ¥) = D2(MS | ML) + D2(ML | ¥)

in all cases, we have:

sR
2 = (1 / MS – 1 / ML) Sj [(tj – tL) / tL]

2 mj
2 / ML

This is Gy’s and Matheron’s first order approximation of the 
sampling variance.

Below liberation, by separating mineral and gangue fragments 
in the summation, this formula can easily be transformed into the 
fully calculable quantity (see demonstration in Appendix 2):

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C dN
3

where C is a calculable constant in which c is a generalized miner-
alogical constant, and dNG = dN is the comminution size of the lot.

Above liberation, it is not calculable, but somewhat smaller than 
if liberation had been achieved, so, introducing a number l between 
0 and 1, we can write:

sR
2 = (1 / MS – 1 / ML) c fG l dN

3  with 0 < l < 1

Gy’s well-known theory ends here, with no status given to l, unfor-
tunately precluding its (necessary) modelling.

doi: 10.1255/tosf.79
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We need to go further and:
 ■ uncover the physical meaning of l
 ■ find the factors affecting it
 ■ find a model for its variations

Important note:
One should mention there was one valuable attempt by Gy at mod-
elling l using the maximum grade achievable by a fragment at nomi-
nal size (Pitard, 2015).2 This work was of theoretical interest, but it 
was not practical and only established (therefore valid) under very 
restrictive conditions.

However, in Francis Pitard’s words, this method “...showed 
quite well the relation of the liberation factor with mineralogy. For 
example, the liberation curve may look completely different if it is 
individual and isolated gold particle that liberate, or if it is a cluster 
made of many particles side by side, or if you prefer an aggregate 
of many particles.”

This said, full, general modelling of l calls for geostatistical con-
cepts that were simply not available at the time Gy was publishing 
TOS.

True definition of the liberation factor
In the liberated case, for a given, correct sample S, from a much 
larger, liberated lot:

Rel.Var.[S] = c f g dN
3 / MS

As we stated above, reasoning shows that when the ore is NOT 
liberated, the sampling variance is necessarily somewhat lower. As 
a result, for a given, sample S, from a large, non-liberated lot, by 
introducing a number l between 0 and 1, Gy wrote:

 Rel.Var.[S] = [c f g dN
3 / MS] l  with 0 < l < 1 (1)

Now, let SLib be a correct sample, taken the same way, in the 
LIBERATED lot, with the same average number of fragments N as 
in S, i.e. with mass MLib such that:

MLib = N m— Lib  with N = MS / m
—

L 
 
m— Lib and m— L being the average fragment masses in the 
liberated and non-liberated lots.

 Rel.Var.[SLib] = c f g dl
3 / MLib (2)

In our model:

m— Lib / m
—

L = f g dl
3 / f g dN

3 = (dl / dN)3 = MLib / MS

So that we can replace MLib by MS (dl / dN)3 in (2):

Rel.Var.[SLib] = c f g dl
3 / MLib = c f g dl

3 / [MS (dl / dN)3]

Or:

 Rel.Var.[SLib] = c f g dN
3 / MS (3)

Therefore, dividing (1) by (3):

 l = Rel. Grade Var.[S] / Rel. Grade Var.[SLib] (4)

This new equation, ratio of the sample variance to the variance of 
the liberated sample with the same average number of fragments, 
is valid and constant for any sample (or sample mass), and provides 
us with a precise, rigorous and objective definition of factor l.

Models for l based on this characterisation have been the objects 
of numerous papers by the author. Equation (4) amounts to a ratio 
of variances of two different fragment sizes (in the lot being sampled 
and in the liberated one), and this ratio could only be modeled by 
drawing from geostatistical considerations.
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Appendix 1
Some TOS Classical Definitions
RELATIVE HETEROGENEITY carried by fragment fi in lot L:

hi = [(ti – tL) / tL] (mi / m
—

L)

CONSTITUTION HETEROGENEITY of lot L:

CHL = Sj [(tj – tL) / tL]
2 (mj / m

—
L)

2 (m— L / ML) 
 = Sj [(tj – tL) / tL]

2 mj
2 / (m— L ML)

It is a characteristic (weighted variance) of the “average 
fragment” in the lot and it measures the intrinsic variability 
of the lot.

HETEROGENEITY INVARIANT of lot L:

HL = CHL m
—

L

http://dx.doi.org/10.1255/tosf.80
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Appendix 2
At liberation size and below

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C dN
3

Summing on Mineral (M) and Gangue (G) with respective sub-indices i and j:

sR
2 = (1 / MS – 1 / ML){

MSj [(tj – tL) / tL]
2 mj

2 / ML + GSi [(ti – tL) / tL]
2 mi

2 / ML}

For the mineral, tj = 1 and for gangue ti = 0, so, introducing the densities rM and rG and fragment volumes vi and vj:

sR
2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]

2 MSj mj
2 / ML + GSi mi

2 / ML} 
 
sR

2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]
2 rM MSj vj mj / ML + rG GSi vi mi / ML}

Now:
MSj vj mj / ML = (MM / ML) 

MSj [(mj / MM) vj]

MM / ML = tL and MSj [(mj / ML) vj] is the mass-weighted average mineral fragment volume v–M in the lot, so that:

MSj vj mj / ML = tL v
–

M

Similarly:

GSi vi mi / ML = (1 – tL) v
–

G

where v–G is the mass-weighted average gangue fragment volume in the lot.
So now:

sR
2 = (1 / MS – 1 / ML) {[(1 – tL) / tL]

2 rM tL v
–

M + rG (1 – tL) v
–

G}

finally:

sR
2 = (1 / MS – 1 / ML) [(1 – tL) / tL] [(1 – tL) rM v–M + tL rG v–G]

Let us introduce the volume ratio k = v–M / v–G:

sR
2 = (1 / MS – 1 / ML) [(1 – tL) / tL] [(1 – tL) k rM + tL rG] v–G

In this expression,

c = [(1 – tL) / tL] [(1 – tL) k rM + tL rG]

is the “generalised mineralogical factor” and

sR
2 = (1 / MS – 1 / ML) c v–G

This is a very important formula, which actually is the true variance formula. It shows the lot behaves, in terms of sampling it, exactly as 
a hypothetical lot with all fragments having the same size corresponding to the average gangue fragment volume.

Calculation of constant k in factor c
Introducing Gy’s classical granulometric factor g, liberation size dl, the shape factors fM and fG and the nominal comminution sizes dNM s dl 
and dNG s dl of mineral and gangue:

v–M = fM g d3
NM  and  v–G = fG g d3

NG 
 
k = v–M / v–G = (fM / fG) (dNM / dNG)3
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Particular cases:
 ■ Mineral and gangue comminute together and have the same shape factors: 

then k = 1
 ■ Mineral and gangue comminute together and have different shape factors:

then k = fM / fG
 ■ Mineral does not comminute below liberation size (e.g. gold grains) while gangue is comminuted to size dN:

then: k = (fM / fG) (dl / dN)3 in general,
or: k = (dl / dN)3  if  fM = fG

 ■ Special cases can be calculated as well. For instance, if the mineral has a unique size instead of a size distribution, one can take g = 1 
for mineral grains in the definition of v–M.

In all cases, the relative variance then becomes:

sR
2 = (1 / MS – 1 / ML) c fG g d3

NG = (1 / MS – 1 / ML) C d3
NG

where C is a calculable constant.

Note: in the case of non-comminutable gold (third bullet above), this expression reduces to the following approximation:

sR
2 = (1 / MS – 1 / ML) (rM / tL) fM g dN

3

which is why, in that case, the shape factor to be used is that of the gold grains.
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A multivariate approach for process variograms
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In the theory of sampling, variograms have proven to be a powerful tool to characterise the heterogeneity of 1-dimensional lots. Yet its 
definition and application in sampling for mineral processing have always been limited to one variable, typically ore grade. However 
this definition is not adapted to sampling for mineral processing where samples contain multiple properties of interest, i.e. variables, 
such as multiple element grades, grain size, etc. For such cases, the multivariable variogram, originally developed for spatial data 
analysis, can be used to summarise time variation of multiple variables (e.g. ore characteristics which are important for the process) 
and highlights the multivariate time auto-correlation of these variables. A case study of low-grade kaolin residue sampling for gravity 
processing shows that the multivariogram summarises the overall variability and highlights a periodic phenomenon when all variables 
are taken into account. This example illustrates the potential of the multivariable variogram compared to the classical approach.

Introduction

I
n every mining project, economic improvement goes through 
metallurgical assessment by means of series of metallurgical 
tests performed on the so-called process samples. Process 
samples are typically extracted from flowing stream, the so-

called one-dimensional (1D) lots, at regular interval to obtain rep-
resentative samples regarding the grade, mineralogical or physical 
characteristics. The metallurgical tests allow settling the best oper-
ating parameters which will allow reaching the desired recoveries 
and grades, and therefore improve the process. The effectiveness 
of these process improvements will depend directly on the repre-
sentativeness of the samples initially collected for the tests.

The Theory Of Sampling (TOS) developed by Pierre Gy1 gives 
a simple set of rules to eliminate sampling biases and minimises 
the sampling error (variance).TOS introduced the semi-variogram 
(referred as variogram in the text) adapted to sampling purpose as 
a way to characterise the autocorrelation between the units of a 
process and the heterogeneity of 1D lots. This tool provide critical 
information on2,3:

 ■ process variability over time and the magnitude of the different 
variability components,

 ■ the lot mean and the uncertainty of a single measurement with 
respect to the autocorrelation phenomenon,

 ■ the optimal design and scheme (i.e. random, stratified or system-
atic) for the sampling protocol.

In a typical variographic experiment, a set of N discrete units (i.e. 
increments) is collected from a one-dimensional flowing stream 
along a time period, representing the 1D lot. The relative hetero-
geneity associated with a property of interest, A, in a single unit of 
mass Mi, expressed in the proportion ai, is defined as:

 

-
= =,   1, ,i L i

i
L i

a a M
h i N

a M


 

 

 
(1)

where M̄i is the average mass increment and aL the proportion of 
component A in the lot. This relative heterogeneity is dimension-
less and hence the component A can describe any intensive prop-
erty that characterise the material, e.g. grade, size distribution, 

hardness or specific gravity. The variogram vj is calculated for a suf-
ficient number of units (up to a maximum of N/2) using the equation:

 ( ) ( )
-

+= - =å
-

21
,   1, , / 2

2

N j

j i i j
i

v h h j N
N j


 

 

 
(2)

where j is a dimensionless lag-parameter, defining the distance 
between two increments. Thus, the variogram describes the vari-
ation, due to component A, between units as a function of the dis-
tance between them. An extensive description of the variographic 
technique and its practical application can be found in reference 
papers2–4.

However, in the field of mineral processing, results from metal-
lurgical tests often depends on several characteristics of the sam-
ple. Thus the samples need to be representative not only for one 
property (i.e. component) but for a certain range of properties. In 
these situations the practical approach is to identify the property 
with the most heterogeneous distribution and to take only this 
property into account. The main difficulty of this approach is that it 
doesn’t account for the multivariate nature of heterogeneity, which 
can lead to underestimation of significant heterogeneity between 
close neighbours5. The importance of taking into account the multi-
variate character of the heterogeneity is well-known in geostatistics 
and particularly for spatial data analysis. The first solution to this 
problem was proposed by Oliver and Webster6, who suggested to 
perform a Principal Component Analysis (PCA) on the data and to 
study the variogram of the first few principal components. While 
only a few studies have recently applied this approach to chem-
ometrics, they show the usefulness of a variographic modelling 
based on PCA scores7,8.

The purpose of this paper is to introduce the multivariate vario-
gram, originally developed for spatial data analysis by Bourgault and 
Marcotte9, which is defined in a way similar to that of the traditional  
variogram but in a multi-dimensional space. This new tool could 
be more adapted to process sampling of one-dimensional lots as 
it takes all properties of interest into account. To illustrate this, a 
variographic study is performed on a process stream from a kaolin 
mining plant which has been sampled for metallurgical testing.

doi: 10.1255/tosf.76
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Multivariate variogram applied to process 
sampling
We now assume that the heterogeneity contribution is a multivariate 
measure. If a material is characterised by a number p of param-
eters, the heterogeneity could therefore be represented as a vector 
of p individual heterogeneity contributions:

 
é ù= =ê úë û1,  ,  ,  ,  ,   1, ,i k p i

H h h h i N    

 

 (3)

The univariate definition of the variogram is thus no longer 
adapted and need to be improved. G. Bourgault and D. Marcotte 
were the first to formalise the principle of a multivariate variogram9 
and it has been widely used for spatial data analysis and map-
ping since5,10. For every metric M it is possible to calculate the 
multivariate variogram Vj by analogy to the univariate case using 
the equation:
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where t symbolise the transpose and M is positive definite p × p 
matrix which defines the metric in the calculation of the “distance” 
between the units. This metric defines the relation between the 
variables, such metrics are the identity matrix (Euclidian distance). 
The multivariate variogram is therefore simply the sum of the uni-
variate variograms, or the inverse of the variance-covariance matrix 
(Mahalanobis distance)9.

In contrast to variographic analysis of PCA scores, this approach 
captures all variables in a single variogram. Thus it is possible to cal-
culate the auxiliary functions and consequently the error generating 
functions for each sampling scheme using classical point-by-point 
calculation3, with the exception of the random selection scheme. 
Indeed the error generating function associated to this sampling 
scheme is equal to the constitutional heterogeneity of the lot (CHL) 
which is defined as the variance of the (multivariate) heterogeneity 
contribution of all units making up the lot L:
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Material and methods
Material sampling
The samples used in this work were collected with the help of 
Imerys Ltd., UK. The primary objective of this sampling exercise 
was to design a protocol which allows collecting a representative 
sample of a shift (of approximately 2 h) for metallurgical testing. A 
total of 50 samples (of approximately 25 kg) were collected from the 
secondary hydrocyclones underflow stream of a kaolin dry mining 
plant operating at an approximate flow rate of 15 tons/hours cor-
responding to a micaceous residue which is studied as a potential 
source of metals11. Note that the increments are manually extracted 
every 2 minutes systematically using a by-pass which diverts the 
whole stream into the sample collector. This sample extraction pro-
tocol may lead to an Increment Extraction Error (IEE) which is dif-
ficult to assess.

All increments were weighted then dried directly without dewa-
tering to avoid fine particles loss. Once dried the samples were 
weighted to estimate their initial pulp density and then riffled to 
obtain subsamples for particle size analyses. The remaining sam-
ples were then crushed and riffled alternatively in accordance with 

the theory of sampling to obtain representative subsamples for 
chemical analysis12.

Analytical methods
The studied material has been sampled with the objective of metal-
lurgical testing by gravity concentration. Thus the analytical meth-
ods chosen for the representativeness study must be adapted to 
this objective. In addition to classical chemical analysis, the critical 
characteristic of a material for gravity concentration is its size dis-
tribution13.

Chemical Analysis. A set of 18 elements/ oxides were ana-
lysed, among which LREE (La, Ce, Nd), Nb and Sn. Representa-
tive 10 g aliquots were mixed with Cereox wax (Fluxana® GmbH 
& Co. KG) and pressed into pellets. Chemical analyses were car-
ried out by Energy Dispersive X-Ray Fluorescence spectroscopy 
(ED-XRF) using a S2 Ranger (Bruker Corporation) at the GeoRes-
sources laboratory (Vandoeuvre-lès-Nancy, France). The calibra-
tion of the XRF used results from Inductively Coupled Plasma 
Atom-Emission analysis (ICP-AES) for major elements and mass 
spectral analysis (ICP-MS) for the trace elements realised at the 
Service d’Analyses des Roches et des Minéraux (SARM-CNRS, 
Nancy, France).

Particle size analysis. A range of 4 parameters have been 
retained to describe the particle size distribution of the material: 
the D10, D50, D90 and Rosin R ammler (RR) slope which repre-
sent the particle sizes below which 10%, 50% and 90% of the 
particles are distributed respectively. And the slope of the size dis-
tribution using the Rosin-Rammler model13. Particle size analysis 
has been performed by laser light scattering using a Helium-Neon 
Laser Optical System MASTERSIZER 3000 (Malvern instruments 
Ltd.) coupled with a Hydro Extended Volume (EV) sample disper-
sion unit.

Case study
Experimental individual variograms
The analytical results of 7 selected variables (LREE, Nb, Sn, D10, 
D50, D90 and RR slope) for 50 micaceous residue samples are 
presented in Figure 1. The variation illustrates the stream material 
heterogeneity with time. The results show that, for variables (D10, 
Nb, Sn, and LREE), the variability expressed by the entire profile is 
equal to the global variation interval represented by the mean ±2s 
interval, whereas for variables (D50, D90, and RRslope), the vari-
ability seems associated with slight trends. However, there are no 
significant outliers in the profiles. Thus the analytical results can be 
used directly without any pre-treatment.

It is difficult to interpret from these different scales profiles which 
variable contributes most to the heterogeneity of the lot. One can 
thus compare the individual heterogeneity contribution, calculated 
using equation (1) for each variable (Figure 2). It is observed that the 
LREE content has the largest overall variability.

From these individual heterogeneity contributions the individual 
variograms are calculated using equation (2) and the nugget effects 
V0 are estimated by backward extrapolation (Figure 3A). The auxil-
iary functions noted wj and w¢j are shown in Figure 3C and D. The 
individual variograms distinguish two main groups, a high-sill vari-
ables group (LREE, D90 and Sn) and a low-sill variables group (D10, 
D50, RR Slope and Nb). The overall range is difficult to estimate 
using directly the variograms, but the auxiliary functions suggest 
an overall range around 5-7. The variograms of the low-sill groups 
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appear to ‘flat’ as well as the variogram of Sn. A minimum can be 
observed in the variogram of LREE at j = 15 indicating the exist-
ence of a possible cyclic fluctuation with a too long period of (i.e. 
j = 15 = 30 min) to see another minimum in the variogram. A similar 
observation is observed for the D90 variogram (Figure 3B). Indeed, 
a local minimum is observed at j = 7-9 and a tentative repetition at 
j = 20 (this can also observed for wj but not for w’j since the curve 
is too smooth). This suggests the existence of some periodic phe-
nomenon for the D90 with a rather short period of approximately 9 
lags (i.e. j = 9 = 18 min).

The classical conclusion at this point will be to focus the sampling 
protocol on the LREE content taking care of the periodic phenomena.

Figure 4 show the error generation functions for LREE accord-
ing to the sampling scheme which is used to choose a protocol 
with the lowest sampling variance. It can be seen that the 3 sam-
pling schemes are quite close but the systematic sampling stay 
the sampling scheme with the lowest variance. The recommended 

sampling protocol is thus hard to define it could be recommended 
to use a stratified random sampling or systematic sampling with at 
least 5 or 10 increments with a sampling frequency higher than two 
per period of 18 min and 30 min. Since the average shift duration 
is around 3h this would imply to sample not 5 or 10 but at least 20 
increments.

Experimental multivariograms
A multivariate analysis highlights the relationships between the 
variables which are not taken into account in classic variographic 
studies. Table 1 presents the correlation matrix for the selected 
7 variables . As predicted all the variables referring to the size 
distribution  are strongly to moderately correlated with the excep-
tion of D10 which only display moderate correlations (with D50 and 
D90) or no correlation at all (with RRslope). Sn and Nb are both 
moderately correlated with the D50 whereas LREE display a clear 
independency.

Figure 1. Analytical results characterising the variations of the geochemical compositions (Nb, Sn, and LREE) and size distributions (D10, D50, D90, and 
RR slope) during time, each unit being extracted at 2 min intervals. The dashed lines represent the mean ±2s of the analytical results. It can be seen that 
there is no significant outliers.
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The multivariogram is computed using formula (4) with Mahalano-
bis metrics (Figure 5). The general shape of the multivariogram is 
approximated by a smoothed curve with a spherical model14:
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Figure 2. Individual heterogeneity contributions hm of the 7 variables of interest for the 50 units.

Figure 3. (A) Experimental variograms Vj of the 7 variables of interest. (B) Experimental variograms Vj of 6 of the variables of interest without LREE. (C) 
Average first order integral wj and (D) Average second order integral w’j. A common range of approximately 5-7 lags (10-14 min) is observed.
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where s represent the sill of the variogram and r the range. The 
range suggested by the spherical model is around 11, which is 
twice the general range observed for the individual variograms. 

Two minimums at j = 9 and j = 20 on the multivariogram curve 
suggest a periodic phenomenon with a period of approximately 10 
lags (j = 10 = 20 min) which is a results of the periodic phenomena 
observed in the individual variograms. The multivariogram also dis-
plays a high sill of approximately 7, which is due to the metric used 
in the computation of the multivariogram. Hence the sampling vari-
ance is much more important too, and with 5 increments to make 
the final sample, the sampling variance is still about 0.67 and 0.25 
if 10 increments are collected (Figure 6). Based on this multivari-
ogram a sampling protocol could be to take at least 10 increments 
with a sampling frequency higher than two per period of 20 min.

The multivariogram has allowed proposing a more adapted sam-
pling protocol which takes into account a periodic phenomenon. 
However the estimated global variance with this approach is very 
high and implies a large number of increments should be sampled 
to achieve a reasonably lower sampling variation. This is a direct 
consequence of the choice of the variables of interest for the vari-
ographic study which all contribute at various degrees to the het-
erogeneity. Note that their importance for the process tested could 
be completely different from one variable to the other. Thus the 
sampler must pay attention to the choice of the variables of interest 
to avoid overestimation of the sampling variance. Another way to 
have a sampling variance more adapted to the tests for which the 
samples are collected would be to weight the variables by the mean 
of an adapted metric.

Figure 4. Plot of the error generating functions associated to the LREE 
content for the 3 sampling schemes as a function of the number of 
units/increments collected to make the final sample (Nu).

Figure 5. Multivariogram for the 7 variables of interest and fitted spherical model. The range given by the spherical model is approximately 11 with a sill 
around 7. However two minimums at j = 9 and j = 20 suggest a periodic phenomenon with a period of approximately 20 min.

Table 1. Correlation matrix for all the variables of interest. The high correlation coefficients (>|0.75|) are noted in italic.

Variables D10 D50 D90 RR Slope Nb Sn LREE

D10 1.00 0.61 0.62 -0.20 -0.24 -0.30 -0.25

D50 0.61 1.00 0.93 -0.78 -0.64 -0.64 0.02

D90 0.62 0.93 1.00 -0.88 -0.54 -0.54 -0.02

RR Slope -0.20 -0.78 -0.88 1.00 0.48 0.45 -0.09

Nb -0.24 -0.64 -0.54 0.48 1.00 0.52 -0.14

Sn -0.30 -0.64 -0.54 0.45 0.52 1.00 -0.09

LREE -0.25 0.02 -0.02 -0.09 -0.14 -0.09 1.00
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Conclusions
The multivariate approach of process variograms described in this 
work has allowed a better description of the heterogeneity of a 
material taking into account all the variables of interest simultane-
ously. This approach give to the sampler the opportunity to choose 
all the parameters that characterise the material for a given objec-
tives and to use the multivariate variogram as a summarising tool 
to describe the variability of this material and to design an adapted 
sampling protocol.
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Pierre Gy has derived an equation, which can be used to estimate the relative variance of the fundamental sampling error of size 
distribution results given as mass fractions for each size class. This theory is used in this study. The Heterogeneity Invariant, HI, is the 
relative variance of the fundamental sampling error extrapolated to a sample size of a unit mass (usually 1 g). HI can be estimated from 
a sieve analysis for each size class i from Eq. 1.
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Here ai is the mass fraction of size class i, vi the average particle size in class i and rI the density of particles in size class i. Given HIi, 
the relative variance of the fundamental sampling error, S2

FSE can be estimated for different sample sizes to be sieved from the test 
material:
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Here ms is the sample size to be sieved and mL the size of the lot from which the sample is taken.
 If the sampling methods performs correctly (unbiased) and is able to minimize the segregation effects, always present when material 
consisting of fragments or particles having a wide size distribution, the observed variance of replicate samples should be close to that 
obtained by using the above equations. It is also possible to calculate a confidence intervals for a given size distribution.
 In this study a newly developed sampler was tested by sampling blast hole chippings from Northland Resources’ Kaunisvaara Iron 
Ore Mine in northern Sweden and the results were compared to other sampling methods currently in use. A number of the samples 
were also sent for chemical analysis to see if the analytical results correlate with the size classes. A convenient way to summarize and 
compare size distribution results and analytical results is to carry out Principal Component Analysis (PCA) on both the size data and 
the analytical data.

Introduction

B
last hole sampling, especially from large rotary drill holes, 
is challenging. While the final circumstances depend on 
the material density and the diameter and depth of the 
hole, the mass of drill cuttings coming up from the hole 

is often counted in tons. Once the drill cuttings have settled on the 
ground, correct sampling is nearly impossible due to segregation 
and delimitation error. After the cuttings have settled, depth infor-
mation is lost making sampling per meter impossible. Especially in 
vein type ores the grade can vary greatly as a function of depth, and 
sampling each meter would provide more detailed information. In 
the past, sampler cutters of different types including sectorial sam-
plers and tube samplers have been applied with varying success. 
Often the practically useful methods does not provide representative 
samples and the ones that could give correctly cut samples need so 
much work and preparation that it is not feasible in practice. Above 
all, the working environment for someone taking samples near the 
drill is very poor due to excessive noise and dust, and significant 
health hazards are present in form of heavy moving machinery.

A newly developed sampling device, RAS – Rotary AutoSam-
pler, was designed by IMA Engineering Oy Ltd. (Figure 1). This is 
an automatic sampling system that collects a sample continuously 
while drilling and subsequently splits the sample into an adjustable 
and pre-selected sample size. Depth information is also recorded 

for each sample. The sampler consists of two main parts, a primary 
sampling belt and a rotating cone splitter. The basic operation is 
simple: the primary sampling belt takes a continuous sectorial sam-
ple from the original flow of drill cuttings which is then delivered to 
the cone splitter, which divides the final samples that are collected 

doi: 10.1255/tosf.63

Figure 1. RAS – Rotary Autosampler installed in a rotary drill
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in transparent plastic sample bags, which are then processed and 
analysed. This kind of sampling method is new and never been fully 
tested before. Therefore this research was necessary to examine if 
the sampling technology is correct, if the samples taken are repre-
sentative of the original lot and if the method can be applied in prac-
tice. Testing was carried out in Northland Resources’ Kaunisvaara 
Iron Ore Mine in northern Sweden and IMA Engineering premises in 
Espoo, Finland. A certified commercial laboratory Labtium Oy was 
used to process and analyse the samples obtained.

According to the results, the primary sampling belt collects on 
average 10% of the total cuttings blown out of the drill hole. The 
total mass of cuttings from each hole varies greatly and is seldom 
the theoretical amount calculated from material density and hole 
dimensions. Often the cuttings also spread unevenly around the 
hole, which adds to the size variation of the sample. Moreover, the 
first 1-3 drill meters that penetrate the previous sub-drill yield very 
little sample which is often originating from the filling material used 
to level the blast benches for easier drill rig movement. The mass 
of collectable sample material increases as a function of depth. The 
last few meters yield the usually the largest sample, so significant 
part of the lot comes from sub-drilling which represents the next 
bench instead of current bench (Figure 2).

Design of sampling experiments
Equipment

Sampling Belt
The primary sampling belt is essentially a conveyor belt, which col-
lects drill cuttings as they fly out of the blast hole during drilling 
(Figure 3). Minor modifications (Figure 6) were made to the dust cur-
tains of an Atlas Copco Pit-Viper 271 (Figure 4) rotary blast hole drill 
in order to fit the sampler belt next to the drill rod to collect cuttings. 
The drill was drilling 12-14 meter long blast holes using 251 mm (9 
7/8 inch) diameter tricone drill bit.

The collected drill cuttings fall from the conveyor belt through a 
splitter capable of splitting the feed into samples with the following 
ratios: 1/8, 1/8, 3/4 (Figure 5). To summarise, drill cuttings flying 
out from the blast hole would be carried by the conveyor belt and 
dropped through the splitter, and the final sample is collected in a 
bucket underneath the splitter (Figure 7).

Autosampler
The Autosampler is a rotating cone splitter which divides the drill 
cuttings feed from the RAS primary sampling belt into 2 samples 
and a reject pile (Figure 8). The splitting ratio and sample size can 

Figure 2. Iron content per meter vs. iron content from single pile sample

Figure 3. Primary sampling belt conveyor used in this study. Conveyor 
width was 400 mm and length 3 meters.

Figure 4. Atlas Copco Pit Viper 271 Rotary drill at Kaunisvaara iron ore 
mine
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be adjusted. Autosampler was tested independently of the primary 
sampling belt test. (Figure 9)

Detailed testing procedures
Primary sampling with belt conveyor (3m samples)

The experiment is designed to collect samples of borehole cut-
tings from 3 drill meters and compare grain size distribution and 
chemical properties against the discarded cuttings:

Figure 5. A Metzke model MFS 3T32 3C 3-tier splitter was used at the 
end of the conveyor belt to split collected drill cuttings at ratios 1/8 , 1/8, 
3/4, as shown above right.

Figure 7. Drill cuttings flow chart

Figure 8. Autosampler system with Softcore™ sample socks attached.

Figure 9. Testing the Autosampler by pouring drill cuttings through it. 
Two samples are collected in buckets on opposite sides and the reject 
in the centre.

Figure 6. Modification in Pit Viper’s dust curtain for RAS conveyor belt 
entry.
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 ■ Pit Viper 271 drills to 4 m depth. The drill pipe and drill bit is 
then lifted from the hole, drill cuttings cone already accumulated 
around the hole is cleared, and a 6m2 tarpaulin is laid on the 
ground to surround the drill hole. The tarpaulin prevents contami-
nation of the accumulated cuttings from the ground underneath. 
A concrete ring is placed around the drill hole on top of the tar-
paulin cover to prevent any drill cuttings from being lost under the 
cover (Figure 10).

 ■ The conveyor belt is then brought through the opening in the 
helm, to the edge of the drill hole. Drilling is continued. A Sample 
is continuously collected by the primary sampling conveyor and 

the drill cuttings from the 3 m drilling from 4–7 m depth accumu-
late on top of the tarpaulin (Figure 11).

 ■ The Pit Viper drills for 3 meters. Meanwhile, most of the 
drill cuttings accumulate as a cone on the tarpaulin.  
The rest of the drill cuttings are carried out by the conveyor, 
through the splitter (splitting them at 1/8) and collected in buck-
ets (Figure 12).

 ■ After 3 m has been drilled, the entire cuttings cone left on the 
tarpaulin is also split with 1/8 ratio, into sample buckets. This was 
done by shovelling all the drill cuttings from the heap on to the 
conveyor belt. From the belt the material falls through the split-
ter, and is collected in buckets beneath the splitter. For practical 
reasons, splitting was continued until a sample of around 6-10 kg 
was achieved. This sample is used for comparison with the con-
veyor sample collected during drilling (Figure 13).

 ■ Samples taken with the sampling belt and the sample collected 
from the rest of the pile (Figure 14) are sent to a laboratory for 
sieving and chemical analyses in order to compare the results.

Autosampler (rotating cone splitter)
The Autosampler was tested as follows:

 ■ A bucket of drill cuttings was originally collected from a drill cut-
tings cone in the Kaunisvaara mine.

 ■ These were then poured through the Autosampler (Figure 9).
 ■ As they fall through, the Autosampler splits the poured bucket of 
drill cuttings into 3 parts: 2 samples, actual sample and duplicate) 
(white buckets) and 1 reject pile (pink bucket) in the centre.

 ■ All 3 samples from each pour were sent to a certified laboratory 
for further analysis (grain-size distribution and elemental con-
tents).

 ■ Grain-size distributions and elemental contents of all the samples 
were compared and analysed.

Additional testing methods
Some sectorial samples were also taken for comparison. The sec-
torial sampling boxes shown in Figure 15 were placed next to the 
hole at the same time than sampling belt, and removed after 3 
meters was drilled. The sample was split with riffle splitter until a 
practical sample size was achieved.

Figure 10. Tarp laid on the ground around the concrete ring, which sur-
rounds the blast hole.

Figure 12. A drill cuttings cone as viewed from under the dust curtain, 
with the RAS conveyor belt in place.

Figure 11. Primary sampling conveyor is pushed through the opening in 
the dust curtain and placed next to the mouth of the blast hole.
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Estimation of sampling variance from sieve analysis
Pierre Gy1,2 has derived an equation, which can be used to esti-
mate the relative variance of the fundamental sampling error of size 
distribution results given as mass fractions for each size class. This 
theory is used in this study. The Heterogeneity Invariant, HI, is the 
relative variance of the fundamental sampling error extrapolated to 
a sample size of a unit mass (usually 1 g). For each size class i from 
a sieve analysis, HI is estimated from Eq. 1.

 =
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Here ai is the mass fraction of size class i, vi average particle size 
in class i and ri the density of particles in size class i. Average parti-
cle size can be estimated from the upper, diu and lower dil openings 

Figure 13. Drill cuttings flow

Figure 14. Visual comparison of primary sampling belt collected drill cut-
tings pile on the left vs. the remainder of the blast hole cone after 14m 
drilling.

Figure 15. Triangular sampling trays next to the blast hole prior to drilling 
3 meters.
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of the sieves:
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f = particle shape factor, which is 1 for cubic particles, 0.524 for 
spherical particles. For most crushed and ground materials, the fac-
tor is close to 0.5 which was used in this study as the default value. 
If a sample of size ms is taken from a lot mL, which is much larger 
than the sample, the constitution heterogeneity, CH, or relative vari-
ance of the fundamental sampling error for each size class is
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If the sample forms a significant part of the lot from which it is 
taken, then a correction has to be made in estimating the sample 
variance
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Often the primary sample is so large that the sample size has to 
be reduced before sieving. If, e.g., the primary sample ms1 is taken 
from a lot by size mL, and sample ms2 is taken from the primary 
sample and sample ms3 taken from the secondary sample is then 
sieved the variance of this 3-step process is, if the size distribution 
is not changed:
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(5)

Constitution heterogeneity is converted to relative standard devi-
ation follows:

 ri is CH=   (6)

If the relative standard deviation is given in percentages sri should 
be multiplied by 100. Fundamental sampling variance gives the vari-
ance of an ideal sampling process, i.e., the material of the lot is a 
random mixture of its constituents and the sampling process is cor-
rect. If there is segregation in the lot or sampling devices are not 
correctly designed or operated, experimental variances are larger 
than those calculated from Eq. 1.

Confidence intervals
When HI values from the sieving are available approximate confi-
dence intervals for the size fractions can be estimated. Absolute 
standard deviations for the size fractions i are, given the sizes of the 
lot (mL) and the sample (msi):
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Approximate confidence intervals ci for the size fractions are

 i i ici a k s=  ⋅   (8)

The coverage factor k = 2 gives theoretically 95% confidence 
interval, i.e., if the lot is a truly random mixture of fragments and the 
sampling system is correctly designed and operated, as an average 
only one value in 20 replicate samples taken from the same lot shows 

results outside the confidence interval. If the standard deviations are 
multiplied with a factor of 3, it gives 99.7% confidence interval corre-
sponding as an average to one outlier in 300 observations. In prac-
tise, the fragment shape and density values used in calculations are 
approximate values, not exact. Consequently, the confidence levels 
are also approximate values. However, significant deviations from 
these values indicate either a deficient sampling system or material 
segregation that the sampling system cannot eliminate.

Note: If the sample is so small that only a few fragments, say 
less than 16, from the coarsest fraction are included in the sample 
symmetric confidence intervals obtained from Eq. 8 are not valid for 
this size fraction. Relative standard deviation estimate larger than 
25% is an indication that number of these fragments in the sample 
is smaller than 16.

Minimum sample size for a given precision 
requirement
Given the lot size and precision requirement, i.e., the required rela-
tive standard deviation, , Equation 9 gives the minimum sample size 
(for an ideal mixture and sampling system)
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In interpreting experimental results one should remember that the 
results obtained from FSE calculations are valid for ideal mixtures 
and sampling equipment designed and operated according to the 
principles of TOS. In practice parameters, like shape factors and 
size class densities, are not exact but only approximates. As safety 
factor it is recommended that the theoretical minimum sample sizes 
are doubled. In addition, if the sample size needs to be reduced for 
analysis each new sample should consist of several increments, 
ideally from as many as is possible without introducing increment 
delimitation and extraction errors. Increasing the number of frag-
ments in the samples reduces the grouping and segregation errors 
defined in TOS.

Experimental results
Example of calculations
Tables 1 and 2 show the sieve results obtained from one of the 
experimental drill holes. The sample, 6.053 kg, was taken with the 
RAS sampler from a 3 m section of the drill hole. Table 1 gives the 
results of the fundamental sampling error calculations as explained 
in the previous section. Table 2 gives the average fragment mass, 
total mass of fragments and the average number of fragments in 
each of the six size classes sieved from the sample.

Sampling variance of a particle mixture is a function of the number 
of the analyte particles in the sample. As Table 2 shows, the num-
ber of fragments rapidly increases when the particle size is reduced 
and, consequently, HI decreases. If a reliable result of the coarsest 
fraction in sample is necessary, then it determines the minimum 
sample size that should be used. Table 3 shows the confidence 
intervals for the mass fractions in each size class for 1 kg and 5 kg 
samples calculated using the experimental HI values (Eqs. 7 and 8). 
The confidence intervals for the coarsest size fraction are: from 1 kg 
sample ai = 5% ± 3.52% and from 5 kg sample ai = 5% ± 1.50%

Table 4 shows how the theoretical minimum sample size depends 
on the required uncertainty of sampling given as the relative stand-
ard deviation: 1%, 5% and 10%. Sample sizes were calculated for 
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two different lot sizes: 200 kg (sample taken from a pile) and from a 
lot much larger than the sample (primary sample taken from a large 
target). The minimum sample size depends strongly on the required 
standard deviation: if the uncertainty is reduced by factor 10 the 
sample size has to be increased by factor of 100 in case the lot is 
much larger than the sample size. In case that the lot size is 200 kg 

in order to reduce the sampling standard deviation of the coarsest 
fraction to 1% 147 kg sample is needed.

Comparison of samples taken from the same lot
In most of the experimental drill holes 3-m sections were taken and 
sampled with the methods currently in use and with the new test 

Table 1. Results from calculating the heterogeneity invariant (HI ), constitution heterogeneity (CH) and relative standard deviation (sr) from sieving results of 
6053 g sample from a 50 kg lot. Shape factor f = 0.5 and density 3.2 g/cm3 were assumed.

Size class
d(nominal) vi (cm3) ai HI (g) CH sr (%)

d1 (cm) d2 (cm)

1.5 0.8 1.248 0.972 0.050 56.18 0.00816 9.03%

0.8 0.2 0.638 0.130 0.123 2.757 0.0004 2.00%

0.2 0.1 0.165 0.002 0.076 0.288 4.18E-05 0.65%

0.1 0.05 0.0825 0.000281 0.111 0.214 3.1E-05 0.56%

0.05 0.025 0.0413 0.0000352 0.181 0.208 3.02E-05 0.55%

0.025 0.01 0.0203 0.00000416 0.451 0.207 3.01E-05 0.55%

Table 2. Average fragment mass, total mass and number of fragments in each size class in 6053 g sample.

d (nominal) vi (cm3)
fragment
mass (g)

Total mass in size 
class (g)

Av. No. of
fragments

1.248 0.972 3.1096 303 97.3

0.638 0.130 0.416 745 1790

0.165 0.002 0.0072 460 63893

0.083 0.000281 0.0009 672 746537

0.041 0.0000352 0.0001125 1096 9738604

0.020 0.00000416 0.0000133 2730 205255865

Table 3. 3 s confidence intervals calculated for 1 kg and 5 kg sample sizes from the experimental results.

HI (g)
s (mass fraction)

ai

3 s conf. interv. (ms = 1 kg) 3 s conf. interv. (ms = 5 kg)

ms = 1 kg ms = 5 kg lower upper lower upper

56.18 0.01173 0.00503 0.050 0.0148 0.0852 0.035 0.065

2.757 0.00639 0.00274 0.123 0.1038 0.1422 0.115 0.131

0.288 0.00128 0.00055 0.076 0.0722 0.0798 0.074 0.078

0.214 0.00161 0.00069 0.111 0.1062 0.1158 0.109 0.113

0.208 0.00258 0.00111 0.181 0.1733 0.1887 0.178 0.184

0.207 0.00643 0.00276 0.451 0.4317 0.4703 0.443 0.459

Table 4. Minimum sample sizes calculated for three different relative standard deviation targets for sampling error; lot sizes mL = 200 kg and m  >> ms.

HI (g)

Minimum sample size (g)

sr = 1% sr = 5% sr = 10%

mL >> ms mL = 200 kg mL >> ms mL = 200 kg mL >> ms mL = 200 kg

56.18 562000 147500 22500 20200 5620 5460

2.757 27600 24230 1100 1100 276 275

0.288 2880 2840 115 115 29 29

0.214 2140 2120 86 86 21 21

0.208 2080 2060 83 83 21 21

0.207 2070 2050 83 83 21 21
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method. The remaining pile was split in two or three steps using rif-
fle splitter type sampler in order to obtain pile sample weighing less 
than 10 kg. If necessary, other primary samples taken from the pile 
were also split. Sample sizes sieved varied from 2 to 9 kg. From the 
sieve results HI values were calculated for each six size fractions 
obtained in sieve analysis. HI values available confidence intervals 
of the size fractions can be calculated for the used sample sizes. 
Confidence intervals calculated for the samples obtained by using 
different sampling methods should overlap, if the sampling methods 
are correct and can eliminate the effects of segregation. Segrega-
tion is caused by variation in the rock that the drill has penetrated 
and segregation in forming the pile. Significant differences indicate 
that segregation errors play a significant role, and samples taken 
with different methods are not comparable. Figure 16 shows an 
example, where the test method (RAS) was compared with two 
samples taken with a sectorial boxes, which do not extract a com-
plete sector from the pile. The box samples are comparable but dif-
fer significantly from the test sample which has lower concentration 
of coarse and higher concentration of finer fragments. It is obvious 
that incomplete extraction of a sample sector increases the risk of 
segregation error in results.

When all samples taken from the lot (drill section in this case) and 
the sample taken from the remaining pile are analysed it is possible 
to calculate reference values for the size distribution as weighted 

average from the analysed samples. The lot mass is the sum of the 
sample masses (mj) and the mass of remaining part of the pile (mR).
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The reference value for each size class i of this lot thus is:
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With these reference values HIi of each size class of the lot can 
be calculated. Applying Eqs. 7 & 8 the confidence intervals for each 
experimental sample size can be estimated. If the experimental 
results are within confidence interval the sampling method/process 
can be regarded unbiased. As an example from one of the test 

Figure 16. Size fractions with 3 s confidence intervals calculated from 
data of the test method (red) and from two sampling methods currently 
used (black and blue). 4–7 m section of the drill hole was sampled.

Figure 17. 3 s confidence intervals (black lines) calculated from the 
weighted averages of the size distribution from all samples for sample 
sizes of the conveyor and pile sample. Red line shows the observed 
size distribution of RAS sample (upper panel) and pile sample (lower 
panel).

Figure 18. Relative differences (o) of the sieve results from the weighted size class mass fraction values. A and B are duplicates taken with the RAS sam-
pler and R is the sample from the remaining pile. Red lines give the 3 sr confidence intervals. Size class1 is the coarsest and 6 the finest.
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drillings Figure 17 shows the confidence intervals and experimental 
results of the sample taken from the pile and test method (RAS).

From some of the test piles duplicate samples were taken with 
the test method (RAS). Pile samples were also analysed, conse-
quently, the reference HI values of the lot, and relative deviations 
of the experimental size distribution from the reference could be 
calculated. Relative differences of size class i in sample j from the 
reference are:
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Expected confidence intervals of the relative differences are

 0  ij ricf k s=    (13)

and sri is calculated applying Eq. 6. Figure 18 shows an example 
from one of the experimental drillings, where duplicate samples 
were taken with RAS sampler. In general, results of RAS method 
agreed well with the reference values of the whole pile.

Multivariate analysis of the experimental 
results
Information available in large data sets consisting of several variables 
measured on a large number of objects can often conveniently be 
extracted by using a mathematical tool called principal component 
analysis (PCA)3,4. The principle of the PCA is presented in Figure 19. 
The data matrix X is organised so that the variables (size fractions 
or analytical results) are on columns of X, while objects (samples in 
this case) are on rows. X is usually first auto-scaled, i.e., from each 
column of X its mean value is subtracted and divided by its stand-
ard deviation. The first principal component finds the direction of the 
highest spread of the objects in the multivariate space. The second 
PC finds an orthogonal direction where the spread of the objects 
is next highest, etc. Variable loadings define the directions of the 
PC axes and object scores are objects projected on these axes. 
In ideal case the residual matrix E contains only noise. Often only 
a few PC’s are needed to extract the useful information contained 
in X. Plotting the scores of two PC’s gives a projection of objects 
from the original multivariate space onto a 2-D plane. Plotting load-
ings shows which variables are important on these components. 
Objects grouping close to each other have common features and 
variables having high correlation have loadings with similar values. 
Plotting scores and loadings superimposed as so called bi-plots 
show how objects and variables are related.

PCA was calculated from the size fraction data of the samples as 
X matrix. Figure 20 shows as a bi-plot the two first components of 
the PCA model. Duplicate RAS samples (A and B) are compared 

with the pile samples (R). The samples taken from the same drill 
sections form tight clusters indicating high similarity between sam-
ples from the same lot (drill section). The only exception is sample 
1A which is far from 1B and 1R and thus an outlier in this group. 
Samples 10 and 5 have high concentrations in two of the coarsest 
size fractions and samples 4 are high in finest fraction. Samples 8 
have high in middle fractions. The other samples are close to the 
average sample.

Chemical analyses vs. size distribution
Most of the samples collected in this study were analysed for major 
and minor elements in a laboratory by using XRF. From one experi-
mental drill hole only composite samples from 1–2 metre sections 
were analysed and from other hole samples also the size fractions. 
How the rock breaks in concussion drilling depends on the type and 
mineral composition of the rock penetrated by the drill. So there 
is a correlation between size distribution and chemical composi-
tion. This is clearly seen in Figure 21. Fe, Al, Ti, V and K show a 
similar pattern (concentration decreases with increasing fragment 
size) whereas Mg, Si and to some degree also Ca and Mn show 
opposite behaviour.

Figure 22 shows the variation of chemical composition of major 
constituent with increasing depth in one of the drill hole, from which 
composite samples representing 1 or 2 metre sections were ana-
lysed. It is obvious that this kind of variation causes severe segrega-
tion (stratification) in the pile. If the sample is taken from the pile it 
is difficult to eliminate the segregation error. It is easier to eliminate 

Figure 20. Score and loadings biplot of the two first components of 
the PCA model. Blue lines show the loadings of the size fractions 
(1 coarsest, 6 finest) and dots the sample scores. First component 
explains 57.7% of the total variance of size data (X) and second 27%.

Figure 19. In PCA the original data matrix, which is usually autoscaled, is decomposed into two smaller object score and variable loading matrices and 
residual matrix.
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segregation error if the composite sample is collected continuously 
with a correctly designed sampling device, when the drilling pro-
gresses.

If two types of variables, descriptor variables X and response vari-
ables Y are measured on the same objects their relationship can be 
modelled by using Partial Least Squares regression (PLS). PLS is 
a standard method used in chemometrics3,4. The principle of PLS 
is given in Figure 23. Just like in case of PCA the main features of 
the data sets can be presented as informative projections. Figure 
24 shows an example. Mean values of the size distribution from 8 
samples (drill core sections) were used as X and chemical composi-
tion as Y. Two first components explain 87% and 65% of the total 
variance of X and Y, respectively. This means that the chemical 

Figure 22. Variation of chemical composition in composite samples with 
increasing depth.

Figure 23. Principle of PLS regression: Descriptor and response vari-
able matrices are decomposed into object and variable score matrices 
so that when columns of U are regressed on T the fit is optimised (sum 
of squared residuals G minimised). When descriptor variables on new 
objects are available T, U and predictions of Y can be calculated.

Figure 24. Result of PLS as biplots. Upper panel shows loadings of 
the size fractions c1 (coarsest) – c6 (finest) and scores of the samples 
(S1–S8). Lower panel shows s variable loadings of the Y matrix (chemi-
cal composition).

Figure 21. Chemical composition vs. nominal particle size of the size fractions in a 3 metre section of one experimental drill hole. Red dots are RAS sam-
ples and blue dots sample taken from the remaining pile.
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composition of the drill sections could be approximately predicted 
from the sieve results. The plot also shows at a glance the relation-
ship between samples, size distribution and chemical analysis.

Conclusions
Taking representative samples from a pile of blast hole drill chip-
pings is a very difficult task. Variations in mineral composition in 
the ore body inevitably cause stratification in the pile. Also the pile 
accumulation process segregates fragments depending on the par-
ticle size, shape and density. Here the performance of a new design 
of a blast hole sampler was tested by comparing the results with 
samples taken by other sampling methods and also with results 
obtained by splitting the whole remaining pile (reference). The The-
ory of Sampling was used to analyse the estimation uncertainty of 
an ideal (random) mixture of material consisting of particles of dif-
ferent sizes. The results of this study showed that the new design 
largely eliminates the effect of segregation and gives reliable results.
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Geostatistical comparison between blast and drill holes 
in a porphyry copper deposit
Serge Antoine Séguret
MINES ParisTech, Center for Geosciences/Geostatistical team, 35 rue Saint Honoré, 7730 Fontainebleau, France.  
E-mail: serge.seguret@mines-paristech.fr

Diamond drill-hole grades are known to be of better quality than those of blast holes; is this true? We present a formal study of a 
porphyry copper deposit in Chile where the variogram of 3-meter long drill hole samples is compared to 15-meter long blast hole 
ones and we show that the blast holes can be assumed to regularizing the point information deduced from the drill holes, except for a 
nugget effect specific to the blast samples. Complementary analyses based on migrated data show that the drill holes also have their 
own errors. After a brief description of the first steps in the blast sampling protocol, we show, by using extension variance concepts, 
that the blast error is not due to the arbitrary removal of material from the sampling cone produced by drilling.

Introduction

T
he present study establishes a formal link between blast 
and drill holes which leads to linear systems:
 

 ■ Removal by kriging of the blast (or the drill) error;
 ■ Deconvolution of the blast measurements to transform them into 
point ones;

 ■ Block modeling where drill and blast holes are used together.
In the following, we thought it useful to detail some calculations and 
give some key formulas so that the reader can eventually adapt to 
other comparisons such as diamond drill holes compared to reverse 
circulation drill holes. Overall, this study shows how to combine meas-
urements known on two different supports, a very complex challenge.

Data
The data comes from an open-pit copper mine in Northern Chile 
of which a 600 × 400 × 125 m3 sub domain is analysed (Figure 1) 
as it is almost homogeneously covered by around 3,000 drill-hole 
samples  (3 m long) and 13,000 blast-hole samples (15 m long).

Over this sub domain, the averaged copper grades of the blast 
and the drill holes are almost identical (around 0.6%). The vario-
grams of blast and drill holes have similar behaviours (Figure 2), 
a high percentage of nugget effect (around 40%) and they differ 

mainly by their sills (0.12 for drill holes, 0.8 for blast holes), a com-
prehensible property as the blast support is larger.

Methodology
The geostatistical comparison between the two types of measure-
ments is decomposed into two steps:

Deconvolution & convolution
 ■ Starting from the drill variogram, identifying the basic structures 
that model its behavior and deducing the underlying “point” vari-
ogram by deconvolution;

 ■ Making the theoretical convolution of the point variogram on 
15-meter long supports and checking that it correctly fits the 
vertical and horizontal blast variograms, except for an additional 
nugget effect of 0.2.

Migration & cross variogram
 ■ As there is no point where both drill and blast measurements are 
known, we make some blast holes migrate to drill hole locations 
and calculate the cross variogram;

 ■ The objective is to measure the nugget effect shared by the two 
types of measurements.

There are not enough drill samples to distinguish between horizon-
tal and vertical drill variograms (they are drilled along many different 

Figure 1. Base maps of blast (black) and drill (red) measurements.
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directions). This is the first reason why an omnidirectional variogram 
will be considered for the drill samples, the second one is that all the 
formulas at our disposal require isotropy. Consequently, we make 
two comparisons between:

 ■ An omnidirectional drill variogram and a vertical blast one;
 ■ An omnidirectional drill variogram and a horizontal blast one.

The distinction is important because the formulas differ between 
the two cases.

General formulas
All the formulas have been known for a long time in the literature, 
but in different places, and some are not even published. For the 
convolution charts, the most useful reference is probably reference 
1; for the complete fundamental formulas, refer to reference 2 and 
concerning the extension formulas, refer to reference 3.

In the following we apply a procedure illustrated in reference 4 
where we use the following approximation of a variogram regular-
ized over a support “l” (the distance “h” being large in comparison 
with the dimension of the support):

 ( ) ( ) ( , )l h h l lg g g-  (1)
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g—(l, l) is the average of the point variogram when both extremities 
of vector h describe the support independently. In (2), 1D integrals 
are used because the core diameters are small compared to the 
lengths. The way this formula is applied depends on the structure of 
the point variogram (spherical, exponential, linear, etc.) but also on 
the calculation direction compared with the regularization direction. 
In the following, we consider two situations:

 ■ The calculation direction is parallel to the regularization direction, 
notation gl

||(h); 

 ■ The calculation direction is perpendicular to the regularization di-
rection, notation gù

l (h).
For the structures with a range, whether asymptotically (Exponen-
tial, Gaussian) or real (Spherical), we have:

 range of gi(h) = range of g(h) + l (3)

Note that (3) is not compatible with approximation (1) which 
amounts to assigning to the regularized model the same range as 
that of the point model. So (1) is essentially useful for comparing the 
sills of regularized structures.

Step 1: deconvolution & convolution
Fitting the drill-hole variogram
Three basic structures are necessary: nugget, exponential, linear:
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with:
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Nugget effect (or small-range structure) deconvolution 
& convolution
The attenuation of the nugget effect, whether “pure” or associ-
ated with a microstructure which reaches its sill long before the 
first variogram lags, is proportional to the ratio of the supports. In 
the present case study, the diameters of drill holes and blast holes 
are considered to be equal and we ratio the lengths but generally 
speaking, one has to consider the ratio of the volumes:
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Figure 2. (a) Drill hole copper grade variogram; (b) Blast copper grade variogram. Three directions are represented, 45° North (N45), 135° North (N135), 
and vertical (D-90). Black continuous line is the isotropic variogram.
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With ldrill = 3, lblast = 15, the nugget effect of the blasts must be five 
times smaller than that of the drills. For e2

drill = 0.05 (Figure 2a) we 
obtain e2

blast = 0.01, a value three times smaller than the 0.03 value 
deduced from the blast variogram (Figure 2b). If one takes the blast 
nugget effect as a reference, the drill nugget effect should be 0.15, 
a quantity above the local sill of the variogram and not realistic.

Conclusion: the support cannot explain the differences between 
the nuggets of the blasts and of the drills. The blast nugget is too 
large.

Vertical variograms—deconvolution & convolution
The calculation direction is parallel to the blast regularization direc-
tion (i.e. vertical).

Exponential structure
If the practical drill range is 35 m, the parameter associated with the 
underlying point exponential structure is expressed by (3):

3a0 = 35 – 3 ® a0 = 10.7

If g( ) denotes a variogram normalized by its sill, the underlying point 
sill C0 of the exponential structure is produced by (1):

Cdrill = C0(1 –  g—(3,3))

For the exponential structure, the charts in1 yield:

g—(3,3) = 0.087® C0 = 0.055

For l = 15 m, we deduce:

C15 = C0(1 – g—(15,15))

and we obtain:

g—(15,15) = 0.34 ® C15 = 0.036

We will see later if these results correspond to the experimental 
blast variogram, but we must first look at the linear structure which 
completes the model (4).

Linear structure
For h > l we have, where b is the slope of the structure1:
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The slope b, which does not change with the support, is given by 
the drill samples and the difference between two supports l and l' 
equals:
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When l = 0 m and l' = 3 m, and with bdrill = 0.015/100 obtained by 
(4), the attenuation is 0.00015, a negligible quantity. When l = 3 m 
and l' = 15m, the attenuation is 0.0006, still negligible. In any case, 
the effect of the regularization on the linear structure is negligible. 
This is due to the weak slope of the linear structure.

The combination of all the regularizations is shown in figure 4a 
where the dotted line represents the actual model and the red line 
the model we should obtain with a more realistic nugget effect. One 
can see that apart from the problem of the nugget effect, the vari-
ation range is acceptable, even if the linear part of the theoretical 
structure does not appear in the vertical experimental blast vari-
ogram.

Horizontal variograms—deconvolution & 
convolution
The calculation direction is perpendicular to the blast regularization 
direction (i.e. horizontal).

Figure 3. Drill hole variogram fitting. Dotted line, the experimental curve; continuous line, the model.
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The same procedure is followed, the only difference is that 
approximation (1) is not acceptable and we have to use charts that 
produce the exact calculation (see1, chart number 11).

We obtain figure 4b where the dotted line represents the actual 
model and the red line the model we should obtain with a more 
realistic nugget effect. The fit is good.

First conclusions
If we omit the problem of the nugget effect, we see that both blast 
and drill holes can be considered as a regularization of the same 
reality according to their respective supports. This result, which we 
did not dare to hope, surprised us pleasantly and shows that the 
measurements from the blast holes are not as bad as people often 
think, anyway the case for this company. But the approach followed 
up to now suffers from two uncertainties:

 ■ The analyses are done independently. Imagine that all the 
blast locations have been shifted from a constant equal to the 
range (around 100 m). In that case, the correlation between 
blast and drills will be zero while the same coherence proper-
ties are maintained when making individual regularizations as 
previously;

 ■ The analyses refer to the drill nugget assumed to be a “natural” 
micro structure; is this true?

To answer these questions, cross variograms must be calculated 
but we do not have any location with both measurements, so a 
migration is necessary.

Step 2: migration & cross variogram
Migration
In order to obtain a significant number of measurements at the same 
location, around 1,000 blasts samples were migrated to drill loca-
tions when the migration distance did not exceed 10 meters. Figure 
5a presents the scatter diagram between the migrated values and 
the drill ones. The correlation coefficient is low (0.4) because the 
nugget effects are large.

On Figure 5b, points (resp. triangles) present the migrated blast 
(resp. drill) variograms. They differ slightly from the previous ones 
because the number of samples is smaller and the migration af-
fects the results. In the same figure, the stars represent the cross 
variogram which does not show a significant nugget effect, possibly 
a small negative one without any magnitude in common with the 
effects encountered on the individual variograms.

Figure 4. In blue, the points of the experimental blast variogram; dotted line, the theoretical model for the blasts deduced from the drills; in red, the theoret-
ical model with a more realistic nugget effect. (a) Theoretical regularization parallel to the vertical blast variogram. (b) Theoretical regularization perpendicular 
to the horizontal blast variogram.

Figure 5. (a) Scatter diagram between migrated blasts and drills; (b) Direct variogram of migrated blasts (black triangles), corresponding drills (red points) 
and cross-variogram of both (blue stars). The cross variogram reveals a tiny negative nugget effect with no comparison with the drill or blast ones.
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Conclusions
It seems that the drill-holes have their own errors too, independent 
of the blast ones, and the two measurements share only the struc-
tured parts of the variogram: the exponential and linear structures.

Analyse of the blast error
Description of the blast sampling
Up to now the theoretical blast support has been set to 15 m but in 
fact the blast drilling length is approximately 17 m, producing a large 
cone from the floor of which around 5 cm of material is removed by 
hand across the entire surface, the idea being to restore an overall 
volume of 15 m. Without any consideration of the numerous sam-
pling procedures, we stay at this stage and ask the question: could 
the error specific to the blasts be due to the arbitrary removal of 
material and the blast length variability?

Randomization of the blast support
Let l and l' be two different supports. One finds in3 the formula 
which expresses the variance of the difference between the two 
grades Y over l and l', called “extension variance from l to l', also 
equal to twice the variogram between the grades averaged over the 
two supports:
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In (8), l'h represents the translation of the support l' by a vector h. 
g—(l, l ) and g—(l', l') represent the averaged variogram when two points 
move independently along both the supports involved.

Suppose that l and l' are randomly and independently selected 
uniformly in an interval, for example equal to [12.5 m, 17.5 m]. Then 
one has to calculate the mathematical expectation of (8) to obtain 
the resulting variogram. We have:

 [ ( , )] [ ( ', ')]E l l E l lg g=  (9)
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(10) is the theoretical variogram that we want to compare to the 
actual experimental variogram in order to verify if the blast nugget 
could be associated with some support-length uncertainty.

E[g—(l, l'h)] is a continuous function, complex to calculate as it 
depends on the mutual configuration of l and l', but about which we 
know that for h greater than the range plus l, it reaches and stays 
at the sill of the underlying point variogram. In practice, the only 
structure that we consider is the exponential; its point sill is 0.055. 
For the interval of support-length uncertainty [12.5 m, 17.5 m], we 
deduce from (10) that the sill is reduced by a quantity obtained by:
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To evaluate the range of variations, the integral (11) is approxi-
mated by a finite sum:
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We use the same charts as previously to calculate the values of 
g—(l, l ) involved and finally (12) yields:

1
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5
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Notice that even if we randomize the blast support over a larger 
interval still centered around 15 m, the variance reduction does 
not change and stays approximately equal to the sill multiplied by 
0.325. If we suppose that the support fluctuation is not symmet-
ric around 15 m, but around 13 m for example, the multiplicative 
factor for the sill reduction decreases to 0.295. In any case, we 
conclude that:

 ■ The uncertainty on the support length does not produce a nug-
get effect but a variance reduction;

 ■ This variance reduction represents approximately 30% of the un-
derlying variogram sill;

 ■ The arbitrary removal of the material, as well as the uncertainty 
on the blast length, cannot explain an error specific to the blasts 
and necessarily linked to the subsequent sampling procedures.

Summary: a formal link between blast and drill 
holes
Formal link
Finally, we have:

 15( , , ) ( , , ) ( ) ( , , )blast mY x y z Y x y z p z R x y z= * +  (14)

with

Y(x,y,z), the point grade assumed to be isotropic  
and devoid of any measurement error; 
“*” denotes a convolution product;
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1 (| |)z
 the indicator function equal to 0  

outside the interval and 1 inside it;

R(x,y,z), a “white noise” residual statistically and spatially  
independent from Y(x,y,z) and representing the blast error

The variogram of Yblast(x,y,z) becomes:

 15( ) ( ) ( )blast m Rh h hg g g= +  (15)

with

gR(h) the nugget effect due to the blast error;

g15m(h) = g*P15m(h)

g(h), the point variogram, assumed to be isotropic;

15 [0,15]( ) ( ) ( | | 15)1 (| |)m h p p h h h= * = - +P
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The model supposes that the blasts and the drills have the same 
average because the independent residuals are of zero mean. It 
must be verified when using this model. It is approximately the case 
here (0.63 for the drills, 0.69 for the blasts).

Removing the blast error by kriging
Model (14) can be used to remove the blast error by “Factorial 
 Kriging” estimation5. One can easily build a linear system applicable 
to each blast measurement, choosing a local neighborhood of sur-
rounding blast samples. The system is presented symbolically by 
using matrix formalism:
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In this system, gR disappears from the second member of the 
linear system whereby we remove, from the estimation, the part 
associated with the measurement error. It does not mean that in 
the remaining part g * P15m there is no nugget effect; it means that 
only the “natural” part remains. In our case, the complete nugget 
effect has to be removed because blasts and drills do not share any 
micro-structure.

Deconvolution by kriging
It may be interesting to remove the effect of regularization on the 
blast using a kriging system which estimates, for each blast meas-
urement, a “point” value while simultaneously removing the part of 
the nugget effect associated with blast errors:

 

15 151

1 0 1
m R mpg g l g

m

æ öæ ö æ ö* + *÷ ÷ ÷ç ç ç÷ ÷ ÷=ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè øè ø è ø

P

 

The difference with the previous system is that in the second mem-
ber, g * P15m (capital “P”) is replaced by

       
15 15( , , ) ( , , ) ( )m x y z x y m zp h h h h h u p h u dug g

+¥

-¥

* = -ò  
(small “p”).

Block estimate by cokriging drill and blast measures
Finally, one can imagine locally renewing the mine planning block 
model by using blasts and drills together through a cokriging sys-
tem with a linked mean (same average for both measurements):
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These systems were tested on a realistic simulation where the 
truth is known; they produce good results which will be published 
in the near future.

Conclusion
In this deposit—and more generally, in this company (other test 
have been done), diamond drill hole grades and blast hole grades 
are consistent in the sense that, apart from the nugget effect, the 
structured part of their respective variograms follow the theoretical 
laws of regularization.

Concerning the nugget effects, we discover, by cross-analyses, 
that there is no natural micro-structure in the underlying point 
grade and the large nugget effects encountered on the variograms 
(approximately 50% of the variance for blasts and drills) are due to 
blast and drill measurement errors, independent of either measure-
ment type.

The analysis of the blast error leads to the conclusion that the 
error is not due to the first step of the sampling procedure, it has to 
be found later in the process.

As a conclusion, some linear systems are proposed for removing 
the nugget effects from the data, reducing the effect of convolu-
tion and, more importantly, using blasts and drills together for the 
short-term mine planning. These systems, among numerous dif-
ferent potential ones, easy to demonstrate, result directly from the 
formal link established here between blast and drill holes. Before 
using these systems, the link must be verified by adhering to the 
methodology presented here.
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There are three natural radioactive families according to their decay, which are: the uranium series (238U decreasing to stable 206Pb), 
the actinium series (235U decreasing to stable 207Pb) and the thorium series (236U ® 232Th decreasing to stable 208Pb). The three series 
all have radon gas as an intermediary element, but each with a different atomic mass (222Rn, 219Rn and 220Rn). The three isotopes 
are inert gases at ambient conditions and all are alpha particles emitters. Soils naturally emanate these radioactive gases in variable 
concentrations depending on composition and location. The radon radioactive emanation is a mass flow composed of radionuclides 
emitted to the atmosphere from the surface of the material, or transported to it. Emanation depends on the amount of radon atoms 
formed from the decay of radium and on the surface roughness of the material. Treatment such as polishing can be used to decrease 
radon gas emanation by closing open surface pores and reducing the specific surface area. This study aims at evaluating granite 
roughness of experimental plates of ornamental rocks using a systematic random sampling approach in order to minimise analysis 
time. To validate the systematic minimum area sampling results these were compared to measurements made over the whole reference 
area. It is concluded that measurements can be conducted in just a few locations using systematic random sampling, significantly 
reducing the time for obtaining estimates of the granite’s roughness by factors 150–200.

Introduction

T
his study addresses development of a fast method to 
obtain a granite plate’s roughness using systematic ran-
dom sampling as a tool to minimize the measurement time 
without quality loss. Granite roughness is an important 

parameter for a correct evaluation of radon gas emanation. Esti-
mating granite roughness is part of test regimens for characterizing 
gas emanation. This test is by far the slowest of all characterisation 
tests. It takes 16 days to obtain relevant data from a 20 × 20 cm 
plate. This motivated the authors to use a sampling method to 
reduce the time needed for estimating granite roughness.

Among the available surface treatments aiming to decrease 
radon gas emanation, there is granite polishing which is a cheap 
and efficient method since it reduces the specific area and closes 
open surface pores. Figure 1 shows the difference of emanation 
between polished and rough surfaces measured by a radon meter, 
which has a scintillation cell as operating principle.

The EU (European Union) published a Council Directive in 
December of 2013 (2013/59 EURATOM) that compels all member 
states to present a national action plan to address long-term risks 
from radon exposures by February of 2018. Guidance on methods 
and tools for measurements, identification of building materials with 
significant  radon emanation are on the list of items to be consid-
ered in preparing  this action plan. In view of this EU document, 
the authors feel that methodological studies in this field are well 
motivated.

Radon emanation
There are three radon isotopes (222Rn, 219Rn and 220Rn) which are 
alpha particles emitters, all of which are inert gases at ambient 
conditions. The radioactive emanation is a mass flow composed 

of radionuclides transported to the atmosphere from the material, 
depending on the amount of radon atoms formed from decay from 
radium and the physical characteristics e.g. surface roughness1. 
The amount of gas that reaches the surface is directly proportional 
to the specific area of the material.
Inhalation of radon gas and its decay products is a health risk to 
humans. Alpha particles from the radioactive decay may reach lung 
tissue and cause damage that can lead to lung cancer. Most of 
radon gas exits the human body by exhalation before the decay 
process however, so most of the radioactive dose comes from the 
decay products that are inhaled as dust and become lodged in the 
lung tissue. These radionuclides decay quickly which results in fur-
ther damage of the lung tissue2.

Surface metrology – Interferometry
Surface metrology is a branch of engineering related to measure-
ment of roughness, sharpness, waviness and other surface param-
eters, which are dependent on a given engineering application. 
Methods available to characterize surface texture can be classi-
fied as contacting and non-contacting3. While contacting meth-
ods demand physical contact to assess the surface topography, 
non-contacting methods, as the name implies, do not require any 
such. Surface interferometry is a non-contacting technique, based 
on a superposition principle. Two waves with no phase shift, identi-
cal w.r.t. amplitude and frequency, when combined, will result in a 
wave with the same frequency but the amplitude will be doubled. 
This effect is known as constructive interference. Two waves with 
a phase shift of 180° will result in a wave with zero amplitude. This 
effect is known as destructive interference. The interaction between 
different waves in general results in patterns, known as fringes, 
showing constructive and destructive interference. Figure 2 shows 
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the reference and test beams combined, resulting in constructive 
interference4.

An interferometer emits a single light beam which is split into two 
by a beam splitter. The two beams are destined to interact with 
each other resulting in the mentioned fringe pattern after interac-
tion with the surface whose texture is to be characterised. One 
light beam is directed to the sample surface, the test beam. The 
other beam will be directed to a reference mirror. The two beams 
are reflected and reach the detector. The device then analyses the 
coherence of the resulting signal, which is a measure of the cor-
relation of two beams in the resulting wave, separated by a given 
delay. The device finds the proper height at which the coherence 
value for each pixel reaches a maximum and the resulting fringe 
pattern is used to calculate the surface height. Figure 2 also shows 

the interferometer scanning process, which finds the surface height 
by analysing the fringe patterns4.

Systematic Random Sampling (SRS)
This sampling method is probabilistic and involves a regular, pre-
established pattern for selecting sampling locations. The sampled 
area was divided into sectors, strata and substrata, where5:

 ■ Sector: is a fraction of the total area, whose size could e.g. be 
based on recommendation from statisticians. Or, as in this study, 
based on reverse calculation to define this size, using the attain-
able substrata (explained bellow) size.

 ■ Stratum: each sector is submitted to the preselected sampling 
mode (random systematic). This is performed by dividing each 
sector into a systematic grid.

 ■ Substratum: each stratum must be divided into a certain number 
of basic units called substrata. It is suggested that division of 
each stratum in a number of substrata must be at least 20 times 
the number of measurements that should be collected within one 
sector.
The location of the initial sampling point is randomly selected in 

one preselected stratum of an area which is divided into smaller 
equal size substrata. In general, data acquisition and data analysis 
for each substratum should be managed independently. Figure 3 
illustrates this kind of systematic sampling.

Methodology
The test sample was a granite from the city of Iragna, Switzerland. 
The material is commonly commercialised in plates, which have one 
polished surface and one natural surface (this is the ‘rough surface’ 

Figure 1. Difference of radon gas emanation from polished (left) and rough (right) surfaces as measured by a radon meter (based on a scintillation cell).

Figure 23. (A) Superposition principle on an interferometer showing the 
combination of reference and test beams, resulting in constructive inter-
ference4 (B) Interferometer scanning process, which finds the surface 
height by analysing the fringe patterns.
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in this study). Both sides were tested to evaluate the accuracy of 
the data obtained by SRS. The whole area measurement was taken 
as reference. In this case, the sectors were set as a systematic grid 
following an adapted interpretation of the Theory of Sampling for 
contaminated areas5.

In order to achieve good measurements we setup our study to 
fulfil these three pre-requirements5:

 ■ Each sector must have a surface smaller than the local limit. In 
this study, the local limit is one 20 × 20 cm granite plate.

 ■ The number of strata per sector must be at least four.
 ■ Each sector must be characterized by their average and vari-
ances.
Figure 3 shows the grid used to stratify the granite plate sur-

face (20 × 20 cm). The original sample was cut in 16 smaller pieces 
(5 × 5 cm) so that each stratum would fit in the object holder for 
the optical interferometer, used for the surface measurements from 
which 3D surface parameters were obtained (Figure 4).

Three strata from the 16 were randomly chosen to be tested 
(sample 1, 2, 3) both rough and polished surfaces, six tests total. 
The estimated time for measuring a 5 × 5 cm surface is one day 
using the interferometer (16 days to measure the whole 20 × 20 cm 
granite plate). This is considered too long and consequently too 

resource demanding for obtaining this crucial parameter to evaluate 
emanation correctly, especially since the interferometer is rented by 
the hour. Furthermore, estimating roughness is only one of many 
tests (e.g. porosimetry, permeability, X-ray diffraction) that should 
be performed in order to characterise the sample fully before the 
radon emanation measurement. It is currently the slowest test and 
it delays the final result of the radon emanation analysis seriously.

The statistical analysis (Wilcoxon Signed Rank Test) of the results 
was conducted using SPSS for Windows statistical software (ver-
sion 22).

Results and discussion
The three samples analysed were obtained by randomly choos-
ing three strata of the granite plate. The area of each sample was 
analysed completely (whole area) and was subsequently partitioned 
to apply Systematic Random Sampling on a much smaller area to 
assess the same roughness manifestation. Figure 5 illustrates the 
SRS applied for one of the 5 × 5 cm plates (sample 1). The sche-
matic drawing covers only a half plate but measurements were con-
ducted in full, thus totalling 16 substrata on each surface.
[Figure 5]

The output parameters of the interferometer software are:
 ■ Height parameters (ISO 25178): Sq (root mean square height - 
µm); Ssk (skewness) and Sku (kurtosis).

 ■ Volume functional parameters (ISO 25178): Vm (material volume 
– µm3/µm2); Vv (void volume – µm3/µm2); Vmp (peak material 
volume - µm3/µm2); Vmc (core material volume – µm3/µm2); Vvc 
(core void volume – µm3/µm2); Vvv (pit void volume – µm3/µm2).

 ■ Functional parameters (ISO 25178): Smr (area material ratio - %); 
Smc (inverse area material ratio - µm).

 ■ Hybrid parameters (EUR 15178N): Sdr (developed interfacial 
area ratio - %).
It is difficult to select a most suitable parameter for roughness 

characterisation and it is therefore common to use a combination of 
two or three, dependent on the material type.

Tables 1 and 2 show the results from a relative error analysis 
between the SRS data and data based on the whole area (reference).

Figure 3. (A) Diagram showing initial selection of one random substratum in the initial stratum of one sector (SRS)5 (B) Grid used to guide roughness 
assessment of Iragna’s granite plate, the location of the initial sampling point is randomly selected in one preselected strata of an area which is divided into 
smaller equal size sectors, called substrata.

Figure 4. Interferometer in active measuring, also showing object holder. 
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The results show that:
 ■ There is, not surprisingly, a consistent roughness difference 
between  the polished and the rough surface (Figure 6). The 
parameter  used for this comparison is Sq, the one displaying the 
smallest relative error for both surface type.

 ■ Some height and volume parameters are to be used with caution 
as they are sensitive to isolated peaks and pits which may not be 
significant. They could be used if extreme peaks and valleys are 
removed or a threshold is applied6. Therefore, considering the 
high interference from small distortions in the analysis, it can be 
concluded that there is a small systematic error (bias) between 

whole area analysis and SRS for some parameters, such as Sq, 
Vv and Vvv.

 ■ The other parameters tend to show a higher systematic error 
(bias) between the two analyses because they are more sensitive 
to small distortions that usually are averaged out when analysing 
a bigger area.
Figure 7 illustrates small distortions of this kind.

Method validation
To validate the SRS approach a Wilcoxon Signed Rank Test 
was used (for paired samples) to determine whether there were 

Figure 5. SRS applied to 5 × 5 cm plates of both polished and rough surfaces – Sample 1. Schematic drawing covers only half plates but the measure-
ments were conducted in full, totalling 16 substrata on each surface.

Table 1. Analysis of surface data for polished surfaces.

Polished surfaces

Parameter
Whole Area SRS

Relative 
Error

Whole Area SRS
Relative 

Error
Whole 
Area

SRS
Relative 

Error

Sample 1 Sample 1 Sample 1 Sample 2 Sample 2 Sample 2 Sample 3 Sample 3 Sample 3

Sq 5.6315 6.254 -11% 3.1155 3.102 0% 4.264 4.318 -2%

Ssk -7.1535 -4.264 40% -1.492385 -1.25 16% -0.095 -0.105 -1%

Sku 47.83 60.234 -26% 21.79 22.015 -1% 15.012 16.04 -5%

Vm 0.05677 0.016 72% 0.18275 0.182 0% 0.654 0.54215 61%

Vv 2.7395 2.84 -4% 1.51385 1.235 18% 2.661 2.4065 21%

Vmp 0.05677 0.063 -11% 0.18275 0.152 17% 0.778 0.54215 155%

Vmc 1.00055 1.121 -12% 0.64605 0.524 19% 1.75 0.8487 172%

Vvc 1.2945 1.125 13% 0.7887 0.624 21% 1.523 1.60435 -13%

Vvv 1.4447 1.332 8% 0.72515 0.654 10% 0.745 0.80185 -9%

Smr 0.000080365 0.0005042 -527% 0.000066345 0.00006624 0% 0.00004032 0.000008035 49%

Smc 2.6825 2.745 -2% 1.331 1.223 8% 1.564 1.864 -25%

Sdr 13.796 12.052 13% 142.24 145.321 -2% 646.21 332.9 216%
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significant differences between the whole area and the 6SRS 
measurements. The signed rank test compares the median of the 
values with a hypothetical population median (represented as the 
reference whole area in this study). Both the difference between 
these two values and the confidence interval of the difference are 
compared. The test leads to accepting the null hypothesis when 
there is no significant difference between the two values. Since the 
nonparametric test works with ranks, it is usually not possible to get 
a confidence interval with exactly 95% confidence7.

Out of six Wilcoxon Signed Rank Tests, five retained the null 
hypothesis and one test rejected the null hypothesis. It is however 
believed that this is due to an experimental error and it is currently 
being re-measured.

The tests refers to three selected strata measured both rough 
and polished surfaces. The main results are:

 ■ There is no significant difference between the whole area analy-
sis and Systematic Random Sampling analysis (84% adherence) 
despite having one rejected case. In order to confirm this result 
more tests are currently being carried out amongst others vary-
ing number of sampled points in the SRS design.

 ■ Thus it is possible to validate the method, at a first stage. The 
SRS approach will be very useful to reduce the time needed for 
estimating granite roughness. The new method provides the final 
result for one 20x20 cm granite plate in less than one hour, un-
believably fast compared to 16 days with the current approach.

Conclusions
Radon gas is formed from natural materials that have one of its nat-
ural precursors as part of its compositional make up. Granites tend 
to have a high radon gas emanation rate and since they are used 
as ornamental rocks inside and outside buildings it is important to 
assess the concentration reliably. This study presents a method 
that substantially decreases the time and resources needed to per-
form these important assessments. Analysis of the experimental 
results demonstrates the feasibility of a Systematic Random Sam-
pling approach to obtain reliable estimates of granite roughness, 

Figure 6. Root mean square height (Sq parameter) for rough and pol-
ished surfaces showing data consistency. This parameter was chosen 
because it displays the smallest relative error for both rough and pol-
ished surfaces

Figure 7. Surface morphology image obtained through the interferom-
eter software. Note “small distortions”.

Table 2. Analysis of surface data for rough surfaces.

Rough surfaces

Parameter
Whole Area SRS

Relative 
Error

Whole Area SRS
Relative 

Error
Whole 
Area

SRS
Relative 

Error

Sample 1 Sample 1 Sample 1 Sample 2 Sample 2 Sample 2 Sample 3 Sample 3 Sample 3

Sq 27.67 25.21 9% 27.4 31.7 -16% 36.36 42.21 -18%

Ssk 0.028265 0.1120215 -296% 0.052936 0.023549 56% 0.04564 0.03215 57%

Sku 2.436 2.315 5% 2.6115 1.5362 41% 2.452 3.111 -43%

Vm 1.0685 1.5445 -45% 1.1662 1.3641 -17% 1.428 0.987 32%

Vv 37.485 35.046 7% 37.58 39.24 -4% 49.365 53.321 -10%

Vmp 1.0685 2.354 -120% 1.1662 1.3214 -13% 1.428 1.564 -10%

Vmc 26.965 27.165 -1% 25.775 27.664 -7% 35.37 37.35 -7%

Vvc 34.845 36.011 -3% 34.79 36.21 -4% 45.92 47.36 -4%

Vvv 2.6385 2.7892 -6% 2.7945 2.654 5% 3.447 3.664 -8%

Smr 0.00003764 0.001214 -3125% 0.000020098 0.000032151 -60% 0.0001084 0.000632 -1629%

Smc 36.415 36.154 1% 36.415 39.215 -8% 47.935 42.635 14%

Sdr 18594.5 18596.5 0% 7041.5 7951.3 -13% 31870.5 36321.5 -56%
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an approach that is much faster than analysing the entire target 
area (factor of 192). As a consequence of the reduced measure-
ment time, the cost of the test also decreases substantially since 
the interferometer is expensive when rented by the hour.
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In archaeology it is of interest to ascertain whether a particular Bronze-age field has been cultivated or not based on traditional 
archaeological evidences, but these often deal with one chemical element only, Phosphorous. We here augment this endeavour 
to include multi-element geochemistry characteristics. A pilot study sampling campaign was carried out (2014) on the island of 
Bornholm with the objective to discriminate between well-documented cultivated and un-cultivated Bronze-age agricultural fields 
based on multivariate data analysis (chemometrics) of soil chemistry (metal concentrations, ICP-MS). All samples originate from 
the same soil depth corresponding to the paleo-cultivated layer, or the equivalent depth in uncultivated fields. The experimental 
design focused on proper field sampling (Theory of Sampling), including replicate sampling at two levels. Applying Principal 
Component Analysis (PCA), the first three components corresponds to 68 % of the most discriminative variance in the 15 
variable/41 sample array. The first and third PC-component reveals a complete discrimination of un-cultivated vs.3 cultivated 
fields; it is likely that general soil chemistry features are compensated for by the second component in the PCA solution. We 
present the specifics pertaining to the field sampling procedure, including the hierarchical two-level experimental design, which 
allow assessment of the local vs. field-wide heterogeneities in order better to understand the successful discrimination achieved. 
Five elements appear to be particularly involved in the discrimination [P, Fe, Mn, Zn, Pb], currently undergoing paleo-agricultural/
geochemical interpretation. Based on these first results we plan a full test-set validation campaign in 2015 which will be the 
ultimate performance test for this type of archeometric discrimination. This contribution illustrates the versatility and power of 
multivariate data analysis (chemometrics) applied to data with a substantial proportion of potential sampling errors, in need of 
effective management (TOS).

Introduction

B
ornholm is a minor Danish island in the Baltic Sea 
known for a diverse, interesting geology – and a mag-
nificent archaeological venue with a great number of 
Celtic (Bronze age) agricultural fields, which date back 

to the first century BC. The Celtic field systems have been recog-
nized and documented for more than 100 years, but little is known 
to how the fields were cultivated and what crops were grown. The 
primary knowledge is related to different indirect evidence in the 
form of Agricultural tools, and crops, found on secondary loca-
tions, typically settlements. The aim of this pilot project was to 
gain information from the primary sources, the cultivated fields 
themselves. By introducing geochemical fingerprinting of the sub-
soil from both cultivated and pristine fields, and applying Multi-
variate Data Analysis (MVDA), this project entertains whether it is 
possible to discriminate between cultivated and uncultivated fields 
of Celtic age on this basis. It is hoped that this may contribute to 
increased insight into the different agricultural methods and strate-
gies that were used in Late Bronze Age and Early Iron Age. For this 
purpose Bornholm is an obvious location due to a comprehen-
sive documentation of Celtic fields and due to the geomorphol-
ogy, which allows archaeologists to distinguish between cultivated 
and uncultivated areas with ease and certainty, which is important 
classification information to be used in training a data analytical 
discrimination facility.

Data analysis – from univariate to multivariate
Traditional archeological data analysis in this context has over-
whelmingly been an univariate approach, i.e. a directed focus on 
just one element, Phosphorous, which has been used extensively 
as a ‘signal element’ due to its increased concentration in manure 
that has been used as fertilizer. In the present study this univari-
ate approach shows severe limitations however, for which reason 
a multivariate approach may act better in discriminating between 
fields based on a full series of 15 geochemical elements. General 
knowledge as to which elements might correlate with Phosphorous 
in cultivated fields is sparse however; Nielsen et al. (2014) showed 
in a similar multivariate study that Sr conceivably correlate with 
cultivated fields due to addition of bone fragments and household 
waste. Information is also scanty regarding how the geochemi-
cal fingerprints of uncultivated fields might appear in this context. 
We have therefore adopted a multivariate data analysis approach 
(Chemometrics) without any prerequisites or assumptions, letting 
the data speak for themselves. The archeological field use discrimi-
nation is an important piece of the puzzle.

Theory of Sampling (TOS)
TOS is also a critical agent in this endeavor: The validity of analyti-
cal results is exactly as good, or bad, as the validity of the primary 
sampling, as well as of all sub-samples produced in the labora-
tory on the pathway to the analytical aliquots. The primary – and 
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secondary sampling in this project was in complete TOS-control, 
DS 3077 (2013), with a strong emphasis on unbiased field sam-
pling and subsequent mass-reduction (riffle-splitting). The tertiary 
sampling consisting of spatula extraction of the analyte (0,5-1,0 
gram) was carried out in and by the analytical laboratory involved 
(interesting minor sampling error effects were detected here, fully 
reported elsewhere in the first authors M.Sc. thesis; luckily these 
were detected early and were not of a magnitude to interfere with 
the first order conclusions reported below).

In order to quantify the Total Sampling Error (TSE) and to evalu-
ate the magnitude of the soil heterogeneity on different levels, two 
experimental designs were embedded in the field sampling plan.

Methods
Primary sampling was conducted in August 2014, where mild 
weather resulted in dry soils, giving optimal conditions to distin-
guish between different soil horizons, and in general making field 
sampling easier. Due to the need for comparison between the final 
data, the entire sampling campaign was carried out under identical 
conditions.

Two cultivated fields, A & B and one uncultivated field, X were 
sampled on the same day, in which a total of 41 samples were col-
lected. The three fields are located in the now forested area “Vestre 
Indlæg”, Figures 1 and 2a, and have never been involved in previ-
ous studies. The stratum of interests, according to archeological 
experiences, manifests itself as a yellow quartz-rich sand underlying 
a purple heather-rich sandy topsoil, which was found just under the 
contemporary O horizon. The purple, heather-rich topsoil was used 
as an upper boundary demarcation due to its marked, recognizable 
characteristics, while the lower boundary of the target stratum was 
not identified (generally located 45-55 cm below the surface in the 
area).

The fields were prepared with 9 sampling locations for the uncul-
tivated field X and 10 sampling locations for each of the two culti-
vated fields A & B. For the latter two, different sampling plans were 
chosen: Cultivated field A was sampled along a transect while the 
cultivated field B was sampled in a random grid within the arche-
ologically delineated boundary. The uncultivated field X was also 
sampled along a transect which constituted an extension of the 

transect for field A, Figure 1. The experimental design thus totals 
29 samples. Each single sample was collected as a 4-increment 
composite sample as explained below.

Primary sampling
Each cross in Figure 1 denotes a sample location, approx. 
20 × 20 × 20 cm. The vertical dimension of the sample dug outs 
was constant in order not to incur unnecessary Increment Delimita-
tion Error (IDE). A four-increment composite sample was manually 
collected from each box with a combined use of a garden shovel 
and a trowel, Figure 2b. Each increment was composed of an equal 
volume scrape-off material from one side of the box. In the field, 
when aggregated these four increments were deemed to consti-
tute a representative, Incorrect Sampling Error (ISE)-eliminating and 
Correct Sampling Error (CSE)-minimizing composite sample. Identi-
cal use of the sampling tools allowed a minimum Increment Delimi-
tation Error, Increment Extraction Error (IEE) & Increment Prepara-
tion Error (IPE) (the precise trowel was used to scrape off material 
into the garden shovel which was used to allow all the scraped-off 
material to be carefully collected – eliminating spillage and/or con-
tamination). This sampling procedure also honors the Fundamental 

Figure 1 a,b. Location and pilot study area on the Danish island of Bornholm (Baltic Sea)

Figure 2 a,b. Line transect (left) and expanded local embedded sam-
pling (“box”) (right), see text for details.
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Sampling Principle (FSP) because the soil underlying the entire loca-
tion has an equal possibility to end up as a part of the sample (the 
edge direction of the sample dug out was chosen at random; there 
should always be some random element in all good sampling pro-
cedures).

Local embedded sampling
In order to be able to quantify the heterogeneity at different field 
scales, an additional experiment was embedded in the overall 
experimental plan described above. For each of the three fields (at 
a randomly selected location along the transects or within the grid), 
a small-scale replication experiment, DS 3077 (2013) was carried 
out in the form of four additional field samples arranged in a “box-
like” pattern, Figure 2b.

The standard dugout was here expanded in size to approx. 
100 × 100 × 40 cm which allowed improved pedological charac-
terization as a basis for a larger sample size. These special samples 
were collected using the same general protocol as previous, but 
all four sides were now specifically not combined to form a com-
posite sample. Instead each side was sampled separately along 
the entire wall face. This resulted in four individual ‘parallel’ sam-
ples (designated w, x, y and z) + the existing composite sample (c) 
belonging to the transect (or grid). This set up allow quantification 
of the local heterogeneity for each field commensurate with dimen-
sions 100 × 100 cm (termed embedded “boxes”). This replication 
scheme added 12 samples, the entire pilot project now totaling 41 
samples.

Laboratory sample processing
Laboratory sample preparations comprised drying, homogeniza-
tion and sieving through a 2 mm sieve. The sieving process was 
carried out with an effort to minimize spillage (IPE). After sieving, 
the samples were mass reduced using a RAKO Riffle Splitter (32 
chutes) to a sample size of 2-3 gram. Laboratory mass reduction 
meets all the requirements for representative mass reduction as laid 
out by Petersen et al. (2004). Finally the samples were analyzed for 
15 geochemical elements by Inductively Coupled Plasma analysis 
(ICP), courtesy of Aalborg University, campus Esbjerg.

Lot characterization
Field heterogeneity
Traditionally it has been argued, that for comparison between the 
geochemistry of different fields, only one single ‘representative’ 
sample is needed from each. There are countless examples in the 
literature where ‘representativity’ is only assumed for a single grab 
sample however, very often without proper documentation. But 
from even a cursory examination of this approach, in the light of 
TOS’ understanding of heterogeneity, it is extremely likely that this 
can never result in reliable conclusions. A single sample is a grab 
sample w.r.t. the field it is supposed to represent; there is no way 
this can express both the local as well as the “global” field het-
erogeneity in a valid fashion; such an approach is therefore not to 
be considered trustworthy. Any singular grab sample from any one 
field cannot be representative hereof without specific proof.

Therefore the primary field sampling constitutes a replication 
experiment with respect to the full heterogeneity within each field. 
The overall heterogeneity can be regarded as a specific signature, 
characteristic of the scale pertaining to cultivated as well as uncul-
tivated fields, but it cannot necessarily be assumed to be identical 

between fields, Figures 3 and 5. Thus 9 (or 10) composite samples 
from each field constitutes a replication experiment allowing reli-
able aggregated results, and also to detect, and remove, outliers, 
whether defined by the heterogeneity or TSE (one analytical outlier 
was detected only because of this type of inter-leaved replication 
experiments in the ultimate laboratory stage). Each field is at the 
outset considered as a unique sampling target characterized by 
9(10) samples covering the specific lot geometry. 9/10 were cho-
sen based on the available logistical constraints (this number could 
alternatively had been higher, e.g. 20 if no economical, practical, or 
logistical sampling limitations had existed).

The sample plans were laid out at random – either as a randomly 
selected transect direction, or as a randomly oriented grid. Repli-
cate samples from each field are hypothesized to correlate stronger 
within-group than with respect to between-group (between-fields). 
The two cultivated fields A & B are also assumed to correlate 
stronger between themselves contra the uncultivated field X. Such 
relationships would be expected if the geochemical discrimination 
hypothesis is to be substantiated. But does this hold for all geo-
chemical elements analyzed for? Or just for a few?

Local embedded replicate experiment
The sampling process of the “local” box replication experiment was 
described above, allowing quantification of the heterogeneity per-
taining to this local scale. It is a fair assumption that with five sam-
ples it should be possible to express the local heterogeneity with 
reasonable resolution; these samples should be correlated stronger 
with each other than with respect to the whole field data, see Figure 
5 below.

Univariate data analysis
A traditional univariate data analysis, visualized as a box plot, Figure 
3, is carried out for Phosphorous based on data from the three 
local replication experiments and full field data, allowing to charac-
terize and compare the local and global heterogeneity of each field. 
Figure 3 will also show to which degree it is possible to distinguish 
between cultivated and uncultivated fields within this traditional uni-
variate regime.

Table 1 presents the relevant averages and standard devia-
tions. Comparing the three sets of “Box characterizations” it is not 

Figure 1 a,b. Location and pilot study area on the Danish island of Bornholm (Baltic Sea) 

 

 

Figure 2 a,b. Line transect (left) and expanded local embedded sampling (“box”) (right), see text for details. 

 

Figure 3. Box-plots of field vs. box heterogeneity characteristics for the element Phosphorous 
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possible to conclude that fields A & B are in fact both cultivated. On 
the contrary, if this approach is used one would probably conclude 
that field B was cultivated (because of its elevated P levels) while 
field A and field X represent uncultivated areas. This is manifestly 
incorrect however – and the univariate approach fails. The box plot 
evidence also pictures the difference between the local and global 
phosphor heterogeneity and, as assumed a priori, the local hetero-
geneity constitutes but a fraction of the global field heterogeneity.

From the standard deviations one can conclude that the variabil-
ity for phosphor is largest in cultivated field B.

Multivariate Data Analysis (MVDA)
Clear limitations and attending misinterpretations were found by the 
univariate approach. This is due to the fact that cultivated fields 
apparently do not have the same levels of elevated phosphor con-
centration. But even though the P concentration is low, field A is 
actually cultivated as shown by irrefutable archeological evidences. 
Perhaps such relationships can be better appreciated from a mul-
tivariate approach when considering a range of 15 elements simul-
taneously?

MVDA is an approach in which the covariance structure of differ-
ent datasets is modeled and visualized based on the correlations 
between the variables included. MVDA contains different methods 
that can handle different data analysis objectives. One of the pow-
erful tools is Principal Component Analysis (PCA), which reveals 
data structures (exploratory data analysis) in two complementary 
plots, the so-called scores and loadings plots (Esbensen (2010), 
Martens & Næs (1989)). Results of PCA carried out on soil metal 
concentrations are depicted in Figures 4–6 (41 objects and 15 vari-
ables). PCA on this data set will also allow to survey heterogeneity 
in the different fields due to the two different experimental designs.

Field characterization
Figure 4 is a first PCA visualization of the overall structure (score plot 
t1-t3), which depicts the variance-maximized relationships between 
the three fields. Based on the information modeled by PC 1 and 

PC 3, three clear data groupings (data classes) can be identified, 
helped along with the known archeological field assignment anno-
tation (A, B, X), which is used to draw convex polygons enveloping 
the fields. The three fields outline a trend from the uncultivated field 
X to the two cultivated fields A and B. The latter two fields are only 
very slightly overlapping due to their distinct geochemistry finger-
prints. Based on this simple score plot it is possible to discriminate 
fully between these two agricultural groups with ease and certainty, 
but no information about the geochemistry and which elements are 
causing the between-group trend has been identified – yet. For this 
the complementary loading plot is needed, in which is depicted the 
correlation relationships between all the variables involved in the 
data analysis.

The loading plot, Figure 6, reveal that the strong mutual corre-
lation between [P, Zn, Fe, Mn] is the defining feature for the two 
cultivated fields A & B, allowing one to conclude that the levels of 
these elements are elevated in these fields. Due to the group trend 
from uncultivated to cultivated, which is most pronounced in the 
vertical direction along PC 3, Mn would appear to be the element 
that correlates strongest with the cultivated group. Conversely Pb 
is correlating strongest with the uncultivated field X along PC 1 and 
B along PC 3.

The multivariate approach is clearly useful for distinguishing 
between cultivated and uncultivated fields employing 15 geochemi-
cal elements instead of one.

 

 

Figure 4. PCA score plot t1-t3 of the complete data set. Convex polygons surround data from each of the three fields (X, A, 
B), see text for details. 
   
Figure 4. PCA score plot t1-t3 of the complete data set. Convex poly-
gons surround data from each of the three fields (X, A, B), see text for 
details.

 

 

Figure 5. PCA score t1-t3 plot, annotated with convex polygons for the three local box experiments only (heavy lines). 
Relationships to field-wide classifications (in Fig. 4) indicated by stippled lines 
   
Figure 5. PCA score t1-t3 plot, annotated with convex polygons for the 
three local box experiments only (heavy lines). Relationships to field-wide 
classifications (in Fig. 4) indicated by stippled lines

Table 1. Phosphorous data characterisation (ICP) 

ICP results for the three boxes

Cultivated field A

 9 9w 9x 9y 9z

Phosphor (mg/L) 1,396 1,288 1,448 1,360 1,274

Average 1,353

Std. Deviation 0,073125

Cultivated field B

 30 30w 30x 30y 30z

Phosphor (mg/L) 2,275 3,573 2,898 4,155 3,446

Average 3,269

Std. Deviation 0,713165

Uncultivated field X

 13 13w 13x 13y 13z

Phosphor (mg/L) 1,344 1,548 1,563 1,317 1,115

Average 1,377

Std. Deviation 0,185182
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The field replicate experiment also allows a display of the global 
heterogeneity variations within each field. By use of “connecting 
lines” one can direct attention to the convex heterogeneity enve-
lope for each field and compare them, which is the annotation used 
in Figure 4. From this one can argue that they are displaying almost 
the same degree of field heterogeneity but with different elements 
as the largest contributors, which can be studied by a more detailed 
interpretation of Figure 6.

Local heterogeneity characterization
To illustrate the ‘local’ embedded replicate experiment, the same 
score plot, Figure 5, can be used again but for this purpose the 
connecting lines now only frame the sample subsets from the 
three embedded boxes, emphasizing the local heterogeneity. It is 
observed that the largest local heterogeneity is indeed found within 
field B, with much smaller variabilities for field A and X, which show 
somewhat similar local heterogeneities. From this plot it is also pos-
sible to point out potential outliers.

Interestingly the convex polygon that pictures the heterogeneity 
of uncultivated field X is found as an end-member of the entire field 
heterogeneity – without the embedded replicate experiment one 
could perhaps have been led to conclude that this sample could 
be an outlier.

The above first interpretations from a simple PCA shows the 
strength of replication experiments on both field and local scales 
and that the local heterogeneity can vary among, and between 
fields of different status even. Though small, the present data set is 
complex to a non-trivial extent, precluding meaningful data analysis 
based on only one, traditional parameter (P). The complexity is eas-
ily and effectively delineated in full measure however when based on 
the chemometric multivariate approach, PCA1,4.

The present pilot study data set is not large enough to make a 
reasonable validation of the strength of PCA solutions calculated. 
For this it is necessary to invoke a test set, a new data set from 
similar fields, also taking in at least one of the present fields for 
re-sampling as well (to be carried out in the summer 2015). Test 
set validation forms an essential part of proper chemometric data 
analysis1,4.

Conclusion
Based on a chemometric multivariate discrimination along PC 3, it 
is fully possible to distinguish between cultivated and uncultivated 

Celtic fields on the island of Bornholm – a task for which the tradi-
tional P-based univariate approach fails (in the areas investigated 
here). The present results can therefore be of significant help for 
archeologists, who until recently would have classified cultivated 
field A and perhaps many others also, as uncultivated using the 
traditional univariate P-approach. The multivariate approach is able 
to yield much more reliable and trustworthy results.

This holds true if – and only if – sampling is done in a representa-
tive fashion however, eliminating the majority of all ISE and minimize 
CSE. Geochemical data typically can contain up to 50% or so ran-
dom data variance (‘data analytical noise’), so PCA decomposition 
is essential (‘shredding data structure from noise’).

In this pilot project four elements showed the strongest correla-
tion with the cultivated fields and especially Mn was found to be of 
pronounced influence. Sparse knowledge as to why Mn, Fe and 
Zn behave in this correlated fashion with P is raising interest in fur-
ther geochemical and/or agricultural studies. These relationships 
could only have been discovered using the chemometric PCA. It 
will almost always be of interest to increase the number of elements 
analyzed and e.g. Cobalt should be an element that are of signifi-
cance in the archeological world.

Through two different experimental designs it was found that 
each field is characterized by quite similar overall heterogeneities, 
and that the local heterogeneity (embedded box experiments) was 
indeed significantly less extensive, Figure 5. The largest heteroge-
neity was found in cultivated field B, which also had the largest 
levels of Fe, Zn, P and Mn, Figure 4-6. Geochemical multi-element 
signatures successfully define different data classes (fields) outlining 
their internal structures and variable correlations. Why the unculti-
vated field is particularly strongly correlated with Pb and B is not 
fully understood at present, an issue that is incorporated in the 
planned follow-up studies (2015).

All the above findings could only have been discovered using 
MVDA: Archeology meets TOS meets Chemometrics.
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ICP results for the three boxes

Cultivated field A 

  9 9w 9x 9y 9z 

Phosphor (mg/L) 1,396 1,288 1,448 1,360 1,274 

Average 1,353 

Std. Deviation 0,073125 

Cultivated field B 

  30 30w 30x 30y 30z 

Phosphor (mg/L) 2,275 3,573 2,898 4,155 3,446 

Average 3,269 

Std. Deviation 0,713165 

Uncultivated field X 

  13 13w 13x 13y 13z 

Phosphor (mg/L) 1,344 1,548 1,563 1,317 1,115 

Average 1,377 

Std. Deviation 0,185182 

 

Figure 6. PCA loading plot t1-t3 (all data). The most influential correlated 
elemental group relative to the discriminations seen [Fe, Zn, Mn] in 
Figures 4 and 5 is indicated (circle); see text for details.
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Counteracting soil heterogeneity sampling for 
environmental studies (pesticide residues, contaminant 
transformation) – TOS is critical
Z. Kardanpoura,b, O.S. Jacobsenb and K.H. Esbensena,b,c

aACABS Research Group, Aalborg University, Denmark. E-mail: zk@bio.aau.dk 
bGeological Survey of Denmark and Greenland (GEUS). Copenhagen. Denmark 
CACRG Research Group, Telemark University College, Norway

This Ph.D. project aims at development of an improved methodology for soil heterogeneity characterization for ‘next generation’ 
sampling/monitoring and spatial modeling practices a.o. allowing more realistic pesticide variability in environmental contaminant 
assessment studies. Such studies typically take place in the laboratory. The key question therefore is: Are current sampling techniques 
able to counteract the inherent soil heterogeneity met with in the field? Analysis of traditional soil sampling approaches from a Theory 
of Sampling perspective, the answer is a resounding negative. This contribution summarises the extensive sampling aspects involved 
in the overall project context, also involving chemometric data analysis with a special twist.

Soil heterogeneity

S
oil heterogeneity characteristics in the natural environ-
ment do not follow normal statistical distributions and 
most certainly not regular spatial distributions. There is 
a need for scientifically based procedures and princi-

ples for parameterisation of the intrinsic variability in many types 
of agricultural, urban and natural soil systems. Conventional com-
puter simulations are critically dependent on the specific choices 
of model and statistical distribution characteristics, not necessar-
ily always realistic. To a large extent, knowledge in these fields of 
research is based on laboratory-scale batch experiments involving 
either soil ‘as is’ and often with samples of only a few grams of the 
soil matrix, Figure 1.

Even when procedures for species transport, kinetic studies 
and analysis follow established scientific and international stand-
ards, it is increasingly recognised that small scale experiments 
do not fully reflect the effective variability and heterogeneity of 
the salient soil and geological formations at larger, more relevant 
and more realistic fields scales.1,2 This will unavoidably cause 
problems for the later scaling-up to field scale of the processes 

and effects studied, especially regarding the possibility for valid 
volume generalisation.

The soil matrices involved are in fact often significantly heterogene-
ous, and a number of the subsequent soil model and interpretation 
issues are critically related to the empirical variability at scales larger 
than the laboratory samples (both in vertical and horizontal dimen-
sions). Also taking into account the time scales involved in dynamic 
studies only add further to system complexity. Within the environ-
mental sciences there is a strong need for an integrated under-
standing of chemical contaminant transformations (e.g. pesticide 
degradation), spatial modeling and multivariate data analysis.3–5 All 
critical soil characterizing parameters are in need of effective coun-
teraction of the variability related to inherent soil heterogeneity when 
securing valid soil pots for laboratory experimentation, i.e. how to 
secure representativity of individual pots? Not only that, but how to 
guarantee that multiple pots containing soil sampled in nature are 
as identical as possible for replicate laboratory studies?

The main motivation for this Ph.D. has been to develop generic 
procedures to map the effective heterogeneity of soils at all relevant 
scales. The present paper describes a comprehensive approach 

Figure 1. Traditionally “experimental pots” to be used in the laboratory (e.g. pesticide residue, pollutant characterisation or contaminants transformation  
studies) are ‘sampled’ directly in the field (grab sampling). Ignoring inherent soil heterogeneity leads to compositional differences between pots of an 
unknown magnitude due to uncontrolled FSE, GSE, ISE. Pots are all too often simply assumed to be identical. Observe the drastic mass-reduction from 
field, sample, pot, often of the order of magnitude 1:1000.

doi: 10.1255/tosf.69

mailto:zk@bio.aau.dk


Issue 5  2015206 TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

for this purpose, here applied on typical clayey soils with a focus on 
intrinsic parameters (minerogenic variables, ‘soil framework varia-
bles’). Clayey soils serve as an exemplar medium, chosen because 
of the typical non-trivial practical sampling problems and limitations 
encountered for this type of soil. The main focus is on character-
ising and comparing grab vs. composite sampling in a full-scale 
experimental study based on both a short range 2-D design (cm-
dm) and a large scale linear profile (dm - ~100m scale). The meth-
odological principles developed are completely general for all soil 
types however. Results from parallel sandy soil studies are also be 
presented—together these two soil types cover a significant range 
of temperate region soil types.

Field experiments—field sampling
This study evaluates a series of experiments testing improved 
designs of field and laboratory sampling, Figures 2-3, at all stages 
from the primary field sampling to the final analytical sample prep-
aration, Figures 3-5. The effect of soil heterogeneity at different 
scales critically affects the validity of the sampling/monitoring pro-
cedures involved.

Field samples were collected from the topsoil (A-horizon; 0-25 cm) 
of a typical clayey soil. For a short range experiment a 50 × 50 cm 
square of top soil was exposed by carefully removing the upper-
most grass layer (approx. 5 cm), Figure 3A. Within this square a 
total of 68 ‘standard’ soil samples, each of 30-40 g, were collected 
with the shortest practically possible in-between distance (less than 
2 cm) in the pattern shown in Figure 3A. Primary soil samples were 
extracted using a conventional cut plastic syringe (diameter 1.5 cm, 
length 10 cm, Figure 3B) and immediately sealed in airtight contain-
ers; these samples make up the S-Set samples to be used for ‘2-D 
heterogeneity visualisation’ (see below). The remaining soil of the 
square “box” (Figure 3 A) down to 10 cm depth was extracted as 
a “primary bulk sample”, also sealed in a moisture tight plastic bag 
and transported to the laboratory for further sub-sampling experi-
ments. For a large scale variographic characterization, soil samples 
were collected in identical fashion in the same field with an equi-
distance of 1 m along a 85 m long profile. A parallel study on sandy 

soil included a short scale replication experiment,6 is presented in 
Figure 2.

Contemporary sampling approaches in environmental/soil sci-
ences makes little or no allowance for soil heterogeneity, resulting 
in significant between-pot heterogeneity which impacts on the dis-
criminating power in laboratory experiments. This is not unavoid-
able however. Variographic analysis (below) shows the advantage 
of using increment locations for composite sampling with a distance 
below the range for both organic and inorganic compounds based 
on empirical soil sample variograms.

Analytical methods
Field samples were 300-400 gram, while laboratory samples were 
20-30 gram moist soil after careful TOS-compliant sub-sampling.7,8 
A focused mass reduction experimental design employed a suite 
of 16 natural soil parameters including: moisture, organic matter 
(loss on ignition), pH, soil cations and anions (clayey soil). In addi-
tion a large suit of 38 inorganic parameters plus a set of 9 natural 
and anthropogenic compounds including moisture, organic matter, 
bacteria counts (CFU), carbon-14 measurement of MCPA sorp-
tion and mineralization and glucose respiration were analysed in 
the sandy soil. Analytical parameters were selected with an aim 

Figure 2. Sandy soil sampling. a) Long range profile for variographic 
characterisation (~100 m) parallel to the recent ploughing direction; 
b) Local “grid replication design” (9 samples covering 1 × 1 m); c) 
Conventional soil sampling hand tool; d) Sample excavation and airtight 
sample bag.

Figure 3. Laboratory mass reduction for clayey soil samples, A) “Small 
scale 2-D experiment” (50 × 50 cm), B) Single syringe sample; C) 
Primary bulk grab sample, D) Single grab sub-sample taken from C); 
E) Remaining bulk sample laid out for composite sub-sampling, F) 
Increment size, G) Single composite sample (15 increments); H) Single 
sample after grinding, entering a bespoke laboratory splitter. Identical 
procedures were applied to all samples in this study. I) Two sub-samples 
obtain after splitting.
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to study soil heterogeneity with different natural (sandy, clayey), 
anthropogenic (sandy) and minerogenic (sandy, clayey) parameters 
with an aim to develop suitable sampling methods for these and 
similar matrix types.

Laboratory sub-sampling
A general framework is needed for dealing with all operative scale-
interdependencies when establishing representative sampling pro-
cedures for specific soil types, instead of traditionally having to rely 
on a universal, standardized sample size and a conventional sam-
pling plan, supposed to be able to work well for all soil types as is 
today’s tradition in many fields.

The primary field sample size (200-300 gram) must be reduced 
to the analytical sample size (1-2 gram), not a trivial mass-handling 
issue under significant heterogeneity. In order to provide repre-
sentative sub-samples, TOS principles were applied scrupulously 
to all mass reduction steps.7,8 In this project a comparison was 
directed at grab vs composite sampling, in which two sub-sample 
sets, a.o. obtained by alternative methods for grinding/splitting, are 
compared. An embedded 2-D heterogeneity study was finally used 
for small scale spatial correlation characterisation, supported with a 
data analytical correlation study (chemometrics). All practical sub-
sampling stages are illustrated in Figures 3-5.

Variographic profile characterisation
The cm-dm scale heterogeneity was studied by the ‘2-D small 
scale experiments’ illustrated above, while the m-100m transect 
scales were studied by variographic characterisation6,9 to provide 
an understanding of how the individual elements are distributed 
spatially in the field along the 100 m long baseline profile. All data 
were inspected for possible outliers or trends; outliers have been 
excluded and in case of a variable trend (possibly to be expected 
as samples are distributed along the shallow trend incline, Figure 2), 
de-trended profiles were subjected to variogram characterisation.9

Chemometric data analysis
Synoptic overviews of the correlation data structure between 40+ 
chemical parameters and of the relationships between all vari-
ograms were analysed by multivariate data analysis (chemomet-
rics).11 In here each variogram contributes to a special type of 
X-matrix in which the objects correspond to the set of variograms, 
all of which are characterized by a joint set of special variables, ‘lag 

variables’ [1, NU/2]. This array is termed the Xvariogram matrix. The 
number of ‘objects’ (Nobj) is equal to the number of elements.

Decomposing Xvariogram results in score plots in which each vari-
ogram is depicted in relation to all other variograms, i.e. to which 
degree variograms are similar or dissimilar in their characteriza-
tion of the spatial structures. Whereas standard PCA displays the 
behavior between correlated variables,10 the loading plot of the Xvari-

ogram matrix visualizes the relationships between the variogram lags 
i.e. which scales behave in a coherent fashion, and which display 
different behaviors. For PCA(Xvariogram) the scores and loadings plots 
render a synoptic characterization of the spatial characteristics for 
all chemical parameters involved.11

According to the nature of the variogram, V(j) values represent 
squared heterogeneity differences, which means the Xvariogram data 
are all expressed in the same ‘measurement unit’ (‘lag distance’). 
The analogy to ordinary spectral data is clear as conventional spec-
tral values (transmittances, absorbances or otherwise transformed 
original radiometric data) are also expressed in the same ‘measure-
ment units’. This will make interpretation of the Xvariogram PCA solu-
tions more familiar for those in-the-know regarding multivariate data 
analysis. Note that these special types of spectra may be in need 
of auto-scaling, or that may not – which will depend on the empiri-
cal variance differences between the variables (or ‘lag-variables’). 
This issue is problem-dependent and cannot be resolved by a gen-
eral imperative; different data set structures may require specific 
solutions .

Results and discussion
Aiming for a general approach to exemplify and quantify the effec-
tiveness of heterogeneity characterisation in soil, a set of relevant 
geochemical parameters was studied at scales from cm to 100 m. 
In this context both small scale (2-D) and large scale (1-D) variability 
studies were conducted on different soil types (clayey and sandy 
soil). This study includes all scales from field sample to analytical 
aliquot and primary sampling w.r.t. soil type, secondary sub-sam-
pling comparison, further subsampling procedure and evaluation. 

Figure 4: Fresh soil mass-reduction steps for clayey soil. A proce-
dure, identical to riffle splitting, was developed for sub-sampling in the 
laboratory for this type of mildly sticky, non-flowing material.

Figure 5. Manual ‘riffle-splitting’ simulation for representative sub-sam-
pling in the laboratory. This technique is also known as bed-blending, 
scaled-down and adapted to both dried, but still cohesive primary sandy 
soil samples (top) as well as to fine-crushed, dried powder (bottom). 
This procedure can be described as ‘linear bed blending/transverse 
thin-slice reclaiming’.
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Evaluation and comparison of subsampling stages were conducted 
for clayey soil only, the most complex soil type (because of both 
structural properties and logistics), including a characterisation of 
different mass reduction (sub-sampling) procedures. Assessing the 
reproducibility of laboratory grinding/splitting, the TOS-optimized 
grinding and homogenization step was found to be acceptable for 
the current purpose. Furthermore, as expected from comparing 
grab and composite sampling (TOS), for 2/3 of the geochemical 
soil parameters sub-sampling methods show significant differences 
when based on grab sampling.

A large scale variability study was directed at two fields with dif-
ferent soil properties with the aim of showing a general compre-
hensive soil heterogeneity characterization approach wholly based 
on TOS principles. Figures 6 show variographic characterisation of 
selected variables for both clayey and sandy soils. These studies 
are reported in full in the first author’s Ph.D. thesis.

It may occasionally be of interest to apply a multivariate approach 
in order to include all soil parameters simultaneously. A PCA (Xvariogram) 
approach has been developed that simplify all variogram relation-
ships in conventional scores and loadings plots.10,11 As one exam-
ple, Figure 7 shows how it is easy to estimate a general (average) 
variogram range. This approach is generic and can be applied to 
any set of parameters in any type of soil. It is only necessary to have 
enough data (samples) to be able calculate proper variograms.

Combining results of natural organic and anthropogenic param-
eters with minerogenic parameters from two soil types, the optimal 
procedure for securing comparable field samples (for ‘identical’ pot 
samples) for environmental pollutant experiments (samples with 
minimum inter-sample variability) must be by systematic deploy-
ment of composite sampling with increment distances less than 
half the range, Figure 6 - always with a number of increments as 
high as practical and logistically possible (depending on the total 

Figure 6. (left) Synoptic variogram plot for eight selected parameters in clayey soil (LOI after de-trending). Two clear groupings can be observed, i.e. two 
parameters with extremely low and stable variograms and six parameters which show distinctly more irregular variograms at higher sill levels (signifying 
distinctly larger heterogeneities). All variograms are essentially flat without a clear range for this soil type. (right) Synoptic variogram (sandy soil) for eight 
selected parameters (Ta, Pt, Mn, Fe, Na, Al, P, Pb) comprising both the highest and the lowest sills encountered (Ta, Pt) vs. (P, Pb) respectively. There 
would appear to be a general average range of approx. 5 meters. Weak variogram trends do not distrub conventional interpretation.

Figure 7. (left) PCA (Xvariogram) loading plot PC-1 (sandy soil, all parameters), and PC-2 (right). The Xvariogram matrix has not been subjected to pre-treatment 
(no centering, no scaling), see text for details. The range of the average variogram shape (PC-1 loading spectrum, at left) is ca. 5 meters.
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mass required for experimentation). This conclusion strictly speak-
ing only applies to the specific soils investigated here, one of which 
happens already to be somewhat well mixed (the sandy soil). Other 
soil types may display much shorter ranges, much higher heteroge-
neities that is. The general lesson is that increments for composite 
sampling have to originate only from areas with scale a parameter 
less than half the range of the salient empirical soil variogram. A 
heterogeneity-characterising pilot study variogram is sine qua non.

Conclusions
Empirical heterogeneity description is a critical success factor in 
soil, contamination, pollution and environmental science studies 
a.o. when natural variability effects are to be reliably managed. The 
Theory of Sampling (TOS) is a versatile generic framework that is 
able to deliver the tools for heterogeneity counteraction in the sam-
pling stage(s), which is necessary for designing an unbiased and 
reproducible sampling procedure.12

A pilot experiment focusing on intrinsic heterogeneity characteri-
zation will always be advantageous. Different approaches for scale 
characterization were evaluated: embedded small-scale experi-
mental designs in combination with larger scale 1-D transect sam-
pling can reveal the inherent heterogeneity at scales from sampling 
volume up to the maximum experimental length scale studied. Thus 
e.g. for collecting experimental soil samples for laboratory pesticide 
fate studies based on realistic soil samples, this purpose would be 
served the worst by samples having inter-distance larger than the 
range. Emphasis should be on securing realistic, representative soil 
pot samples with the most similar characteristics, especially when 
deploying duplicate or replicate pot samples for such studies. It has 
also been demonstrated how to use representative mass reduc-
tion to get sample sizes down from field to aliquot scales in a fully 
representative fashion and how to counteract and manage soil het-
erogeneity in this process.11,12

Results from the various replication sampling approaches reveal 
considerable heterogeneities at scales from 3 cm to 100 meter. 
The heterogeneity in 1-D profiles can be visualized by a variogram 
description, the statistics of which (nugget effect, sill, range) offers a 
full description of all necessary and sufficient spatial characteristics 
of the heterogeneity. PCA score plots of the special Xvariogram matrix 
offer an effective overview of similarity vs. dissimilarity between 
variograms (especially in the case of many elements), which in the 

present case mainly reflect different sill levels (in general cases this 
will also encompass range difference).

We have developed a comprehensive approach to reach all the 
stated project objectives and evaluated their performances with 
realistic field and laboratory experiments.11,12 The methods pre-
sented and illustrated in this Ph.D. project have a substantial carry-
ing-over potential to geochemistry and in environmental science, as 
well as other application areas.
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B
ulk food and feed sampling is a multi-step procedure in 
which typically a composite sample is first produced by 
pooling primary increments, thoroughly mixed and then 
mass-reduced (possibly in several steps) to obtain an 

ultimate laboratory sample of suitable size for analysis: the test por-
tion, or the analytical aliquot. Among all sampling steps involved in 
this pathway, application of composite sampling is the most critical. 
If the primary sample cannot be proven to be representative, all 
ensuing steps of mass-reduction, sample preparation and analysis 
are in vain, for reasons recently explained in full in the horizontal 
standard DS 30771, where the specific requirements for ensuring 
representativeness, are addressed in full.

Although it is well known that material heterogeneity influences 
the effectiveness of sampling procedures, most guidelines defining 
sampling strategies specific for, or routinely applied to, food and 
feed products are based on stringent distributional assumptions, 
seldom justified or discussed in sufficient detail, if at all. Indeed most 
are based on classical statistical distribution requirements – fore-
most the normal, binomial and Poisson distributions - and almost 
universally rely on the assumption of randomness2, 3, 4. This is an 
unrealistic and suboptimal state of affairs at best however. Does 
the supposed randomness relate to constitutional hetero geneity 
or to distributional heterogeneity for example? How are the una-
voidable irregular spatial distributions accounted for? The scientific 
and industrial communities actually recognizes a strong prepon-
derance of non-random distribution within commodity lots5, 6, 7, 8, 
which therefore should be the more realistic pre-requisite for defini-
tion of effective sampling protocols. Heterogeneity issues are too 
often overlooked, instead allowing non-scientific considerations 
to determine sampling protocols, focusing financial, time, equip-
ment and personnel constraints instead of mandating acquisition of 
documented representative samples under realistic heterogeneity 
conditions. We show how the principles promulgated in the Theory 
of Sampling (TOS), e.g. as practically tested in an EU study on soy-
bean materials9, actually apply universally in the food and feed realm 
and should be considered as an exemplar for development of valid 
sampling protocols free from distributional constraints. TOS pro-
vides a framework within which identification and development of 
unbiased sampling plans is driven by empirical observations made 
on a case-by-case basis and calibrated upon the specific hetero-
geneity characteristics of the material under assessment. Under 
the guidance of TOS’ Fundamental Sampling Principle, system-
atic application of stratified random sampling will suffice to always 
‘cover’ the entire lot. The appropriate number of increments is not 
scalable with the size of the lot, contrary to many standard myths 
perpetuated ad infinitum, but only with the degree of heterogene-
ity in the lot and the a priori chosen degree of confidence, i.e. the 
acceptable level of risk.

Food and/or feed products constitute no special case in this con-
text: if sampling is not carried out correctly (if biased), subsequent 
analytical efforts in the laboratory are completely futile1,5,6,7,10,11,12. 
Much work still needs to be done in order to prevent continued use 
of non-representative sampling protocols that are prevalent in inter-
national standards and guidelines, sometimes limited by unsub-
stantiated distributional assumptions. If providing correct sampling 
recommendations is a priority for both the scientific community and 
regulators responsible for consumers’ protection, it is necessary to 
contribute towards a unanimous acceptance of the position that 
evaluation of the total sampling error (TSE – including laboratory 
handling errors) is equally important as the evaluation of the analyti-
cal error13. So far, far too much attention has been devoted only to 
estimates of the total analytical error (TAE) and many, very specific, 
and therefore only ad hoc experimental designs, with or without a 
sufficient number of increments and replicates, has been evaluated 
only as a function of the specific properties of the analytical method 
involved. Applying TOS principles allows development fit-for-pur-
pose TSE criteria based on of empirical lot heterogeneity characteri-
sation5, 6, 7 with which to enter into e.g. risk analysis or compliance 
testing, on a fully realistic basis.
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Introduction

I
mpregnated wood waste comprises a significant part of all 
waste produced in Denmark. All impregnated wood waste is 
gathered at recycling centres. According to Danish law, com-
bined heat and power plants are not allowed to incinerate this 

type of wood waste, and therefore all impregnated wood waste is 
exported to Germany for incineration. This is very expensive and 
not at all an intelligent way to treat wood waste: harmful emission 
is not avoided and a lot of transportation is involved. In order to 
consider a more environmentally friendly method for incineration 
of impregnated wood waste, the Danish Environmental Protection 
Agency needed additional knowledge. Danish Technological Insti-
tute was commissioned to execute a full-scale test at an already 
existing combined heat and power plant. Together with Renosyd I/S 
(a heat and power plant near Aarhus) Danish Technological Institute 
planned and measured all waste streams regarding the incineration 
of impregnated wood waste. The impregnated wood waste came 
from five different recycling centres from the area surrounding the 
heat and power plant involved. The wood waste consisted of rail-
way sleepers, telephone poles, fence posts, boards, window frames 
and some fractions were in the metre size range, some smaller.

Considerations before practical execution
Renosyd I/S collected and accumulated an estimated amount of 
600 tons of impregnated wood at its disposal site 5 km from the 
incineration plant – see Figure 1. During normal operations, the 
wood waste will pass a shredder at the incineration plant. How-
ever, for this present study sampling behind the shredder was not 
an option due to physical conditions and safety aspects. Size and 
mass reduction consequently had to be performed off-line, but 
these operations could not be made at the incineration plant due 
to the limited space. Therefore, the sampling campaign had to be 
performed at the disposal site.

A representative sample of the 600 ton lot was needed for chemi-
cal analysis before the incineration tests in order to follow and give 
a reliable characterisation of all waste streams3-7. With the present 
type of inhomogeneous wood waste in mind, it was of utmost 
importance first of all to mass and size reduce the lot, Figure 2. The 
task was to reduce a 600 ton potential, very heterogeneous lot to 
a laboratory sample of approximately 10 kg; i.e. a sampling rate of 
60,000 to 1. Laboratory techniques for further sample reduction 
were already well established and known to industry.

It was not possible to place the large amount of wood waste on 
a concrete foundation, but it was found acceptable to place the 
impregnated wood on the frozen mid-January ground in an isolated 
pile with no risk of being mixed with other types of wood or waste. 
The pile was approximately 75 metres long and 15 metres wide, 
Figure 2. The logistical constraint was that there had to be room 
enough for lorries to unload the wood waste.

For size reduction, a shredder with a nominal capacity of 40 tons/
hour was chosen. The shredder had to be able to size reduce, 
e.g., large telephone poles to a particle size of 30 cm. The num-
ber of increments would be adjusted to the shredder capacity with 
respect to the total sample mass opted for. Further size reduction 
in one step was not possible, as the heat and power plant was not 
able to handle pieces of material smaller than 30 cm. Therefore, a 
second size reduction step was needed later in the process.

In close cooperation with the workforce at the waste deposit, 
it was decided that mass reduction could be performed via the 
one-dimensional stream throw-off from the shredder, Figure 4.2. 
Increments of a minimum of 100 kg could be taken by using a 
front loader. The increments were all placed in a separate pile for 
later additional size and mass reduction treatment, Figure 5.1. The 
importance of strip mixing (bed blending) should be emphasised 

Figure 1. Overview of deposit site (Google maps). The area where the 
wood waste was placed and handled is marked with blue. The lot com-
prised the red area.
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and clearly described to the workforce responsible for taking the 
increments. A shredder capacity of 20 tons/hour with increment 
removal every fifteen minutes would result in 120 increments and a 

total primary sample mass of 12 tons. If the capacity had been only 
15 tons per hour and increments were taken, e.g., every thirty min-
utes, approx. 80 increments corresponding to eight tons of material 
would have been gathered.

After a second chopping, wood shards of an expected particle 
size of 10-30 cm were to be further size reduced in a wood chip 
cutter. An amount of wood waste of 8-12 tons was too large for 
this equipment, so a further mass reduction was needed for practi-
cal reasons. The degree of mass reduction depended on the exact 
size of the wood pieces. The final procedure in this step was there-
fore postponed until after the second pass through the shredder in 
order to make a more qualified decision regarding the amount and 
specific procedure.

Recommendations for making qualified decisions have to be 
based on the European Standard EN 14780: Sampling and sam-
ple reduction of solid biofuels. The standard prescribes a sample 
amount of at least 120 kg when the pieces are up to 20 cm and of 
at least 400 kg when the pieces are up to 30 cm. It is worth men-
tioning that the new DS standard 3077: Representative Sampling 
(2013) explains how scaling the amount of increment with the total 
lot mass is obsolete – the amount of increment needed scales 
according to the degree of heterogeneity encountered. Due to the 

Figure 2. The original wood waste lot as received at the deposit.
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Figure 3. Planned flow diagram of the process described in the present contribution.



Issue 5  2015 215TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

expected inhomogeneity of the wood waste compared to wood 
chips and wood pellets it was decided to do better than the EN 
standard prescriptions - it was decided that the amount should be 
at least 4,000 kg before the wood chip cutter-step.

After mass reduction, the sample amount would be cut in the 
wood chip cutter. Another mass reduction step would then be nec-
essary before ending up with a sample of 10 kg to be handled in the 
laboratory – see Figure 3.

Sampling Plan
A sampling plan was designed based on the following preliminary 
considerations that contain the following elements:

 ■ Composite sampling is a must.
 ■ Successive steps of particle size reduction.
 ■ The total lot is moved to secure that all parts are accessible and 
to make it possible to carry out one dimensional sampling from 
a free falling stream.

 ■ The heterogeneity of the material, and hence the increment vari-
ance, was not known a priori. It was unfortunately not possible 
to make an estimation (a replication experiment (DS 3077:2013)) 
within the project budget. The number of increments is therefore 
a result of a realistic survey of prevailing conditions and based on 
“good practice and experience”.

 ■ Practical execution of on-site sampling
For the incineration trial, a volume of 600 tons was estimated to 

be necessary, and therefore the total pile made up the sampling lot 
– see Figure 1. The lot was not divided into sub-lots.

The waste wood consisted mainly of large pieces of telephone 
poles, fences and building residues and some of them contained 
metal. When laying up the pile, the material was “pre-crushed” with 
a “compacter”. Sampling from the present pile was not possible 
for two reasons: large parts of the pile were not accessible, and 
the large “particle” size could lead to a bias and it would require 
too large sample volumes. Therefore, the 600 tons of wood waste 
was size reduced in a shredder, model Arjes VZ 750. That type of 
shredder was suitable for handling the metal pieces that were found 
in some of the wood waste. The shredder was placed beside the 
pile and loaded continuously by a front loader. The feeding of the 

shredder and the size reduction of the wood waste went smoothly, 
so the full capacity of 40 tons per hour could be observed most 
of the time. The estimated effective time used was 15-20 hours, 
Figure 4.1.

Composite sampling took place as a front loader collected a 
number of primary increments from the falling discharge from the 
shredder (one-dimensional process sampling); increments were 
continuously accumulated in a separate pile at a new location. 
The first campaign day, an increment was taken every fifteen min-
utes. This frequency was increased to every 10-12 minutes for the 
remaining time. It is acknowledged that that gives a sampling bias 
as the frequency was altered during the process. Based on the 
practical experience from day one, it was found that improved fre-
quent sampling was desirable, see Figure 4.2.

The total number of increments was estimated to be more than 
100. The weight of each increment is estimated to approx. 75 kg 
resulting in a total primary sample of about 8,000 kg. Given a bulk 
density of approx. 400 kg/m3 this gives a pile of 20 m3 consisting 
of pieces below 30 cm, which can be seen in Figures 5.1 and 5.2.

A front loader bucket-full of the already size-reduced wood 
waste was tentatively loaded into the shredder for a second pass, 
but no significant size reduction was found. Another solution was 
needed, since further size reduction was essential before continu-
ing. After some searching, a smaller shredder was rented to reduce 
the size of the primary sample to below 5-10 cm, Figure 6.2. The 
procedure using a front loader to feed the shredder and to extract 
increments from the falling material stream out of the shredder was 
a copy of the one used in the first reduction step, again making 
one-dimensional process sampling possible, Figure 6.1. A second-
ary sampling was designed on that basis, which consisted of more 
than 200 increments each of just less than 10 kg. The composite 
secondary sample was laid up as a longitudinal pile by strip mixing 
(bed blending) and subsequently flattened to a height of less than 
50 cm, Figure 7.

From this pile, a final composite sample of 50 litres was extracted, 
manually extracting 50 increments with a shovel. All 50 increments 
were taken at randomly chosen locations and depths. The final 

 
Figure 4. (a) Loading the shredder at step 1. (b). Extraction of increment at step 1. Each increment is approx. 75 kg, extracted every 10-15 minute.
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sample was placed in a large plastic bucket, sealed and marked 
before further handling in the laboratory.

Laboratory sample preparation
The final 10 kg (50 litres) sample was particle size reduced in a gar-
den shredder in the laboratory to less than 3 - 5 cm. Manual mass 
reduction was also performed by strip mixing, resulting in a sample 
mass of 2 kg, on which another particle size reduction step was 
made, this time using a laboratory grinding mill. Finally, this 2 kg 
sample was split (in two steps) into two parallel sub-samples of 500 
gram, by using a riffle splitter8; the 1 kg sub-sample was discarded 
after step one. These two parallel samples were then delivered to 
the analytical laboratory: one for chemical analysis, the other as a 
backup archival sample.

Potential error sources
Placing the pile on the frozen ground was not optimal. Possible 
errors in later chemical analyses could for example originate from 
material in the dirt, giving rise to detection of certain extraneous trace 

elements. However, this project is decidedly of the “art-of-the-possi-
ble” type, a project that simply has to be performed in the real world. 
In any case, the available funding and time were issues that gave us 
the possibility to operate as described in this paper.

It was not possible to traverse the free falling stream from the 
shredder with the front loader completely as prescribed in the TOS 
literature6. However, it is believed that it did not have any impor-
tant effects, mainly because no segregation was found in this highly 
non-flowing type of material, Figures 2, 5.1, 5.2, 6.2, 7.

From the minor shredder, a loss of fines was observed from the 
outgoing stream during operation due to a light wind. The loss is 
considered negligible as it was very low in mass percentage com-
pared to the total mass, and we have no reason to believe that any 
chemical component was over-represented in this fraction based 
on visual inspection.

A minor mass loss also occurred in shredder-step 1 due to the 
removal of metal parts. Small amounts of wood were attached to 
some of the metal parts after the shredder step, but only a few kg of 
wood waste out of the total of 600 tons were lost that way.

 
Figure 5. (a) The accumulated primary sample lot (approx. 20 m3). (b) Particle size distribution after primary shredding at step 1 (see Figure 3). A 20 cm 
folding ruler for scale.

 
Figure 6. (a) Extraction of increment at step 2 (size reduction to a particle size below 5-10 cm). (b) Particle size after size reduction step 2. A 20 cm ruler for 
scale.
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It could probably always be discussed whether the number and 
size of increments in relation to “particle size” are adequate. In this 
case, they were considered appropriate based on experience, 
knowledge from EN 147801 and a sound judgement on site.

It is emphasised that a perfunctory “replication experiment”, DS 
3077:2013, unfortunately was out of reach relative to the project 
budget and time available. It is considered imperative to include 
such approaches in future projects.

Results
While writing this proceeding, the final report for the Danish Envi-
ronmental Protection Agency was finalized. Until the Danish Envi-
ronmental Protection Agency has read and approved the report, it 
is not possible to conclude whether or not this case study has con-
tributed to change Danish legislation on incineration of impregnated 
wood waste in Denmark.

Conclusion
It is emphasised that this was not a study in representative sam-
pling. To a high degree, it is a case with severe logistical constraints 

but it demonstrates the practical application of the underlying 
theory. Specialized equipment for size and mass reduction, e.g., 
conveyer belts equipped with proper cross-stream cutters were not 
an option. However, proper process sampling could still be imple-
mented thanks to the workforce at the deposit site where the sam-
pling campaign was conducted. The local workforce performed the 
task with enthusiasm and appreciation of the goal and offered many 
useful suggestions. In addition, it accepted to spend the extra time 
required. The workforce was also willing to adapt to changes during 
the process, e.g., renting a smaller shredder when needed within 
hours.

From a practical point of view, a reasonable solution for down-
sizing and mass reduction was accomplished. Years of practical 
experience and underlying knowledge of sampling theory have had 
a significant impact on the solutions that were exercised.
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Journal of AOAC INTERNATIONAL (JAOAC) 
Special Guest Editor Section:  
“Representative Sampling for Food and Feed 
Materials: A Critical Need for Food/Feed 
Safety”

A 
special collection of papers on all aspects of food and 
feed safety sampling - to be used in risk assessment, 
process control in a food/feed manufacturing environ-
ment, foodborne disease outbreaks, and regulatory 

compliance - is now available as an open access publication on the 
Journal of AOAC INTERNATIONAL’s (JAOAC’s) website. Visit http://
aoac.publisher.ingentaconnect.com/content/aoac/jaoac to find 11 
fully refereed papers in the March/April 2015 issue.

These papers are the result of a ground-breaking trans-Atlantic 
collaboration between researchers, samplers, and regulators from 
Europe and the United State, a true first within the sampling world. 
The authors gathered in Windsor, Colorado in October 2014 to 
collaborate and write. The authors brought strong opinions to the 
meeting and worked hard to reach a consensus, but met with suc-
cess in the end (this process jokingly referred to as the ‘shootout’.)

The papers in this Special Guest Editor section introduce the The-
ory of Sampling (TOS) as relevant for all aspects of food and feed 

safety sampling, as the principles governing representative sam-
pling apply universally. The papers are not independent; they were 
written and composed to integrate with each other, thus providing a 
comprehensive, yet very compact overview of the criteria that must 
be followed to ensure representative sampling in this realm.

The guest editors were: Kim H. Esbensen, Geological Survey of 
Denmark and Greenland, and Aalborg University, Denmark; Clau-
dia Paoletti, European Food Safety Authority Parma, Italy; and 
Nancy Thiex, Thiex Laboratory Solutions, and Agricultural Materi-
als section editor for the Journal.

The target audience for this SGE section includes all food/feed 
protection personnel: field sampling operators, academic and 
industrial scientists, laboratory personnel, companies, organiza-
tions, regulatory bodies and agencies that are responsible for sam-
pling, as well as their project leaders, project managers, quality 
managers, supervisors, and directors. In the United States alone, 
there are an estimated 45,000 federal, state and local food/feed 
regulatory personnel, not including industry or laboratory personnel. 
The situation in Europe is similar.

“We hope to trigger a scientific discussion and awareness 
towards the need for global harmonization of representatitive sam-
pling approaches for food and feed commodities,” it is stated in 
the section’s introduction. “As a collection, these papers repre-
sent a leap forward with respect to a valid sampling-plus-analysis 
approach for the entire food and feed area.”

The SGE section includes the following contributions:
 ■ “Food and Feed Safety Assessment: The Importance of Proper 
Sampling’ by Harry Kuiper and Claudia Paoletti.

 ■ “Towards a Unified Sampling Terminology: Clarifying Misper-
ceptions” by Nancy Thiex, Kim H. Esbensen, and Claudia 
Paoletti .

 ■ “A Systematic Approach to Representative Sampling” by Claas 
Wagner & Charles Ramsey

 ■ “Sample Quality Criteria” by Charles Ramsey & Claas Wagner
 ■ “Materials Properties: Heterogeneity and Appropriate Sampling 
Modes” by Kim H. Esbensen

 ■ “Theory of Sampling—Four Critical Success Factors Before Anal-
ysis” by Claas Wagner & Kim H. Esbensen

 ■ “Quality Control of Sampling Processes—A First Foray; From 
Field to Test Portion” by Kim H. Esbensen & Charles Ramsey

 ■ “Considerations for Inference to Decision Units” by Charles 
Ramsey

 ■ “Distributional Assumptions in Agricultural Commodities—
Development  of Fit-for-Decision Sampling Protocols” by Claudia 
Paoletti  & Kim H. Esbensen

 ■ “Critical Practicalities in Sampling For Mycotoxins in Feed” by 
Claas Wagner

Figure 1. Transatlantic Special Section taskforce, October 2014, 
Windsor, Colorado (left to right): Nancy Thiex, Thiex Laboratory 
Solutions; Kim H. Esbensen, Geological Survey of Denmark and 
Greenland and ACABS Research Group, University of Aalborg; Charles 
Ramsey, EnviroStat, Inc.; Claas Wagner, Wagner Consultants; and 
Claudia Paoletti, European Food Safety Authority, Parma, Italy. (insert: the 
only feasible way for harmonisation of terminology – a shootout)
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 ■ “Considerations for Sampling Contaminants in Agricultural Soils” 
by Charles Ramsey

 ■ “Considerations for Sampling of Water” by Charles Ramsey
The Special Guest Editor Section is available online at http://

aoac.publisher.ingentaconnect.com/content/aoac/jaoac
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sional development of analytical scientists around the world. AOAC 
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government, academia, and industry working in the areas of foods 
and beverages, feeds, fertilizers, soil and water, pharmaceuticals, 
and cosmetics. J. AOAC Int.’s reputation for excellence is based 
on nearly 100 years of publishing top papers in the analytical field. 
For more information on AOAC INTERNATIONAL, please visit 
www.aoac.org - The Journal of AOAC INTERNATIONAL publishes 

6 issues per year of fully refereed contributed papers in the fields 
of chemical and microbiological analysis: original research on new 
techniques and applications, validation studies, studies leading 
to method development, and invited reviews. Manuscript topics 
include foods, drugs, agriculture, and the environment.
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Introduction

M
anagement of waste streams requires knowledge of 
their intrinsic characteristics, especially with respect 
to evaluating their response to various treatments, 
and their potential impacts on the environment. Test-

ing and characterization of wastes allows informed decisions to be 
made on the appropriate way in which they should be treated, (or 
not), recovered or disposed. In order to undertake valid tests, it is a 
requirement that this is based only on representative samples.

Wastes arise in a wide variety of types (e.g. pastes, liquids, granu-
lar materials, mixes of different materials) and sampling situations 
(e.g. during a waste production process, from stockpiles, tanks, 
drums). Because of the variability, instability, and their widely con-
trasting compositions, it is often difficult to make measurements 
directly at their production and the problem of sampling becomes 
particularly prominent. Moreover, there can be a variety of sampling 
objectives within each of the three broad categories, i.e. basic char-
acterization, compliance testing and on-site verification.

In 2005, the European Committee for Standardization (CEN) and 
one year later AFNOR, the French Standardization Association, 
published the standard EN 148991 which deals with the general 
waste sampling problem. This European Standard, prepared by 
the Technical Committee CEN/TC 292 “Characterization of Waste”, 
specifies the procedural steps to be taken in the preparation and 
application of appropriate sampling plans. It takes into account 
waste specific features resulting from:

 ■ Strong heterogeneities;
 ■ Occasional complex behaviours during the sampling and prepa-
ration stages, due to instability or other physicochemical char-
acteristics;

 ■ The result of a specific production process, which may be neces-
sary to consider for a proper sampling strategy.
Thus, it provides a framework that can be used to produce stand-

ardised sampling plans for use under routine circumstances, with a 
view also to be able to incorporate specific sampling requirements 
demanded by European or national legislations, and finally to design 
and develop sampling plans for use on a case-by-case basis.

Presentation of standard EN 14899
To achieve the objectives of a waste testing program, appropriate 
sampling methods need to be selected or designed, that will ensure 
representative samples. For this purpose, the European Standard 
EN 14899 “Characterization of Waste – Sampling of waste materi-
als: Framework for the preparation and application of a sampling 
plan”, largely based on the concepts of the Theory of Sampling 
(TOS)2-5 which represents the only comprehensive approach to rep-
resentative sampling, provides a framework for how to prepare a 
sampling plan, in which the elements of the sampling process are 

defined. It is the first of the following seven program testing steps 
(see also Figure 1):

 ■ Definition of sampling plan.
 ■ Field sample extraction.
 ■ Delivery to laboratory.
 ■ Test sample preparation.
 ■ Extraction.
 ■ Analysis.
 ■ Measurement report.
The standard EN 14899 aims to provide a list of issues which 

must be considered when establishing a waste sampling pro-
tocol; in particular, it is intended as a guide for writing standards 
applied to sampling of specific waste (daughter/derived standards). 

Figure 1. Links between the essential elements of a testing program 
following EN 14899. NOTE: Key Steps define the 7 overall steps that 
make-up a testing program.
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To facilitate its implementation and enforcement, the standard EN 
14899 is accompanied by the following five informative technical 
reports:

 ■ CEN/TR 15310-1, Characterization of Waste – Sampling: Part 1 
– Information on the selection and application of a basic statisti-
cal approach to sampling under various conditions6.

 ■ CEN/TR 15310-2, Characterization of Waste – Sampling: Part 
2 – Information on sampling techniques7.

 ■ CEN/TR 15310-3, Characterization of Waste – Sampling: Part 
3 – Information on procedures for subsampling in the field8.

 ■ CEN/TR 15310-4, Characterization of Waste – Sampling: Part 
4 – Information on procedures for sample packaging, storage, 
preservation, transport and delivery9.

 ■ CEN/TR 15310-5, Characterization of Waste – Sampling: Part 
5 – Information on the process of defining the sampling plan10.
These technical reports contain procedural options that can be 

selected to match the sampling requirements of all testing program. 
By contrast, the five technical reports are not normative documents; 
rather they provide illustrative examples of potential approaches 
and tools allowing a project manager to design a customized sam-
pling plan for a given test scenario.

The rest of the present contribution gives a brief overview of the 
main components of standard EN 14899. This cannot replace the 
official normative document, which remains the reference for any 
question of waste sampling plan definition.

Design of a sampling plan
The standard EN 16457:2014 “Characterization of waste – 
Framework for the preparation and application of a testing pro-
gram – Objectives, planning and report”11 describes requirements 
for a waste testing program regarding objectives, planning and 
reporting with the intent to ensure reliable and comparable results 
when using the reference methods that have been developed 
and/or adopted by CEN/TC 292. This defines the sampling plan 
as “all the information pertinent to a particular sampling activity” 
and specifies also that “Note 1: The sampling plan includes the 
taking of the sample, the production of a laboratory sample, and 
the transport (to the laboratory), and may include the storage of 
the laboratory sample” and “Note 2: In case the measurement can 
be done directly in the field, transport and storage might not be 
necessary and then will not be elaborated further in the sampling 
plan”.

Figure 2. Key elements of a sampling plan following EN 14899.
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In others words, a sampling plan shall be completed prior to 
undertaking any sampling and shall provide the sampler with 
detailed instructions on how sampling should be carried out. In the 
process of defining a sampling plan the key elements of the testing 
program, shown in Figure 2, shall be addressed.

When defining a sampling plan, the following points must be sys-
tematically addressed.

Identification of involved parties
The parties involved may as a minimum be the waste producer, but 
usually also the waste manager, the sampler, the laboratory analyst, 
etc. The process shall be guided by the need for all involved parties 
to participate fully, with the objective of improving the quality of the 
testing program.

Definition of the objectives of the testing program
The objectives of the testing program define what the involved par-
ties want to achieve by the planned waste charaterisation project. 
Thus they determine the desired level of information (basic charac-
terization, compliance testing or on-site verification) and the desired 
reliability of the sampling results. Examples of possible objectives of 
a testing program are:

 ■ To compare the quality of the test material with quality levels de-
fined in national or international legislation;

 ■ To characterise the test material following a change in ownership;
 ■ To determine the re-usability of the test material;
 ■ To determine the leachability of the test material;
 ■ To assess the human health and / or environmental risks posed 
by the test material.
In the majority of cases, the initial objective of the testing program 

is too general and non-specific for it to lead directly to the detailed 
instructions necessary for a proper sampling plan. It is therefore 
necessary to translate the objective into one or several practical 
and achievable technical goals. Since the technical specifications 
for the required samples and the quality level desired are not the 
same for different objectives, usually one sampling plan is needed 
for each objective. In some circumstances, it is possible to meet 
several objectives through a single sampling plan however.

Definition of the required testing level
The sampling plan shall identify the level of testing required to meet 
the technical goals of the testing program. These will dictate the 
different types and frequency of investigation to be performed. 
Examples of testing levels could include basic (or comprehensive) 
characterization, compliance testing or on-site verification.

Identification of constituents to be tested
The sampling plan shall identify the characteristics or components 
to investigate, taking into account all known information, such as:

 ■ Origin of the material;
 ■ Intended end-use of the material;
 ■ Total volume of material (in the case of identical units: the popula-
tion) to be assessed;

 ■ Information from knowledge of process or material involved;
At this point, it is important to collect background information on 

the material, in order to identify details of the site location or to 
define the production process, the variability of the process and 
the waste properties (at least type and dimensions). The sampling 

plan shall list all known physical and chemical characteristics of the 
material, including all known potential hazards. In the absence of 
sufficient information, a ‘preliminary investigation’ should be insti-
gated, a pilot study.

Selection of the most suitable sampling approach
The sampling plan shall take into account the variability within the 
lot, or the population and/or sub-population. In addition, the sam-
pling plan shall identify when, where, by whom and how samples 
shall be taken and collected to ensure that the sample is appropri-
ate to meet the sampling objectives.

At this stage, it is important:
 ■ To define the lot/population to be sampled.
 ■ The lot/population is defined as the total amount (volume or 
mass) of material about which information is required through 
sampling (see also technical report CEN/TR 15310-5:2006).

 ■ To identify the scale that defines the volume or the 
mass of waste material that a sample shall represent.  
Depending on the nature and the objective of a testing program, 
scale can also be defined in terms of time. Because of heteroge-
neities of waste (following TOS, distributional heterogeneity and 
constitutional heterogeneity have to be considered), defining the 
scale is important, as heterogeneity is a scale dependent char-
acteristic. As a consequence of the direct relation between scale 
and heterogeneity, sampling results will be only valid for the scale 
that is equal to the scale of sampling or higher scales (see also 
technical report CEN/TR 15310-5:2006).

 ■ To choose the desired reliability of the sampling approach, 
mainly in terms of “confidence interval” and precision. 
This reliability strongly depends on the heterogeneities of the 
considered material, the chosen number of samples, the as-
sumed statistical probability distribution followed by the popula-
tion, etc. In most cases, it is suggested that the reliability should 
be as high as possible and representative samples are requested 
(according to the TOS, a sampling process is representative only 
when it is both accurate and precise)12.
Depending on the sampling objective, the sampling plan shall 

specify either ‘probabilistic’ sampling, which ensure that each unit 
within the population being sampled has an equal chance of being 
sampled, or ‘judgmental’ sampling.

The sampling approach should at least include:
 ■ The increment size, representing the amount of material (mass or 
volume) that is obtained through one single sampling action. An 
increment is not analysed as an individual unit, but is combined 
with other increments to form a composite sample.

 ■ The sample size.
 ■ The use of composite or individual samples (the latter is known 
as ‘grab samples’).

 ■ The required number of samples.
 ■ The sampling location.
 ■ The sampling frequency.
Table 1 summarizes the main steps in defining a sampling plan for 

a testing program. This table summarizes one of the most important 
points to consider in establishing a sampling plan as consideration 
and appropriate choice of statistical criteria are of key importance in 
the production of a sampling plan.

All information relating to the choice of sampling approach, 
but also the determination of the size of the increment and of the 



Issue 5  2015224 TOS f o r u m

w c s b 7  p r o c e e d i n g s

www.impublications.com/wcsb7

sample, as well as the number of samples associated with a speci-
fied level of uncertainty are given in the technical report CEN/TR 
15310-1:2006.

Identify the most appropriate sampling technique
The sampling plan shall identify the technique(s) selected to collect 
the sample, and shall identify the consequences of deviation from 
the designated sampling technique or equipment.

Information on the type and use of sampling techniques are given 
in the technical report CEN/TR 15310-2:2006 and technical report 
CEN/TR 15310-3:2006 gives information on methods to reduce the 
sample size for presentation to the laboratory.

Conclusion
Wastes arising in a wide variety of types and sampling situations. 
Because sampling objectives may vary, a single standard cannot 
provide definitive instructions for each and every potential case. The 
European Standard 14899 prepared by the Technical Committee 
CEN/TC 292 is in fact an umbrella standard that defines minimum 

requirements on the program, objective, sampling plan and report 
for the execution of a testing program for waste characterization.

Since its release, it has been applied successfully many times 
in France, on different types of waste and for different objectives. 
Examples include:

 ■ Sampling of municipal solid wastes during the last French nation-
al household waste characterization survey in 2007. The house-
hold waste of a representative sample of hundred municipalities 
randomly selected to represent the country as a whole was char-
acterized and analysed in order to ascertain the composition of 
household waste on a national basis.

 ■ Sampling of end-of-life tyres granulate. Aliapur, a Public Limited 
Company and the leader company in the field of recovering used 
tyres in France, implemented the standard to define sampling 
protocols with the objective of characterizing granulate. The 
resulting  protocols have been transformed into standards which 
can be considered as daughter/derived norms of the EN 14899.
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Table 1. Main steps in defining a sampling plan for a testing program.

Step Subject

Specify the objectives of the 
testing program

1
Specify the objectives of the 
testing  program

Develop the Technical Goals 
from the objective

2
Define the lot/population to be 
sampled

3 Assess variability

4 Select the sampling approach

5 Identify the scale

6
Choose the required statistical 
approach

7 Choose the desired reliability

Determine the practical 
instructions

8 Choose the sampling pattern

9
Determine the increment/sample  
size

10
Determine the use of composite 
or individual samples

11
Determine required number of 
samples

Define the sampling plan

12 Define the sampling plan
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Innovative sampling solutions for the mining industry
Maurice Wicks
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While online analytical systems are continuously improving, the mine site laboratory remains the benchmark. The laboratory is 
expected to produce high quality information, so the sampling process is critical. Process managers demand high quality, timely 
produced results. Mine managers and shareholders are demanding that the process, analytical results and productivity is optimized 
to maximize return on investment. These demands conflict with traditional sampling and laboratory routines which are frequently slow, 
labour intensive and commonly involve potentially dangerous, not to mention unscientific methods and work practices. For more 
than a quarter of a century, IMP has teamed with partners and like-minded customers, to challenge conventional sample collection 
and processing techniques. In doing so innovative automated sampling and laboratory solutions have been developed for the mining 
industry. This paper introduces a selection of IMP’s automated sampling and laboratory solutions by presenting project examples 
including a time-based and a mass-based solution for iron ore lump and fines, powder sampling and analysis as well as a slurry 
sampling and analysis solution.

Introduction

M
anual sampling methods and laboratories can involve 
unsafe working practices, are prone to error and pro-
duce historical results rather than timely results. Thus, 
many modern mines have automated the sampling 

and laboratory processes, or are in the process of considering auto-
mating the laboratory. An automated sampling/laboratory, which 
usually involves the use of robots and/or utilizes the latest technolo-
gies offer the following advantages:

 ■ Improved health and safety as workers are not exposed to dust, 
repetitive lifting and noise;

 ■ Provides higher quality data as the possibility of human error, 
such as the switching of sample identification tags and operator 
bias, is minimized as all samples are handled in exactly the same 
way improving the overall quality of data produced;

 ■ Increased productivity. Less people are required to operate an 
automated laboratory than a traditional laboratory. Additionally, 
automation reduces the need for boring and repetitive tasks to 
be completed manually – which inevitably leads to mistakes and 
time wasted due to re-working of samples;

 ■ Laboratory operating costs are more easily managed and auto-
mated laboratories usually cost less to operate than traditional 
laboratories; and

 ■ Sample throughput is considerably quicker. This is because 
samples are processed sequentially rather than in batches.
However, while laboratory automaton can produce great results 

in a timely fashion, without a representative sample, that is collected 
and analysed in a timely way, the laboratory efforts are meaningless. 
Thus, focus must be on “End to End” solutions – from the point of 
sampling to final analysis. In doing so IMP has pioneered and/or 
been involved with the several sampling and associated laboratory 
innovations, summarized below.

Discussion – Case Studies
Innovative Port Laboratories
IMP’s customers include the world’s leading Iron Ore exporters. 
In Australia and South Africa IMP has designed and built several 
integrated port laboratories where the entire process – from sam-
pling to analysis and cargo certification is fully automated. Thus, 
all procedures which include sample collection, sample transport, 

sample drying, sample splitting, particle size determination, mois-
ture determination and chemical analysis are automated. Bulk com-
posite samples can be produced and sampling can be mass or 
time based.

Each sampling and laboratory solution is tailored to the custom-
er’s technical and budgetary requirements while always complying 
with the relevant ISO standard, usually ISO3082. An Iron Ore port 
laboratory is illustrative. Frequently when sampling iron ore, primary 
cuts of up to one ton are taken. This cut is passed through sec-
ondary (and often tertiary) cutters to achieve a constant mass divi-
sion from each primary cut. This constant mass division is typically 
achieved in one of two ways; this can be performed by collecting 
the entire cut (which is of a variable mass) in a weigh hopper and 
using this weight to calculate the size and number of increments 
that need to be taken from this cut to achieve the constant mass 
sample output which is sent to the automated laboratory, alterna-
tively, the flow rate of the variable mass cut, onto the sample cutter 
feeder, is controlled, the sample “slug” length is determined (using 
belt weightometers together with the belt speed) and using this 
information the cutter speed and cut frequency is set to achieve the 
desired constant mass output sample to be sent to the automated 
laboratory. A portion representing each primary cut is transported 
automatically to the robotic laboratory via a conveyor system or 
using IMP’s “Monorail Sample Transport System”. These aliquots 
are composited then divided into sub-lots. Particle size analyses 
and moisture are determined on each sub-lot. Some clients carry 
out sub-lot chemical analysis while others analyze the final com-
posite.

At the 2014 Sampling Conference in Perth RioTinto presented 
a paper that discussed the building, design and operation of their 
new Cape Lambert Iron Ore Port Facility (CLB)[1]. This facility is 
the world’s largest automated iron ore port laboratory (Figures 1–2). 
The turnkey solution comprises of a fully automated sampling and 
analysis system that uses time-based sampling methodology. The 
facility has the ability to sample iron ore products “of medium quality 
variation as defined in ISO 3082 (ISO, 2009).” [1]. In this instance, 
there was a need to design a sampling procedure that would col-
lect a representative sample at the required precision and provide 
full load-port analysis while cargo was being loaded at flow rates 
of between “6000 t/h to 10 440 t/h. This sampling procedure was 

doi: 10.1255/tosf.82
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designed in terms of the ISO 3082 specification as a guideline for 
aspects such as the minimum amount of cuts to be taken from 
a primary cut and acceptable precision limits for sampling, sam-
ple preparation and measurement. Various TOS components were 
also used in the design of aspects of the sampling solution such as 
the maximum cutter speed of 0.6m/s, orientation of cutting plane 
normal to the material flow, minimum cutter aperture of 3x max 
particle size, distance of cutter park position from material flow to 
ensure no cross contamination. The sampling approach is to pro-
portionally extend primary increments (of varying mass relative to 
ship-loading rate) to a standard length using variable speed aero-
belt conveyor systems. This enables a fixed number of secondary 
cuts to be achieved for all primary increment masses and to be 
delivered to the automated cell. The cell is required to be capable 
of concurrently processing four individual shipments, each contain-
ing multiple cargoes.” [1]. To achieve the specified scope, a robotic 
sample preparation system was designed which incorporates two 
robots working together on a linear track in effect creating a hori-
zontal sampling tower.

Detailed in this paper [1], during commissioning a bulk sampling 
campaign was carried out to externally verify all results from the 
CLB automated laboratory and to check for potential bias in the 
sample preparation through the automated cell. In addition to this, 
in order to get an assessment of the sampling, division and meas-
urement precision, the overall precision for this CLB laboratory was 
compared to a nearby laboratory that processes the same prod-
ucts with similar quality variability. “Precisions are calculated as 
per ISO 3085 (ISO, 2002), and, in all cases, the precision for each 
element exceeds the requirements of the standard” [1]. An extract 

from these results showed the bSPM for Fe % at the CLB sampling 
system to be 0.102% compared to 0.138% calculated for the other 
laboratory. Although both systems exceeded the requirements of 
the ISO 3082 standard and the calculated bM was only slightly bet-
ter at the CLB laboratory compared to the other laboratory, the 
author of this paper discussed that “what is clearly evident at the 
CLB automated cell are superior precisions for sample preparation 
and also sampling itself.”[1]. Space does not permit to explain the 
system fully, but the authors conclude that while the challenges 
of implementing this innovative project were significant, “the suc-
cess of this system is clearly demonstrated by the improvement in 
the sampling precision, reliability of the sampling components and 
quality of the results produced by the system, all of which have 
been verified externally.”[1].

Integrated Automated Mine Site Sampling and 
laboratory Systems
Increasingly, mine sites require fast timely information that will allow 
the process to be optimized. While tremendous progress has been 
made with online analytical systems, sampling stations and onsite 
laboratories still provide the benchmark for analysis. IMP has risen 
to the challenge by integrating sampling stations with robotic auto-
mated laboratories. In several instances IMP has done so with the 
aim to determine particle size, and to perform automated chemical 
analysis along with moisture and density testing. Samples can also 
be prepared for manual jigging tests and other physical tests (Figure 
3). As the entire end to end system is close to the sample collec-
tion point and being fully automated, precise results can be trans-
mitted immediately via IMP’s “Control Track Lims” software to the 

Figure 1.The three components of the Cape Lambert Port B automated sampling and analysis facility [1].

Figure 2. Schematic of dual sample preparation cells, at RioTinto’s Cape Lambert Port B (CLB) Laboratory, showing an equipment layout for a “horizontal” 
sampling, division and measurement system.
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plant control system: allowing the complete “end to end” analytical 
process to be optimized – transforming the laboratory into a true 
“Process Optimization Centre”.

In another instance, as shown in Figure 4, sample splitting, crush-
ing and drying occurs in the sample station. This allows a dry ali-
quot to be sent directly to the laboratory using a pneumatic capsule 
transport system. This is made possible because the entire drying 
process happens in a few minutes, integrated into the sampling 
tower. This is achieved using an innovative “IMP vibro dryer”, which 
combines infrared drying with a vibrating oil heated base-plate. As 
the base-plate vibrates the sample is forced to move in a circular 
direction. This motion releases trapped moisture while continually 
exposing fresh surfaces to the infrared lamps – which allows rapid 
drying to occur. A built-in pyrometer monitors the surface tempera-
ture and controls the heat within the predefined limits. This bespoke 
drying system ensures that samples are dried rapidly without com-
promising integrity. After drying, the direction of vibration is changed 
which discharges the sample. The discharged sample is automati-
cally placed into a capsule and sent directly to the laboratory via an 

air tube system. After the sample is received in the laboratory, it is 
automatically removed from the capsule for further processing.

Integrated Automated Slurry Sampling and Laboratory 
Systems
Historically, slurry samples are collected automatically into a bucket 
and manually transferred to the laboratory. In these instances it is 
typical for automated slurry stream samplers to direct the sample 
through one or more Vezin splitters so eventually a correct amount 
of slurry sample accumulates in a bucket. Normally this occurs once 
each shift, or a pre-determined number of times during the day but 
usually two or three samples per 24 hour period are collected in the 
bucket (Figure 5). Once or twice a day the bucket is transported 
manually to the laboratory which may be some distance from the 
sampling point. Therefore it is not uncommon for the first sample 
to reach the laboratory some hours (often 24 hours) after accu-
mulation of the sample commenced. Because of the manual filter-
pressing, drying and sample preparation, typical analysis process-
ing times are 1–2 days for the first composite. These systems may 
provide high quality data for metal-accounting and good statistics 
on plant performance but offer no added value to the immediate 

Figure 3. Automated sampling integrated with an automated laboratory.

Figure 4. Integrated Sampling Station.

Figure 5. Typical bucket sampling system with manual filter presses.
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running of the process. It is because of this that laboratories are 
frequently seen as an overhead rather than a valued Process Opti-
mization Centre.

IMP has responded to this challenge by developing an automated 
slurry sampling system and laboratory. By employing a novel solu-
tion to transport the slurry aliquots from the various plant sampling 
points to the laboratory results can be available in minutes rather 
than hours or days. For example, from time of sampling to getting a 
finished result, automated X-ray fluorescence and/or mineralogical 
data can be available in around 20 minutes. Automated fire assay 
results, using IMP’s patented Fast (FIFA) inline fire assay techniques, 
can be available in under an hour. Thus, many more samples can 
be processed than in a manual system described above – meaning 
the plant’s processes can be optimized because of the timely data 
received from the laboratory or the now valued “Process Optimiza-
tion Centre”.

To achieve these analytical times slurry aliquots are automatically 
filtered and prepared using a robotic sample cell. If required, the liq-
uor can also be captured for analysis. An alternative to this system 
is to dry the slurry by “trickle feeding” onto a continuous belt infrared 
drier. When dried the sample is scrapped off the belt and fed into 

Figure 6. Variation in the concentration of the main mineral phases using 
XRD.

Figure 7. Results from BHPBilliton.
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a capsule for transporting to the laboratory. It is essential that the 
samplers (typically cross-stream) comply with good sampling prac-
tice such as cutting the whole stream at 90° and not just part of it. 
The vezin type cutters should also be radial and cut the full stream 
at 90° and the slot width of the cutter should be at least three times 
the nominal particle top size of the solids.

The value of rapid analysis was demonstrated by an experiment 
undertaken by a copper mine in Australia. During these tests the 
customer took 200 samples over 32 hours from the concentrator, 
to replicate an automated rapid “End to End” sampling/analytical 
system. For the first 150 samples the mineralogy did not change 
but around the 150 sample mark results showed that the pyrite 
values had increased (Figure 6). If the operators had known that 
abnormal proportions of pyrite were floating, a depressant could 
have been used to benefit the operation. In this case it is predicated 
that an extra 0.25% of copper could have been extracted, over the 
32 hours, which is significant when applied to the life of the mine.

Quality – A Key Benefit of End to End Automation
RioTinto identified significant improvements to precision when using 
an automatic end to end system that incorporated a time-based 
sampling methodology with a fully automated analytical facility. This 
improvement in quality is supported by BHP. At a conference in 
2011 BHP Iron Ore gave a presentation [2] that compared the ana-
lytical results obtained using an automated system and a manual 
system. When building the new Mt Whaleback automated labora-
tory in Newman, Western Australia, duplicates were run through 
the manual laboratory versus the automated laboratory. Duplicates 
were used to classify ore into four groups based on a cut-off grade:

 ■ ore classified as ore – a good outcome;
 ■ waste classified as waste – a good outcome;
 ■ waste misclassified as ore – a marginally acceptable outcome as 
it is a dilution of the ore body and;

 ■ ore misclassified as waste – the worst possible outcome, the 
equivalent of throwing money away!
Automated preparation of samples clearly demonstrates an 

improvement in precision and a corresponding reduction in ore 
being incorrectly misclassified as waste. The difference is dramatic 
and the questions have to be asked – how much did the manual 
analytical system really cost in lost revenues? How does one quan-
tify the revenue lost to a company because ore was classified as 
waste?

In addition to these analytical improvements BHP Billiton were 
able to quantify a significant reduction in occupational health and 
safety hazards as workers were not exposed to as many repeti-
tive tasks, heavy lifting and were exposed to less dust and noise 
level than when working in conventional/manual sampling stations 
laboratories.

Conclusion
Automating the entire process, from sampling to analysis, results 
in the fastest possible turnaround times of precise analytical data. 
This turns the laboratory into a valued process tool, or Process 
Optimization Centre as data becomes available in minutes rather 
than hours or days. Quicker results enable production personnel to 
improve plant control resulting in increased plant efficiencies and 
improved beneficiation.

Additionally, IMP’s customers have published results confirm-
ing that with “End to End” automation systems the data obtained 
improves significantly. This impacts the bottom line, improves deci-
sion making, and has the added advantage of improving occupa-
tional health and safety.

Finally, automated “End to End” sampling analytical systems are 
not confined to one particular commodity, laboratory or sample 
form. Samples can be bulk or large samples, have varying particle 
sizes, be solid or in the form of a slurry. Across the industries, from 
aluminum to zinc, IMP has successfully implemented innovative 
automated “End to End” sampling analytical solutions for ports, at 
the mine and in mineral processing plants.
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A short introduction from the “Revue de 
l’Industrie Minerale”
In the 1960s the “Revue de l’Industrie Minerale” took the delicate 
task to publish several special editions in its journal to expose the 
Theory of Sampling suggested by Pierre Gy. They wrote:

“In these documents Pierre Gy suggests an equi-probabilistic 
Theory of Sampling based on samples with a constant number of 
fragments; in other words, considering samples that are all made 
of the same number of fragments. Nevertheless, results from his 
theoretical analysis lead to the justification that formulas that are 
suggested in practice are applicable to samples with constant mass 
or constant volume as well. It should be underlined that similar 
American studies seem to support Pierre Gy’s opinion.”

G. Matheron, through a careful review of Pierre Gy’s work, has 
demonstrated, by means of a rigorous mathematical analysis that 
both samples with a constant number of fragments and samples 
with a constant mass lead to a dispersion of possible grades for the 
lot to be sampled that have similar variances.

The mathematical level of this study may prove to be difficult to 
many readers. However, the importance of the argument is critical 
for the validity of the Theory of Sampling; it is an argument that 
has been approached by many authors over the years leading 
to frustration and failure. As a consequence, Pierre Gy’s theory 
generated passionate controversies.

The “Revue de l’Industrie Minerale” is proud to bring to this 
important discussion the contribution of an authority as famous as 
G. Matheron.”

This document was published 55 years ago and still endures the 
challenges of time. During that long period of time it became clear 
that the fact that such an important document was written in French 
was a huge handicap, especially for reaching the Anglo-Saxon 
audience effectively. We hope the present translation made by 
two recipients of Pierre Gy’s Gold Medal for excellence in teaching 
the Theory of Sampling will help to fill that gap. Complementary 
explanations are also inserted where appropriate, so the reader can 
progress in a more friendly way, and better appreciate the subtle 
foundations of the Theory of Sampling.

Abstract
In his essay “l’echantillonnage des minerais en vrac” that could 
be translated as “sampling of particulate ore” published in 1967 in 
France by the Revue de l’Industrie Minerale, Pierre Gy suggests a 
calculation of the variance associated with samples with a constant 
number of fragments. In practice, samples with a constant mass 
are instead collected, which may seem at first like a contradiction. 
In this mathematical development it is clearly demonstrated that 
these two kinds of samples lead to variances that are similar within 
well-established mathematical limits.

[Translators’ Note (T.N.): To make the translation easier to read, 
the structure and the logical articulation of Matheron’s long and 
tedious paper need to be understood first:
1. The introduction first establishes the difference between “sam-

pling in number” and “sampling in mass”, to ready the math-
ematical background.

2. Sampling in Number is then studied.
 ■ This first calls for specific developments aimed at calculating 
first order approximations to E(1 / Y), E(1 / Y k) and, for Gy’s for-
mula, E(Xk / Y k) for a random variable Y. There are no ready-
made formulas in statistics, and no exact formulas for this task. 

 ■ A rather tedious demonstration using the Laplace transform 
indeed shows that in the case of E(1 / Y), for any random vari-
able Y that can be interpreted as the mean of “n” independent, 
identically distributed (i.d.d.) random variables, even a diver-
gent serial development can be actually used as a limited de-
velopment near the value of “n” considered. The result is then 
generalized to E(1 / Y k).

 ■ Having set up these mathematical tools, then Gy’s formula is 
established for sampling in number and the result is formally 
identical to Gy’s findings, thus validating it.

3. Sampling in Mass is then tackled:
 ■ The necessary approximations are again established for E(N) 
and E(N2), N being the number of fragments (now a random 
variable) in the sample of a given mass p.

 ■ Then approximations are also needed for E(X;p) and E(X2;p), 
i.e. the mathematical expectations of the sample metal 
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quantity  X at a given mass p, and of its square. This time, the 
Fourier transform helps establish, like before, usable limited 
developments.

 ■ The same formula as for sampling in number is finally reached 
in the case of a given mass, and the paper concludes that 
Gy’s formula is formally and fully validated for both types of 
sampling.]

1. Matheron’s introduction
In his fundamental document published in 1967 dedicated to 
“l’echantillonnage des minerais en vrac” (i.e. the sampling of bulk 
ores) Pierre Gy demonstrated that the variance associated with a 
sample made of a given number of fragments n (i.e., sample made 
of a preset number n of elementary fragments) follows an asymptotic 
tendency when the number n is large and when the sampling mode 
that is used is equi-probabilistic (i.e., correct, which means all 
possible samples with n fragments have the same probability of 
being selected by the sampling tool). The theoretical path followed 
by Pierre Gy has been the object of severe criticism over the years 
that can be summarized by the two following arguments:
1. As far as the calculation of the variance is concerned, the validity 

of some of Gy’s developments has been contested.
2. Furthermore, in daily practice, the collection of samples with a 

constant number of fragments n predetermined in advance is 
never done that way, but rather samples with a predetermined 
mass or volume are indeed collected; the number of fragments 
in these real samples is then necessarily unknown. Then, con-
sequently, it is apparently justified to doubt that conclusions 
reached for samples with a constant number of fragments are 
also valid for samples with a constant mass or a constant vol-
ume.
The objective of this study is to carefully investigate these 

objections and demonstrate the full legitimacy of Pierre Gy’s results 
[T.N.: in other words it is a corner stone to confirm the legitimacy 
of the Theory of Sampling]. From a mathematical standpoint it is 
relatively easy to demonstrate the legitimacy of a theory based 
on samples with a constant number of fragments. However, to 
legitimately transfer these results to a theory based on samples of 
constant mass or constant volume requires the use of far more 
difficult mathematical tools. In a way this explains why Pierre Gy in 
his search for a pragmatic tool chose to use the simplest approach. 
For the sake of simplicity and to avoid unnecessary mathematical 
developments the assumption is made that the original number of 
fragments in the lot to be sampled is practically infinite, which is 
most of the time almost exactly the case. To get straight to the point 
the two following hypotheses are made:

The mass w— of one ore fragment and its metal content q can be 
considered as two random variables that are not independent. 
Furthermore, to simplify notations, the assumption is made that their 
distribution function F(q · w—) carries a probability density function f(q,w—).
1. The sample collection mode is such that the selected sample can 

be considered as the reunion of fragments following the same 
probability law f(q,w—) (i.e., collected one by one at random and 
making sure they are independent from one another). In other 
words:
a. For a sample with a given number of fragments n, its mass and 

its metal content  can be written as follows:
 

1

n

n i
i

X q
=

=å  [1]
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n

n i
i

Y w
=

=å  [2]

It is understood that each qi is independent of qj and w—j for j ¹ i 
(but it is also understood that qi and w—i are not independent), and 
each pair (qi,w

—
i) follows the same probability law f(q,w—).

b. If, on the contrary, we consider a sample of a given mass p 
defined by the following condition:
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its number of fragments N appears to be a random variable. 
The mass Yn and the quantity of metal Xn of this sample are 
then defined as sums of a random number N of variables w—i 
or qi.

In a first part we will calculate the mathematical expectation and 
the variance of the metal concentration Xn / Yn of the sample carrying 
a number of fragments n when n is a large number. In the second 
part the same calculations are repeated for the metal concentration 
XN / p of a sample of a given mass p, when p is a large number. It 
is intended to demonstrate that their variances for both cases are 
asymptotically equivalent when p is large. 

2. Case of a sample with a constant number of 
fragments
Assuming the number of fragments in the sample is n let us 
introduce:
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When n is large, variances of X and Y are in 1 / n, and the 
centered moments of superior orders are at least in 1 / n2. The 
metal concentration X / Y of the sample appears then like the ratio 
of two random variables having very small variances. To calculate its 
mathematical expectation and its variance, it is convenient to write:

 Y = my + e   with   my = E(Y ) [6]

and then getting started from the following formal development in 
series:
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which can be used if | e / my | < 1.
If there is a probability of “one” that the inequality | e / my | < 1 be 

verified, it is possible then to take the mathematical expectation one 
term at a time, and then deduce from a complete serial development 
what the expression of the average and the variance of X / Y should 
be. Of course, if the inequality | e / my | < 1 is not verified with a 
probability of “one”, this mode of calculation would no longer be 
valid, plus the serial developments that could be obtained would 
generally diverge anyway. Nevertheless, as a limited development 
(as opposed to a formal serial development) the results obtained by 
this process would conserve their validity.
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2.1 Mathematical expectation E(1 / Y)

To prove it without useless mathematical developments, let’s 
focus only on the mathematical expectation E(1 / Y ) of a variable Y 
characterized by a density f(y). In this case indeed:

 ( )1 1
E f y dy

Y y

+¥

-¥

æ ö÷ç =÷ç ÷÷çè ø ò  [8]

If f(0) ¹ 0, this integral is divergent and therefore 1 / Y cannot have 
a mathematical expectation: for example, if Y is a normal variable, 
its inverse can never have a mathematical expectation. Therefore it 
is critically important not to assume that the law of f(y) is close to 
a Gaussian law. In fact, Y representing a mass, f(y) is different of 
0 only for y ³ 0, and the integral [8] will exist provided the density 
f(y) is of a very small order e > 0 for y = 0. It is easy to demonstrate 
that this condition is always satisfied in the case where Y is the 
sum of at least two independent variables that themselves follow 
continuous laws. In the problem that is investigated in this study 
E(1 / Y ) therefore always exists (T.N.: because of equation [5] ).

To evaluate E(1 / Y ) it is convenient to introduce the Laplace 
transform of the law f(y):
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As a matter of fact F(l) always exists for l ³ 0 and the following 
integral as well:
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If µ tends toward the infinite in relation [10] it can be noticed that 
the mathematical expectation of 1 / Y exists at the same time as the 
integral
 ( )

0
d

m
F l lò , and that:
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(T.N.: i.e. the integral of the Laplace transform on [0,∞].)
Let’s call m the mean, s2 the variance and mn the centered 

moment of order n of the variable Y (that we will assume to exist); 
let’s also call Fc(l) the Laplace transform of the law of the centered 
variable Y – m:

 ( ) ( ) ( )Y m m
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Then also:
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Now, in some cases Fc(l) can be developed into a formal series 
of the following form:
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Taking this expression into [13] and if it is integrated term by 
term, the following expression is obtained (T.N.: after quite some 
calculus):
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In other words, it is exactly the result that should be expected 
from the development [7] [T.N.: with X = 1 and Y – m = e]. 

However:
 ■ It is possible that the series [14] may not be convergent; this is 
the case when Y is, for instance, a lognormal variable. 

 ■ It is also possible that even if the series [14] is convergent, it may 
not be uniformly convergent, making the term by term integration 
invalid; it is what happens, for instance, when f is a gamma law: 
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For a > 1, E(1 / Y ) exists and [14] converges. However, the 
convergence is not uniform and it is easily shown that the formal 
mathematical development written in [15] is diverging (mk / m

k tends 
toward an infinite value with k).

Therefore, in general, it is not possible to use the full development 
written in [15] as a formal series.

However, as we are going to see, it is always possible to use it 
as a limited development within the domain of variations that is of 
interest to us, provided we can show the rest of the development 
behaves as a negligible remainder in that domain.

As a matter of fact let’s write:
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The remainder Rk(l) of this development is:
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By taking [17] into [13] the following expression is obtained:
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The remainder R'k of this development is:
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To find an upper bound for this remainder let’s take a number a > 1 
(that we will soon define) and let’s write:
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For x ³ (m / a) we have:
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so that an upper bound for the second integral is:
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But, if Y can be written like

1

1 n

i
i

Y
n =
å

the centered absolute moment
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E Y m
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tends toward 0 when n tends towards infinity (generally it is an infini-
tesimally small value of order h + 1 < k + 1 in 1 / n).

What is left to do is finding an upper bound for the first integral of 
remainder R'k.

If the density of Yi has a number B as upper bound, the density 
of Y verifies:
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[T.N.: this upper bound can be difficult to establish. First, one must 
show the density function of the sum of the n variables Xi has
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as upper bound. This is obtained by recurrence, remembering 
the density function g(t) of the sum of two independent random 
variables with positive values is the convolution product of their 
densities (summed between 0 and t). The upper bound for the 
average of the Xi is then only derived, remembering the density 
function h(t) of variable “X / n” can be derived from the density f(t) of 
X as h(t) = n f(nt).]

Then, the following expression is obtained:
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If n is sufficiently large the Stirling formula can be used to replace 
factorials in [25] by a term such as
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that tends exponentially toward 0 when n ® ¥ as long as the 
selected value for a is superior to Bme (e.g., a = 3Bm).

Therefore, finally, the last part R'k is an infinitesimally small number 
in 1 / n in the order of
 1
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(an order generally smaller than k + 1). It is not important if R'k tends 
toward 0 or not for k ® ¥. If, for any given value of k, it is possible to 
verify that R'k is in the order of h + 1 in 1 / n, it is then possible in the 
approximation of order h (generally < k) to utilize the development 
[19] and stop at the term in mk.

2.2 Mathematical expectation E(1 / Yk)
Similarly it is possible to demonstrate that the mathematical 
expectation E(1 / Yk) exists at the same time as the integral
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It is then sufficient to replace F(l) with e–lmFc(l) to obtain, as 
above [see (13)], the formal development of E(1 / Y k) which is most 

of the time divergent; however, it is possible to use it as a limited 
development. For example, for k = 2, it becomes:
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from which (by subtracting the square of E(1 / Y ) in (19), it is possible 
to obtain the principal part of the variance of 1 / Y:
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2.3 Establishing Gy’s formula

If X and Y are two random variables of law f(x,y) we can start by 
introducing the Laplace transform:
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And, as above, the following relation is obtained:
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[T.N.: To see it, one first calculates:
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So that the right-hand side of [30] is:
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Noting that:
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One can see that:
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(Q.E.D.)]
Then, calling Fc the transform of the centered variables law:
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Suffice substituting F for x ym m
ce l m- - F  in equation [30], as before, 

to obtain some formal developments, generally divergent, that can 
be used as limited developments. So that, from:
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one obtains without difficulty the first terms of the developments of 
E(X / Y ) and E(X2 / Y2):
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as well as the principal part of the variance of X / Y:
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which can also be written:
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Coming back to the original notations shown in [1] and [2], it is 
easy to see that the metal content X / Y = Xn / Yn of the sample with n 
fragments has a mathematical expectation and a variance that can 
be written as follows [when ignoring the terms in 1 / n2 and letting 
x0 = E(q) and y0 = E(w—)]
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 [39]

These are indeed the formulas obtained by Pierre Gy and in 
particular formulas obtained in Chapter IV of his January 15, 1967 
publication. The validity of these formulas is therefore no longer 
questionable. It can be seen that the mathematical expectation 
E(X / Y) of the metal content of the sample made of n fragments (for 
all the possible choices of the sample in the lot) does not exactly 
coincide with the real mean of the lot, which is x0 / y0, but the 
difference is extremely small and in 1 / n. Therefore there is indeed 
always a small bias. The variance is, as expected, as the inverse of 
size n.

3. Case of a sample with constant mass
In daily practice it is clear that collected samples have either a 
constant mass, or volume, pre-selected in advance, rather than a 
constant number n of fragments. Then it is not obvious that the 
sampling variances for these two sampling modes are the same. 
Because the variable
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almost surely converges toward E(w—) when n tends toward an 
infinite value, one would certainly suspect they are, but it would be 
wiser to demonstrate this property more rigorously.

Let’s assume that in the collected sample, everything is like 
randomly collecting successive fragments with average masses w—i 
and metal contents qi, and that each one of these two quantities 
obeys the same probability law for all the fragments. Then, when 
n fragments have been collected, a sample is obtained with the 
following characteristics:

 
1

n

n i
i

X q
=

=å  [40]

 
1

n

n i
i

Y w
=

=å  [41]

When n changes the vector (Xn,Yn) is a stochastic process (i.e., a 
vectorial process with two components Xn and Yn defined within the 
discrete set of positive integers n. Because of the independence of 

the successive fragment selections, it constitutes a Markov process 
with independent and stationary increments.).

Each of the two components Xn and Yn can be represented by a 
random steps process as illustrated in Figure 1. The sample with 
a number of fragments k pre-selected in advance, and studied in 
the former section, is defined by (Xk,Yk), which is the value of the 
process (Xn,Yn) for the particular value n = k.

The sample of mass p selected in advance can be defined in two 
different ways, either by default or by excess. As a matter of fact if 
N is the random time (the value of n) for which we have:

 1,N NY p Y p+< ³  [42]

then it can be said that N is the random number of fragments of the 
sample of pre-selected mass p. Indeed, the two inequalities [42] 
mean that the N first fragments consist of a sample of mass smaller 
than p, and that the total mass of the N + 1 first fragments reaches 
or surpasses p. The sample itself can be defined either by default 
with characteristics Xn and Yn or by excess with characteristics Xn + 1 
and Yn + 1. These two definitions can be considered as equivalent; 
indeed both samples usually made of many fragments are different 
only by one fragment which is the fragment selected at a (N + 1)th 
time.

In the following developments we opted for the definition 
by excess (XN + 1,YN + 1). In the first step, the law of the random 
number of fragments N of the sample of pre-selected mass p is 
investigated, then in a second step, the law of the metal content of 
the same sample is investigated, or, in other words the law of XN + 1. 
The given mass p of the sample being assumed large, relative to 
the average mass y0 = E(w—) of the individual fragments, we will be 
mainly searching for the asymptotic expressions of the mean and 
the variance of these different variables.

3.1 Law of the number of fragments N in the sample of 
pre-selected mass p
Let’s call Pn(p) the probability of having N = n, or, in other words, a 
number n of fragments in the sample. The event “N = n” coincides 
by definition with the event “Yn < P and Yn + 1 ³ p”.

Let’s define fn( y) as the density of probability, and Fn( y) the 
cumulative distribution function of the Yn distribution. Therefore, the 
probability of the event “Yn < P” is Fn( p) and the probability of the 

 11

nY
p

N 1N1 2
 

Figure 1. Illustration of the Markov process.
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event “Yn + 1 < p” is Fn + 1( p). Since the event “Yn < p” is the logical 
sum of events “N = n” and “Yn + 1 < p” that are incompatible (i.e. we 
have “N = n” OR ELSE “Yn + 1 < p”), we obtain:

 ( ) ( ) ( )1n n nF p P p F p+= +  [43]

from which the following expressions can be deduced:

 ( ) ( ) ( )1n n nP p F p F p+= -  [44]

 ( ) ( )0 11P p F p= -  [45]

It is then convenient to introduce the generating function G(s;p) 
of the Pn(p) probabilities, which, according to [44] and [45] lead to:

 ( ) ( ) ( ) ( )1

0 1

; 1 1n n
n n

n n

G s p s P p s s F p
¥ ¥

-

= =

º = + -å å  [46]

As is well known, suffices deriving the generating function and 
taking s = 1 to obtain the successive moments of the discrete law 
of Pn(p). The two first interesting moments are:

 ( ) ( )' 1E N G=  [47]

 ( ) ( )1 " 1E N N Gé ù- =ê úë û  [48]

Taking into account the expression of the generating function [46] 
we obtain:

 ( ) ( )
1

n
n

E N F p
¥

=

=å  [49]

 ( ) ( ) ( )
1

1 2 1 n
n

E N N n F p
¥

=

é ù- = -ê úë û å  [50]

We therefore need to evaluate both sums SFn(p) and SnFn(p) 
when p is large. This is made possible introducing the Fourier 
transform and by using the following rule:

If h(x) is a function, and if H(u) is its Fourier transform 
(generally taken in its distributional expression), it is known 
that the continuity properties of H(u) give an image of the 
regularity of h(x) toward the infinite. In particular, if the 
distribution of H(u) is identified with a continuous function 
growing slowly, h(x) tends toward zero when x tends 
toward the infinite.

Then, let h(x) be a function worth zero for x < 0, and H(u) its 
Fourier transform, which generally is a distribution. If the distribution
 
 ( )

( ) ( )
0 1 2

2 3

a a a
H u

iu iu iu
+ - +

is identified with a continuous function growing slowly, then:

 ( ) 22
0lim 0 when

2i

a
h x a a x x x
é ù
ê ú- - - = ® +¥
ê úë û

 [51]

In other words h(x) is then asymptotically equal to the polynomial 
function
 22

0 1 2
a

a a x x+ +
.

In what follows let’s make l = –iu which is formally equivalent to 
using the Laplace transform. We should ignore some mathematical 
difficulties that are of no consequences in the following study, 
especially the summation of geometric series of the type S[F(u)]n, 
where F(u) is a characteristic function: in fact it is necessary to assume 
the inequality |F(u)| < 1 is strict as soon as u is not nil. This condition 
is indeed verified for all usual laws, with the exception of discrete 
laws such as the Poisson law, for which the random variable cannot 
admit other values than integer multiples of a same quantity: these 
laws have characteristic functions that are periodic and the equality 
F(u = 1) is indeed possible for u ¹ 0.

To find the asymptotic expression: 

 ( ) 22
0 1 2

a
h x a a x x» + +  [52]

of a function h(x) (identically nil for x < 0), suffice taking its Laplace 
transform F(l), and then determining constants a0, a1 and a2 in 
such a way that
 ( ) 0 1 2

2 3

a a a
l

l l l
F - - -

is a continuous function in l = 0.

Calculation of E(N) and E(N2)
Then, let F1(y) be the function representing Y1 (i.e. the mass of a 
fragment) and F(m) its Laplace transform:

 ( ) ( )1
0

ye dF ymF m
¥

-= ò  [53]

The variable Yn which is the sum of n independent variables from 
the distribution law Fi, follows a law for which the Laplace transform 
is [F(m)]n. The transform of Fn(p) is then (1 / m)[F(m)]n, and the sum

 ( )
0

n
n

F p
¥

=
å
has the following transform:

 ( )
( )0

1 1
1

n

n

F m
m m F m

¥

=

é ù =ê úë û é ù-ê úë û
å  [54]

[T.N.: by summation of the series].
Let y0 = E(Y1) and sy

2 be the mean and the variance of the fragment 
mass.

[T.N.: Replacing e–µy in [53] by its development in series 
e–µy = 1 + (–µy) / 1! + (–µy)2 / 2! = … and integrating] we obtain the 
limited development:

 ( ) ( )2 2 2
0 0

1
1 ...

2 yy yF m m m s= - + + +  [55]

from which we derive:

 
( )

2

2 2
0 0

1 1 1
1 ...

21
y

y y

s

m mm F m

æ ö÷ç ÷ç= + + +÷ç ÷é ù ç ÷- è øê úë û
 [56]

Applying the rule described above, the following asymptotic 
expression is deduced:

 ( )
2

2
0 0 0

1
1

2
y

n
n

p
F p

y y

s¥

=

æ ö÷ç ÷ç» + + ÷ç ÷ç ÷è ø
å  [57]

Go back to [49] and [50] remembering that F0(p) = 1. The 
mathematical expectation E(N;p) of the number of fragments in the 
sample of mass p, then admits the following asymptotic expression:
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 ( )
2

2
0 0

1
; 1

2
yp

E N p
y y

sæ ö÷ç ÷ç= + - ÷ç ÷ç ÷è ø
 [58]

Its principal part coincides, as expected, with the ratio of the 
selected sample mass p to the average mass y0 of individual 
fragments. (T.N.: but it is not equal to it exactly, and there is a first, 
small bias. To understand why this surprising bias exists, one needs 
to go back to the definition of the sample of mass p, i.e. to formula 
[42].)

Now, let’s go to the sum SnFn(p) for which the Laplace transform 
relative to p is:

 ( )
( )
( ) 2

1

1 1
1

n

n

n
F m

F m
m m F m

¥

=

é ù = ×ê úë û é ù-ê úë û
å  [59]

Taking the limited development, now pushed to the third order, 
and calling a3 the moment of order 3 of the law F (i.e. F1), we obtain:

 ( ) 2 2 2 3
0 0 3

1 1
1 ...

2 ! 3 !yy y aF m m m s mé ù= - + + - +ê úë û  [60]

From which we easily obtain:

( )
( )

2 2 4
3

2 2 3 2 3 2 4 3
0 0 0 0 0

1 1 1 1 1 3 1
...

4 4 31

y y y a
y y y y y

s s sF m

m m m mF m

é ù
ê ú× = + × + + + × - × +ê úé ù- ê úë ûê úë û  

  [61]

By applying the rule used earlier we obtain the following 
asymptotic expression:

 ( )
2 2 42

3
2 3 2 4 3

1 0 0 0 0 0

1 1 3 1
2 4 4 3

y y y
n

n

ap
nF p p

y y y y y

s s s¥

=

» × + × + + + × - ×å  [62]

In fact (for p large) we only need the terms in p and p2 and we can 
ignore the constant term. Transposing this result into [49] and [50], 
and taking into account expression [58] for E(N ), we obtain:

 ( )
22

2
2 2
0 0 0

2 1yp p
E N

y y y

sæ ö÷ç ÷ç= + × - ÷ç ÷ç ÷è ø
 [63]

Then by elevating [58] to a square and subtracting it from the 
above expression [63], we finally find the asymptotic expression of 
the variance of the number of fragments in the sample of mass p:

 ( )
2

2
2

0 0

; yp
D N p

y y

s
= ×  [64]

This expression is proportional to p / y0 therefore proportional to 
E(N;p) at the first order.

3.2 Law for the metal content XN + 1 of the sample with a 
given mass
Now, let’s call f(x,y) the density of probability of the (Xn,Yn) 
characteristics of a single fragment, and let F(l,m) be its Laplace 
transform:

 ( ) ( )
0 0

, ,x ye f x y dxdyl mF l m
¥ ¥

- -= ò ò  [65]

We must determine the density g(x;p) of the metal content XN + 1 
of the sample (by excess) of a given mass p and random number 
of fragments N.

[T.N.: ( ) ( )
0

, ,g x p f x y dy
¥

= ò ]

To express this law, and in particular to find the asymptotic 
expressions of the mean and variance of XN + 1 we shall use the 
Laplace transform G(l,m) of the function g(x;p), relative to the two 
variables x and p:

 ( ) ( )
0 0

, ; x pg x p e dxdpl mG l m
¥ ¥

- -= ò ò  [66]

We will take advantage of the fact that the process (Xn,Yn) is made 
of stationary and independent increments, and more precisely that 
for all n > 1, the vector (Xn – X1,Yn – Y1) is independent of (X1,Y1) and 
follows the same probability law that of (Xn – 1,Yn – 1). The sample of a 
given mass p has a number of fragments N = 0 if the first fragment 
has a mass Y1 ³ p. On the contrary if the first fragment has a mass 
Y1 = h < p and a metal content X1 = e the conditional probability law 
of the sample of given mass p (tied by conditions X1 = e and Y1 = h) 
has a density g(x – e;p – h). We then deduce the integral equation:

( ) ( ) ( ) ( )
0 0

, , ; ,
x p

p
g x p f x y dy d g x p f de e h e h h

¥
= + - -ò ò ò  [67]

If we apply the Laplace Transform (in x and p), to both members 
of equation [67], the convolution products they contain are replaced 
by ordinary multiplicative products and we obtain:

 ( ) ( ) ( ) ( ) ( )1
, ,0 , , ,G l m F l F l m G l m F l m

m
é ù= - +ê úë û  [68]

From [68] we immediately deduce the expression of the Laplace 
transform G(l,m) of the density g(x;p):

 ( )
( ) ( )

( )
,0 ,1

,
1 ,

F l F l m
G l m

m F l m

-
= ×

-
 [69]

By deriving this transform in l and by making l = 0 we obtain 
the Laplace transforms for the mathematical expectation E(X;p) 
and the variance E(X2;p), which are functions of the only variable 
p. To write this in a concise way we will call the metal content of 
the sample by excess X, instead of calling it XN + 1. By using the 
Laplace transforms, the rule already used earlier will then allow us 
to calculate the asymptotic expressions representing these two 
mathematical expectations, and, as a result, the variance of the 
sample with a given mass p.

Calculation of E(X;p)
By deriving [69] once in l and by making l = 0 we obtain the 
transform of E(X;p) under the following form:

 
( )
( )

( )0

0

' 0,01
0,

1 0,
n

n

xF l
F m

m F m m

¥

=

é ù- × = ê úë û- å  [70]

where designates the mathematical expectation E(X1) of the metal 
content of a given fragment. In the same way sx

2 will designate the 
variance of X1.

Since (1 / m)[F(0,m)]n is the transform of Fn(p) according to [49] and 
[50] we obtain:

 ( ) ( )0; 1 ;E X p x E N pé ù= +ê úë û  [71]

Then, the by-excess sample, with a number of fragments N + 1 
instead of N, contains, on average, a metal content proportional to 
its size. As far as the mathematical expectations are concerned, the 
condition that we imposed to the sample by fixing its mass p does 
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not generate any effect: everything remains as if it was the collection 
of a given number of fragments n = 1 + E(N;p).

Taking into account [58] we also obtain:

 ( )
2

0
0 2

0 0

1
; 1

2
yx

E X p p x
y y

sæ ö÷ç ÷ç= + + ÷ç ÷ç ÷è ø
 [72]

The mathematical expectation (1 / p)E(X;p) of the metal 
concentration X / p of the sample of given mass p is different than 
the real concentration x0 / y0 by a quantity that is always positive, but 
very small (in x0 / p).

This tiny, positive bias is easily explained if we recall that we are 
dealing with a sample by excess with a real mass YN + 1 that is always 
slightly superior to p (see [42]).

Calculation of E(X2;p)
We obtain the Laplace transform of the order 2 moment by deriving 
G(l,m) twice in l before making l = 0, which according to [69] 
gives:

 

( )
( )

( ) ( )
( )

( )
( )
( )

'' ' '

2

'2 2
0 0

2

2 0,0 0,0 0,1 2
1 0, 1 0,

0,21
1 0, 1 0,

xx x

l l l

l

F F F m

m F m m F m

F ms
m F m m F m

× + ×
é ù- -ê úë û

+
= × - ×

é ù- -ê úë û  [73]

The first term is different from the one that we used to calculate 
E(X;p) only by a constant factor. Then, it corresponds to a term with 
a principal part in p in expression E(X2;p), which is (x0

2 + sx
2)(p / y0).

Developing the second term, we easily obtain:

 
( )
( )

2' 2
0 0

3 22
0 0 0

0,2 2
1 ...

1 0,
y xyx x

y y x
l s sF m

m
m mF m

é ùæ ö÷çê ú÷ç- × = + - +÷ê úç ÷é ù ç ÷- è øê úê úë û ë û
 [74]

The corresponding asymptotic expression is then (limiting 
ourselves to the first two main terms in p and p2):
 
 

22 2
20 0

2 2
0 0 0 0

2 y xyx x
p p

y y y x

s sæ ö÷ç ÷ç+ - ÷ç ÷ç ÷è ø

By grouping these two results together we finally obtain:

 ( )
22 2

2 2 20
02 2 2

0 0 0 0 0 0

; 1 2 2y xyxx p
E X p p x

y y x y x y

s ssæ ö÷ç ÷ç= + + + - ÷ç ÷ç ÷è ø
 [75]

Calculating the variance of the sample of given mass p
It is only necessary to square equation [72] to make this calculation, 
of course limiting the calculation to the terms p and p2, and then 
subtracting it from equation [75] which leads to the principal part 
of the variance:

 ( )
22 2

2 0
2 2

0 0 0 0 0

; 2y xyxx
D X p p

y x y x y

s ssé ù
ê ú= + -ê ú
ê úë û

 [76]

The expression between brackets can be replaced by:

 
2 2

1 1

0 0 0 0

X Y q
E E

x y x y
wé ù é ùæ ö æ öê ú ê ú÷ ÷ç ç÷ ÷- = -ç çê ú ê ú÷ ÷ç ç÷ ÷ç çêè ø ú êè ø úë û ë û

 [77]

since Y1 = w— is the average mass of one elementary fragment 
and X1 = q is the metal content of that fragment. Therefore the 
concentration X / p of the sample of a given mass p has a variance 
equal to:

 ( )
22

2 0 0
2 2

0 0 0

1
;

y x q
D X p E

p p y x y
wé ùæ öê ú÷ç ÷= × -çê ú÷ç ÷çêè ø úë û

 [78]

Finally, in a first order in 1 / p according to [58] we can replace 
y0 / p by 1 / E(N;p) and obtain:

 ( )
( )

2 2

2 0
2

0 0 0

1 1
;

;
x q

D X p E
p E N p y x y

wé ùæ ö æ öê ú÷ ÷ç ç÷ ÷= -ç çê ú÷ ÷ç ç÷ ÷ç çè ø êè ø úë û
 [79]

Now, let’s go back to equation [39]. We find that the sample of 
a given mass p has the same variance as the sample with a given 
number of fragments n, on the condition, of course, that we select 
for n the mathematical expectation E(N;p) of the random number 
of fragments in the sample of a given mass p. This result is valid if 
p or E(N) are large enough in order to ignore the terms in 1 / p2 or 
1 / [E(N)]2.

4. Conclusion
We finally reach the point where the full justification of the calculation 
mode selected by Pierre Gy has been achieved once and for all. As 
far as we are concerned, we are satisfied to have, through this study, 
so arid for many, brought our own contribution to this fundamental 
piece of work, so critically important for the foundation of the Theory 
of Sampling. Also, and but not the least, this work has allowed us 
to refute without appeal the many criticisms unfairly made over the 
years to Pierre Gy’s work.
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