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1. the Historical theoretical Approach
 created by Pierre Gy

The earliest publication of Dr. Pierre M. Gy is the spe-
cial edition of “L’Industrie Minerale” (1967) in which 
the concept of the Fundamental Sampling Error (FSE) is 
brilliantly introduced. It is shown that FSE is the small-
est possible sampling uncertainty if, and only if, for a 
given sample mass the conditions of equiprobability 
have been perfectly respected.
    
m(FSE) ≈ 0 in a fi rst order approximation [1]

It is shown that the variance of FSE can be expressed 
as follows:

  [2]

Where P is the sampling probability, ai is the content of 
the constituent of interest in any fragment, aL the av-
erage content of the lot to sample, Mi the mass of any 
fragment, ML the mass of the lot and CHL the Constitu-
tion Heterogeneity of the lot.

1 Francis Pitard Sampling Consultants, LLC., Broomfi eld, USA.

AbStrAct

Several approaches have been suggested by various authors to model the liberation factor when calculating the va-
riance of the Fundamental Sampling Error. One of these approaches is the result of a thorough theoretical analysis 
and derivation authored by Dr. Pierre Gy as early as 1967.
Another approach, empirical in nature, models the liberation factor as a function of the top size of the fragments 
and the liberation size of the constituent of interest. 
Both approaches have their respective merits. However, the empirical approach, as popular as it may be, is tampe-
ring with the theoretical integrity of Pierre Gy’s formula and may become highly misleading depending on how it 
is applied.
This paper emphasizes the superiority of the theoretical approach, explains the reasons why it should be the only 
valid approach, irrespective of some inconveniences and limitations, and fi nally suggests ways to eliminate the need 
for a liberation factor.

We don’t want to count the number of fragments in the 
lot. It is easy to overcome this di�  culty by multiplying 
CHL by a constant factor such as the average weight of 
a fragment which is by defi nition .
Then we have to defi ne a new term called the Constant 
Factor of Constitution Heterogeneity IHL also called Intrin-
sic Heterogeneity by some authors.

   [3]

Therefore, the following important relation can be ob-
tained:

                      [4]

From this point several pragmatic formulas can be de-
rived which have their own domain of application and 
limitations. For the record: there is no such thing as 
the Pierre Gy’s magic formula as is the perception given 
by many people around the world who are not familiar 
with the subtleties of his valuable work.
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2. A pragmatic formula for a parametric 
 approach 

 [5]

The following, well-known formula is complete and 
still relatively simple, where α refers to a given size 
fraction, and β refers to a given density fraction.
The theoretical foundation of a quick approach and its 
limitations is the most appropriate start. Let’s begin 
with the approximate formula used from the develop-
ment of Gy’s parametric approach:

  
  [6]

This simplifi ed equation is based on two important as-
sumptions:

1. Experience shows that the content aaß of a con-
stituent of interest usually varies much more from 
one density fraction ß to the next than from one 
size fraction a to the next; therefore all the values 
of aaß obtained in a size-density heterogeneity ex-
periment may be replaced by the average content 
aß of the corresponding density fraction Lß. This 
assumption is almost always true.

2. The study of a large number of real cases shows 
that in a size-density heterogeneity experiment 
the proportions      usually varies little from one 
density fraction to the next; therefore, we may as-
sume that all values       can be replaced by their 
average     . This assumption may become debat-
able in some rare cases.

The X term is relative to the size fractions and leads to 
the shape factor and particle size distribution factor, 
while the term Y, relative to the density fractions is the 
one of interest in our present analysis. We know Y can 
be expressed as follows:

   [7]

2.1 the mineralogical factor

Y reaches a maximum when the constituent of inter-
est is completely liberated. This maximum is defi ned 
as the mineralogical factor c. If the material is made 
of only two liberated constituents, for example the 
gangue and the mineral of interest, then the density 
fraction containing the pure liberated mineral has a 
density ρM, while the gangue fraction has a density ρg. 
Then, it follows that for the fraction containing the 
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mineral of interest the content of the mineral is 
aβ = aM = 1; then for the gangue fraction aß = ag = 0 ; also 
the ratio      = aL and the ratio  = (1 - aL).

Transposing these values in equation [7]:

After simplifi cations we obtain:
 

 [8]

2.2 the liberation factor

Let’s make several hypotheses which must be kept in 
mind to understand the limitations of the following 
recommended methods. Let’s also assume we are in-
terested in the copper content of a lot to be sampled.

First hypothesis: Following an analytical investigation, 
we suppose that the maximum copper content amax of 
the coarsest fragments of the lot is known.

Second hypothesis: We suppose that all size fractions 
have roughly the same copper content aL, or at least 
they are within the same order of magnitude.

Third hypothesis: We suppose that inside each fraction 
all of the copper is located in a sub fraction of copper 
content αmax, density ρR, and relative weight

maxa
a

M
M L

L

= ,   [9]
 

while the remainder of the size fraction of density ρg, 

and relative weight            does not contain any 
copper or very little. 

Then we can rewrite equation [7] as follows:

                                                          [10]

which leads after simplifi cation to:

                                             [11]
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αmax being usually much larger than αL, the second term 
may become negligible, therefore:

   [12]

It would be convenient to suppress the factor ρR which 
is di�  cult to estimate. Let’s call V1 the volume occu-
pied by copper and V2 the volume of the gangue.  The 
average density ρ of their mixture can be expressed as 
follows:

   [13]

with pM being the density of the copper mineral. 

But            and    , then:

     or

        [14]

By transposing [13] into the general equation [7] to 
calculate the mineralogical factor and after simplifi ca-
tions we obtain:

   [15]

therefore:

  [16]

    
[17]

In practice we also know that pM > pR > p > pg  therefore:

    [18]

We fi nally obtained the very practical formula:

   [19]
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amax  and aL should be expressed as a proportion of the 
copper mineral content (i.e., as part of one), and not 
as a metal content. This is the preferred way Pierre Gy 
always modelled the variability of the liberation factor 
for various stages of comminution.

3. recommended method #1: 
 Determination of amax for each size   
 fraction of a typical granulometric  
 distribution

1. Collect a large composite sample representing a 
single geological unit, from leftover half core sam-
ples (e.g., fi fty 6-kg samples).

2. Dry the composite.
3. Crush the composite to d = 2.54 cm. The defi nition 

of d is the size of a screen retaining no more than 
5% of the material by weight.

4. Screen the entire composite using the following 
screens: 2.54 cm, 1.25 cm, 0.635 cm, 0.335 cm, 
0.17 cm, 0.085 cm, 0.0 425cm, and 0.0212 cm. 
Below 0.0425 cm the method becomes very awk-
ward but it can be done. 

5. Wash, dry, and weigh each size fraction.
6. Spread the size fraction between 2.54 cm and 1.25 

cm on a clean surface.
7. Using a portable X-ray machine select 10 frag-

ments showing the highest copper content. Using 
a microscope, identify the main copper mineral 
to calculate the mineral content. Crush and grind 
them in a mortar, then assay them for their copper 
content. You obtain 10 copper results. Look at the 
distribution of the 10 results. Calculate the average 
of the 10 results and call the average an estimate 
of amax for d = 2.09 cm. Using formula [19] calcu-
late ℓ for d = 2.09 cm.

8. Spread the size fraction between 1.25 cm and 
0.635 cm on a clean surface.

9. Using a portable X-ray machine select 10 frag-
ments showing the highest copper content. Crush 
and grind them in a mortar, then assay them for 
their copper content. You obtain 10 copper results. 
Look at the distribution of the 10 results. Calculate 
the average of the 10 results and call the average 
an estimate of αmax for d = 1.05 cm. Using formula 
[19] calculate ℓ for d = 1.05 cm.

10. Repeat the same process for the other size frac-
tions between 0.635 cm and 0.335 cm, between 
0.335 cm and 0.17 cm.
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11. For the smaller size fraction, identify 10 zones 
where the copper content is high with the X-ray 
machine. At each of these zones collect a spoon-
ful of fragments. Look at them under the micro-
scope and estimate αmax using proportion standard 
references from the mineralogist when you spot a 
fragment with high copper content. αmax will be the 
average of your observation from the 10 spoonful 
sub-samples you collected from each respective 
size fraction. Then, you can calculate ℓ using for-
mula [19] for each respective size fraction.

4. recommended method #2: 
 Determination of amax for the top size  
 fraction of a typical comminution stage
This method is longer but may be more accurate be-
cause of the limitation of hypothesis #2 under diff er-
ent conditions of comminution.

1. Collect a large composite sample representing a 
single geological unit, from leftover half core sam-
ples (e.g., fi fty 6-kg samples).

2. Dry the composite.
3. Crush the composite to d = 2.54 cm.
4. Split the composite into 7 sublots.
5. Screen one sublot using 2.54 cm and 1.25 cm 

screens
6. Wash, dry, and weigh the size fraction.
7. Spread the size fraction between 2.54 cm and 1.25 

cm on a clean surface.
8. Using a portable X-ray machine select 10 frag-

ments showing the highest copper content. Using 
a microscope, identify the main copper mineral 
to calculate the mineral content. Crush and grind 
them in a mortar, then assay them for their copper 
content. You obtain 10 copper results. Look at the 
distribution of the 10 results. Calculate the average 
of the 10 results and call the average an estimate 
of αmax for d = 2.09 cm. Using formula [19] calcu-
late ℓ for d = 2.09 cm.

9. Crush the second sublot to d = 1.25 cm
10. Screen the sublot using 1.25 cm and 0.635 cm 

screens
11. Wash, dry, and weigh the size fraction.
12. Spread the size fraction between 1.25 cm and 

0.635 cm on a clean surface.
13. Using a portable X-ray machine select 10 frag-

ments showing the highest copper content. Crush 
and grind them in a mortar, then assay them for 
their copper content. You obtain 10 copper re-
sults. Look at the distribution of the 10 results. 
Calculate the average of the 10 results and call 
the average an estimate of αmax for d = 1.05 cm. 

Using formula [19] calculate ℓ for d = 1.05 cm.
14. Repeat the same process for the other size frac-

tions between 0.635 cm and 0.335 cm, between 
0.335 cm and 0.17 cm, by crushing another sublot 
appropriately each time.

15. For the smaller size fraction, after crushing a sublot 
appropriately, identify 10 zones where the copper 
content is high with the X-ray machine. At each 
of these zones collect a spoonful of fragments. 
Look at them under the microscope and estimate 
αmax using proportion standard references from the 
mineralogist. αmax will be the average of your ob-
servations from the 10 spoonful sub-samples you 
collected from each respective size fraction. Then, 
you can calculate ℓ using formula [19] for each re-
spective size fraction. 

5. the Empirical Approach mentioned but 
 not used by Pierre Gy
In Gy’s earlier literature the Constant Factor of Constitu-
tion Heterogeneity IHL was written as follows:

IHL  = f · g · c · ℓ · d3 = C · d3  [20]

The problem with this presentation was that C, which 
is the product of four factors, must be calculated every 
time the value of d changes since the liberation factor 
varies rapidly with the value of d. As a result, in the 
new literature it became a tradition, for practicality, to 
summarize the value of IHL as follows:

IHL  = f · g · c · ℓ · d3 = K · dx   [21]

In this new presentation, the liberation factor is as-
sumed to follow an empirical model such as:

  [22]

where dℓ is defi ned as the liberation size of the con-
stituent of interest. 

In many cases when the constituent of interest is a sin-
gle mineral, the exponent r is not far away from 0.5. 
But, as clearly shown by Gy1 for the liberation of ash in 
coals, and further demonstrated by François-Bongar-
çon (2005) for gold, r is not necessarily anywhere close 
to 0.5, especially when the constituent of interest is 
located in various minerals. 
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Under such new conditions, equation [20] should be 
approximated as follows:

 [23]

where:

K = f · g · c · (dℓ)r  [24]

and

x = 3 - r     [25]

K and r then become the key factors to quantify in 
various experiments described by François-Bongarçon 
(2005). The author of this paper favors the approach 
using αmax for the determination of the liberation factor, 
in which case x = 3; nevertheless, François-Bongarçon’s 
approach proved to be extremely useful in the mining 
industry. However, there may be a few problems when 
we make an attempt to compare oranges and apples, 
an action that may derail a so-called calibration of 
Pierre Gy’s formula shown by equation [6].     

5.1 problems with the empirical approach

This section is a summary of Pierre Gy’s philosophy well 
explained in his 1967 superb analysis. 

The reconciliation of the theoretical approach with the 
empirical approach is often a complex matter. Such 
reconciliation is often judged very important to esti-
mate the real value of the theoretical approach. When 
the diff erence between the theory and the real obser-
vations is too large, we can on the one hand say that 
the theoretical approach is incomplete or on the other 
hand say that the experimental observations are af-
fected by other sources of error. It can become very 
di�  cult to analyze these annoying diff erences. For ex-
ample, if we compare the variance of the Fundamental 
Sampling Error with the variance obtained from experi-
ments, most of the time this second variance is supe-
rior to the fi rst one. The reason is that the Fundamental 
Sampling Error is not the only error taking place dur-
ing experiments. The conclusion is that the theoretical 
approach must be completed by observation from the 
empirical approach: both domains can complete each 
other if looked at it with an open mind. 

The problem is that many sources of error cannot be 
quantifi ed, such as variance of GSE, of IDE, of IEE, of 
IPE, etc. because these errors highly depend on the 
omnipresence of gravity generating segregation that is 
a transient phenomenon changing all the time.  

Therefore, in the same way that some pure theoreti-
cians refuse to account results from experiments, we 
may have pure empiricists discouraged by imperfect 
theories who fi nd solutions with experiments and are 
in denial about the benefi ts from the theoretical analy-
sis. Results from the empirical experiments may give 
us an idea about the global reality of all sources or er-
rors; however, they are incapable of giving us logical 
avenues to reach all the individual causes of problems; 
only the theoretical approach can provide acceptable 
explanations. 

So, going back to equations 21 through 25, it is a dan-
gerous approach to mix oranges and apples to modify 
equation [5], then equation [20] (so called calibration 
of Gy’s formula). Such practice gives a false sense of 
security when it is tampering with the logical rigor of 
the theoretical approach.

Following many years of experience the author of this 
paper rejects this empirical modifi cation using equa-
tions [24] and [25] for the following reasons:
 
1. The sample-tree experiments lead to the cumu-

lated variances of FSE, GSE, IDE, IEE, IPE and even 
AE giving no solutions for these sources of error 
and blaming everything on FSE.

2. When d is smaller than 1 cm, results overestimate 
the variance of FSE, ignoring problem with delayed 
comminution of the constituent of interest. In-
deed, problems due to the delayed comminution 
of hard minerals and some soft minerals such as 
gold, other precious metals, molybdenite, native 
copper, etc. are poorly addressed.

3. When d is larger than 1 cm, results underestimate 
the variance of FSE, making it very di�  cult to rep-
resent the coarse size fractions in the collected 
sample. This is a huge problem.

4. It is not clear what the units are for d3-r, which is 
an important detail.
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6. Conclusions

The empirical approach strongly interferes with the 
integrity of Gy’s formulas shown in equations [2] and 
[6]. As a result, it is wrong to call such approach as the 
“calibration” of Gy’s well-known formula. Furthermore, 
problems with the empirical approach to calculate the 
liberation factor and even the theoretical approach 
not popular and not as well-known for most sampling 
theory practitioners suggest the use of a completely 
diff erent approach bypassing the use of the liberation 
factor.
The introduction of the liberation factor concept was a 
magnifi cent academic achievement and will remain as 
such for those willing to use the theoretical approach. 
However, for those not comfortable with the current 
suggestions off ered by both the theoretical and empir-
ical approaches, we may suggest the following strategy 
that will erase any ambiguity. 

7. Common Sense Suggestions

The liberation factor was an attempt to include in a 
single formula requirement to represent fairly all size 
fractions including the most di�  cult one to represent 
which is the coarse size fraction and represent also the 
particles of the constituent of interest. It is not a must 
to use the concept of liberation factor if the practi-
tioner follows the two following Cardinal Rules. 

7.1 cardinal rule #1: Make sure to represent 
all size fractions.

If the selected sample mass cannot represent all size 
fractions including the most di�  cult to represent 
which is the top size fraction, then the selected sample 
will not be representative of anything else, including 
the constituent of interest. Therefore, the necessary 
sample mass must be calculated using the following 
general formula suggested by Pierre Gy:

             [26]

This formula can often be simplifi ed for many applica-
tions:

• If ML > 10MS

• If dFLc is not much diff erent from d
• If aLc is small, then

                                                       [27]

If the size fraction of interest is d which is the size 
opening of a screen retaining no more than 5% of the 
material, then the fi nal simplifi ed formula is as follows: 

                                                                    [28]
 

7.2 cardinal rule #2: Make sure to represent 
the coarsest particles of the constituent of in-
terest.

The following Gy’s formula putting the emphasis on 
the constituent of interest alone can be used:

                         [29]

where (with subscript M referring to the Mineral of In-
terest):

fMthe shape factor of the constituent of interest

gM the particle size distribution factor of the constitu-
ent of interest

ρM the density of the constituent of interest

dM the maximum size of the constituent of interest 
particle, liberated or not, or cluster of such particles 
contained in a single fragment of the surrounding ma-
trix; dM is defi ned as the size of a screen that would 
retain no more than 5% by weight of all the particles of 
the constituent of interest. 

Both Cardinal Rules should follow the same Data Qual-
ity Objectives (DQO), then the largest necessary sample 
mass obtained from these two rules must decide what 
the most appropriate sample mass should be.
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